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Abstract 16 

The observed difference in relative brain size between endotherms and ectotherms raises 17 

questions about potential resulting disparities in brain function between these two groups. Until 18 

recently, no clear cognitive advantage was found in endotherms, with ectotherms occasionally 19 

even outperforming them in seemingly complex tasks. However, recent research on working 20 

memory—a core executive function—in a teleost fish species suggests that cognitive 21 

differences may lie in more fundamental processes. Here, we develop two working hypotheses 22 

that arose from this finding. First, the apparent absence of working memory in a fish, and 23 

possibly other ectotherms, may stem from their inability to voluntarily control their attentional 24 

focus. Instead, only the environment would be causing changes in that focus. In the dichotomic 25 

vision of Kahneman’s (2011) consisting of automatic System 1 and voluntary System 2, fish 26 

could only rely on System 1. We call this the Lack of Attentional Control (LAC) hypothesis. 27 

Second, to explain why smaller-brained species may nevertheless outperform larger-brained 28 

species in some cognitive tasks, we propose the Cognition – Opportunities – Needs (CON) 29 

framework, which posits that cognitive abilities and learning opportunities provide non-mutually 30 

exclusive mechanisms for meeting ecological demands. While these hypotheses require 31 

further empirical validation, they offer a comprehensive theoretical perspective on cognitive 32 

diversity and evolution across species and major vertebrate clades. 33 
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Introduction 42 

There is an amazing amount of variation in both absolute and relative brain weight across 43 

vertebrates. Within endotherms and within ectotherm vertebrates, species of the same body 44 

weight may differ in brain weight by a factor ten (Jerison, 1969; Tsuboi et al., 2018), and there 45 

is an on average tenfold difference in the brain to body weight ratio between ectotherm and 46 

endotherm vertebrates (Jerison, 1969; Tsuboi et al., 2018). So far, there are two main 47 

hypotheses to explain the latter difference. The first one is related to environmental 48 

temperature, with the logic that bigger brains are found in colder environments (Atkinson, 49 

1994; Blackburn et al., 1999; James, 1970). The second possible explanation, which we are 50 

more interested in, is that it might reflect a gap in cognitive abilities, following the idea that a 51 

bigger brain should provide cognitive advantages. This is coherent as brains consist of 52 

energetically costly tissue (e.g. Aiello et al., 2001; Heldstab et al., 2022; Martin, 1981), therefore 53 

the cost should be compensated for. This is stated by the “Expensive Brain hypothesis” (Isler 54 

& van Schaik, 2009). In other words, what can a typical endotherm species do with its relatively 55 

larger brain that a typical ectotherm species cannot do, or can only do to a lesser extent? A 56 

major research effort has focused on identifying systematic differences in the cognitive tool-57 

kit. Initially, such comparative research focused on variation within primates, and also on 58 

variation within endotherms (e.g. Conway & Christiansen, 2001; Fernandes et al., 2014; Watzek 59 

et al., 2019). Only fairly recently, ectotherms have been added, with most of such research 60 

being conducted on fishes. Typical projects tested for cognitive processes that had previously 61 

been described in endotherms, often only in large-brained species such as primates within the 62 

mammals, and corvids and parrots within the birds. The results largely challenged the idea that 63 

some cognitive processes are exclusive to endotherms (Brown, 2015; Bshary et al., 2014; 64 

Bshary & Triki, 2022; Salena et al., 2021; Triki et al., 2025). The many positive results mean 65 

that we currently lack strong candidate cognitive processes that would require substantial 66 

amounts of brain tissue, i.e. exceeding what an ectotherm could plausibly allocate due to their 67 

smaller brain. 68 

The cleaner wrasse case 69 

Importantly, while evidence for cognitive processes in fishes is spread out over diverse fish 70 

taxa, a large number of fish social cognition capacities have been accumulated in a single 71 

species, the cleaner wrasse Labroides dimidiatus (Triki et al., 2025). This reef-dwelling fish 72 

removes ectoparasites from other species, the so-called “clients” (Côté, 2000). While the 73 

relationship between the cleaner wrasse and its clients is unambiguously mutualistic (Bshary, 74 

2003; Clague et al., 2011; Grutter, 1999; Grutter et al., 2003; Ros et al., 2011; Waldie et al., 75 

2011), there is still a major conflict of interest as cleaner wrasse prefer to eat protective client 76 

mucus over ectoparasites, a behavior that is termed ‘cheating’ (Grutter & Bshary, 2003). This 77 

conflict has selected for sophisticated social strategies in cleaner wrasse, including audience 78 

effects (Pinto et al., 2011), social tool use (Bshary et al., 2002), manipulation of client decisions 79 

(Soares et al., 2011), and within-species third-party punishment (Raihani et al., 2010). 80 

Furthermore, cleaner wrasse must distinguish between client species that, thanks to their 81 

larger territories, can also visit other cleaner wrasse, and client species that can only visit the 82 

local cleaner within their smaller territory. In the second case, the cleaner wrasse has exclusive 83 

access and so, can prioritize the former type of client over the latter (Triki et al., 2019). In this 84 

‘biological market task’ or ‘ephemeral reward task’, cleaner wrasse outperform a number of 85 

mammals and birds, including orangutans and chimpanzees (Salwiczek et al., 2012; Zentall et 86 

al., 2016). A number of these abilities apparently relate to the ecological needs of cleaner 87 
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wrasse (Barbu et al. 2011; Gingins & Bshary, 2016; Prétôt et al. 2016). Follow-up research on 88 

the cleaner wrasse cognitive tool-kit revealed many cognitive processes beyond simple 89 

Pavlovian or operant conditioning (Pavlov, 2010; Skinner, 1937; Thorndike, 1927). According 90 

to available evidence, cleaner wrasse exhibit payoff-based social learning (Truskanov et al., 91 

2020), generalized rule learning (Wismer et al., 2016), mirror self-recognition based on a 92 

mental representation of the fish’s own face (Kohda et al., 2019, 2022, 2023), monkey-like 93 

levels of self-control in the ability to delay gratification (Aellen et al., 2021), concept learning 94 

(Aellen, Siebeck, et al., 2022), behavioral flexibility (Triki & Bshary, 2021), perspective-taking 95 

(McAuliffe et al., 2021), as well as configurational learning and chaining (Prat et al., 2022; 96 

Quiñones et al., 2020). 97 

While L. dimidiatus shows an impressive range of cognitive processes, recent research has 98 

finally yielded some negative results in cognitive experiments that had not been conducted in 99 

other ectotherms previously. First, there is no evidence for a general intelligence factor ‘g’ in 100 

cleaner wrasse, based on their performances in three experiments commonly used in 101 

endotherm ‘g’ studies to evaluate individual performances in different cognitive domains: 102 

reversal learning assessing flexibility, a detour task testing for self-control and a number 103 

discrimination task measuring counting abilities (Aellen, Burkart, et al., 2022). The lack of a ‘g’ 104 

factor means that individual performance in one cognitive task does not predict the 105 

performance in any of the other cognitive tasks. All bivariate correlations were close to zero 106 

and partly negative, and a principal component analysis (PCA) yielded one vector for each 107 

experiment (Aellen, Burkart, et al., 2022). Furthermore, there was a negative correlation for 108 

individual performance in two tasks that supposedly tested the same cognitive domain, i.e. self-109 

control (detour task and feeding against preference task; Aellen, Burkart, et al., 2022). While 110 

the value of the ‘g’ factor varies and may become pretty small when bivariate analyses are 111 

conducted in instead of a PCA (Poirier et al., 2020), a significant ‘g’ factor has so far been found 112 

in all mammals tested, including average-brained mammals such as mice and rats (Burkart et 113 

al., 2017). Furthermore, the ‘g’ factor value correlates positively with brain size within mammals 114 

(Deaner et al., 2007). Thus, variation in the strength of ‘g’ may potentially explain, in part, the 115 

factor 10 variation in brain-body ratios documented within mammals (Tsuboi et al., 2018).  116 

Working memory and cleaner wrasse 117 

In humans, the ‘g’ factor is calculated from IQ tests, where performance correlates with 118 

individual variation in working memory abilities (discussed in Conway et al., 2003). Also in mice, 119 

individual working memory (WM) performance is a predictor of performance in various 120 

cognitive tasks (Kolata et al., 2005). WM is one of the three core executive functions (EFs), and 121 

underlies reasoning, planning, decision-making, and problem-solving abilities (also called 122 

higher-level EFs; Diamond, 2013). WM is a capacity-limited manipulative type of short-lived 123 

storage one uses for goal-directed behavior (e.g., Baddeley & Hitch, 1974, 1974; Cowan, 1988, 124 

1995). According to the Embedded-Processes model of Cowan (1988, 1995, 2019), both the 125 

control of attention and environmental cues can activate relevant and specific content in 126 

memory, which content can then be used in the present situation for goal-directed behavior 127 

(Figure 1, from Cowan et al., 2024). Due to this link with attention, WM abilities are also sensitive 128 

to distraction (e.g. Engle, 2002). Given the tight link between WM and general intelligence, a 129 

fitting recent result on cleaner wrasse was that there was no evidence for WM in four different 130 

tasks that were specifically designed to test for that capacity in this species (Bonin et al., 2025; 131 

summary in Box 1). The importance of short-term manipulation of information became most 132 

apparent in an experiment in which we simultaneously presented two plates with different  133 
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features (color and pattern) to a subject, then we made one accessible so that the cleaner 134 

wrasse could eat a food item placed on the plate’s backside. After a 5 - 10s delay, the subject 135 

had access to both plates and had to choose the second plate (that is, the one with a different 136 

color and pattern than the one it ate from) in order to obtain a second food item on the back. 137 

Cleaner wrasse performed at chance levels at this task, whereas they had performed very well 138 

in an earlier study where they had to remember both plates, when the last interaction with each 139 

had taken place in a 2.5 - 15 min time interval (Salwiczek & Bshary, 2011). Thus, while cleaner 140 

wrasse may use various types of memory (Bonin et al., 2025; Manrique & Walker, 2017; Pause 141 

et al., 2013; Tulving, 1972, 2002) to remember with whom they have recently interacted or not 142 

in a sequence of interactions, they cannot use immediate updates of information, suggesting a 143 

lack of WM. Cleaner wrasse failed in four paradigms, based on visual or spatial information, 144 

partly in ecologically relevant contexts using a gradual methodology, i.e., the complexity was 145 

designed to increase throughout the experimentation. Because cleaner wrasse failed at the 146 

earliest stages of all paradigms, we did not test further on some key points of the WM definition, 147 

such as sensitivity to disturbance (Bonin et al., 2025). A critical assessment of other studies 148 

that claimed to measure WM in fish species (and other ectotherms) revealed that the methods 149 

do not allow to exclude alternative mechanisms, leading to the conclusion that there is currently 150 

no evidence for WM in bony fish or other ectotherm vertebrates (Bonin et al., 2025). For 151 

example, while fish may perform above chance level in an object permanence task involving 152 

the ability to retrieve an object that is fully hidden in one of two possible places (Piagetian stage 153 

4; Piaget, 1954; Piaget & Cook, 1952; (Bonin et al., 2024; Triki et al., 2023), this task does not 154 

require the manipulation of information. In contrast, as the only fish species tested so far, 155 

cleaner wrasse failed in a stage 5 task from Hoffmann et al. (2011), a design that requires the 156 

information to be updated to avoid making the A-not-B error (Bonin et al., 2024), thus more 157 

clearly targeting WM.  158 

While we currently have coherent data on the apparent lack of WM and general intelligence 159 

factor in cleaner wrasse and hence, in the species that arguably contributed most to the 160 

accumulating evidence that fishes have a large cognitive tool-kit, the hypothesis that 161 

ectotherms lack any notable WM capacity will still require multiple studies on various ectotherm 162 

species to be validated. Nevertheless, the negative results on cleaner wrasse inspired us to 163 

Box 1: Extract of the methods and results from Bonin et al. (2025) 

Methods Windows 

experiment: 

Spatial paradigm 

Comparison of the foraging efficiency of cleaners on plates with four fully 

visible food items compared to plates with reduced visual information (the food 

items were placed inside Plexiglas windows that made them invisible 

depending on how cleaner wrasse approached the location).  

Movable arena: 

Spatial paradigm 

The cleaner had to navigate in an arena where it could make successive 

choices as to inspect a compartmentalized plate. The plate was made of four 

compartments, each with a single food item. A perfect sequence of choices 

would lead the cleaner to inspect all compartments only once. 

Two plates 

experiment: 

Visual paradigm 

The cleaner was given a plate to inspect during a first inspection. After he got 

the food reward from it, the plate was removed, the experimenter waited 5 to 

10sec then presented two plates to the cleaner wrasse for a second inspection. 

One of the plate was the same as the one from the first inspection and hence, 

was not rewarded. The cleaner had to choose the unfamiliar plate to get the 

reward. 

Dynamic two 

plates: 

Visual paradigm 

The principle was the same as in the two plates experiment, but the paradigm 

was adjusted so that both plates were always visible. 

Results Windows experiment: Cleaners forage less efficiently on a plate with windows. 

Movable arena: Cleaners visited compartments randomly. 

Two plates experiment: Weak inconsistent success in choosing the unfamiliar plate. 

Dynamic two plates: Cleaners failed to choose the unfamiliar plate. 
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develop a framework about how species without WM may achieve highly sophisticated 164 

decision-making. In this manuscript, we develop two aspects that we consider crucial to 165 

understand cleaner wrasse (and other small-brain species) learning and decision-making. We 166 

first consider what kind of attention control they might have, and then we develop the 167 

hypothesis that cleaner wrasse perform so well in various tasks because of the many 168 

opportunities to learn from interactions with clients, then further generalize this concept to 169 

other species. 170 

Working memory and attention 171 

According to conceptual 172 

thinking based on human 173 

research, WM and 174 

attention are tightly linked 175 

together (e.g; Cowan’s 176 

Focus of Attention, Fig. 1). 177 

According to D’esposito 178 

and Postle (2015), 179 

“information is encoded 180 

into working memory by 181 

allocating attention to 182 

internal representations”; 183 

and Van Ede and Nobre 184 

(2023) noted “the 185 

importance of selective 186 

attention in selecting and 187 

prioritizing the relevant 188 

contents within working 189 

memory” (p.139). 190 

Conway et al. (2003) 191 

argued that “the basic 192 

processes that contribute 193 

to WM span tasks suggest 194 

that they critically tap an executive attention-control process […]” (p.550) while Kane et al. 195 

(2001) highlighted that “it is the individual differences in the controlled-attention component of 196 

WM that are responsible for the correlations among WM span and complex cognition 197 

measures” (p.170). Although the terminology differs between these quotations, the substance 198 

remains unchanged—these all highlight how WM and the ability to control attention are linked 199 

together. As a result of this constatation, we hypothesize that the failure of cleaner wrasse in 200 

the WM paradigms might stem from a lack of attentional control. This would deprive them from 201 

voluntarily modulate the content of their attentional focus, an ability also called executive 202 

attention (e.g. Engle & Kane, 2003; Shipstead et al., 2016). We want to refer to this as the “Lack 203 

of Attentional Control” hypothesis, which reflects the inability to voluntarily control the content 204 

of one’s focus of attention. Under such conditions, an individual would fail in usual WM 205 

paradigms as we found in cleaner wrasse (Bonin et al., 2025) for instance. 206 

 

Figure 1: Recent representation of the Embedded-Processes model, 

taken with authorization from Cowan et al. (2024, Fig. 1) 

FoA: Focus of Attention 

aLTM: Activated portion of the long-term memory (LTM) 

Unconscious prime: Environmental inputs priming without “explicit awareness” 

(Fig. 1; Cowan et al., 2024, p.5). 

A stimulus can be consciously detected when supported by the central 

executive or when it arises from a relevant change in the environment; 

otherwise, it remains unconscious. The central executive also plays a key role 

in determining which stimuli to focus on: it can bring a stimulus into the FoA, 

which is influenced not only by executive control but also by environmental 

cues. Once within the FoA, information is organized into meaningful units 

called “chunks,” which can then be transferred back into LTM for storage. 
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The LAC Hypothesis 207 

The social science literature on attentional control is vast and there are important 208 

disagreements, both in the concepts themselves as well as the use of terminology (e.g. Awh et 209 

al., 2012; Gaspelin & Luck, 2018; Oberauer, 2019; Pinto et al., 2013). Among all visions, we 210 

prioritized the two-systems divisions of Kahneman (2011) according to which there is an 211 

automatic, fast, intuitive system 1 and a slow, effortful, voluntary system 2. We established a 212 

visual representation of our vision of the two systems and the relation to both internal content 213 

and perceptual information in Fig. 2. Other dichotomic visions presented top-down and bottom-214 

up processes (Macaluso et al., 2016; Sobel et al., 2007), control (Buschman & Miller, 2007; 215 

Oberauer, 2019), or attention (Katsuki & Constantinidis, 2014; Y. Pinto et al., 2013), but the 216 

notion of voluntary process is not always clear (Gaspelin & Luck, 2018; Luck et al., 2021). This 217 

aspect was decisive in our decision to follow Kahneman’s vision as we consider that the ability 218 

to control (reflecting a voluntary aspect) the focus of attention—also called executive attention, 219 

executive control, cognitive control, or attentional control (e.g. Engle, 2002; Vandierendonck, 220 

2014)—might represent a major achievement in mental abilities. Indeed, by having voluntary 221 

control over thoughts and perceptions, one is capable of conscious and voluntary decision-222 

making. Opposingly, relying solely on System 1 means an individual’s behavior is driven 223 

entirely by environmental stimuli. In the stimulus-driven capture of attention framework 224 

(Theeuwes et al., 2010), a feature in the environment will automatically capture an individual’s 225 

attention. The likelihood that an environmental stimulus will capture one’s attention depends 226 

on its salience, here both in term of relevance and physical properties (i.e. value-driven and 227 

salience-based attentional capture; Anderson et al., 2011a, 2011b). The salience can change 228 

through associative learning (discussed in Hall & Rodríguez, 2017). It can increase with 229 

reinforcement (Treviño, 2016), i.e., acquired salience (Esber & Haselgrove, 2011), or decrease 230 

through repeated exposure, i.e., habituation (Rankin et al., 2009). Consequently, the focus of 231 

attention can be affected by purely automatic processes (such as associative learning) as well 232 

and lead to different behavioral outcomes. In simpler terms, it means that the chances that an 233 

environmental stimulus will capture one’s attention will depend on how important the stimulus 234 

is to the subject (e.g. your name being called is highly relevant to you, hearing it will capture 235 

your attention), and how powerful are its characteristics (such as a very loud noise, or a bright 236 

red object in a very green forest). This importance can be modulated with learning: it can both 237 

increase (you strengthen the importance of the stimulus) or decrease (this is called habituation, 238 

less attention is given to it). Due to this link between learning and importance given to a 239 

stimulus, the focus of one’s attention can be modulated automatically. 240 

Here, we propose the “Lack of Attentional Control” hypothesis (LAC hypothesis) that predicts 241 

that cleaner wrasse and other ectotherm species might not be capable of voluntary control 242 

over the content of the focus of their attention, i.e., a lack of attentional control. Lacking this 243 

deliberate control means that an individual could not have the ability to voluntarily retrieve the 244 

relevant information from stored knowledge that could be manipulated to solve a specific 245 

problem, nor could they voluntarily decide which perceptual information to focus on. Under 246 

such circumstances, the individual depends on the environment to supply cues that 247 

automatically direct relevant information (both from internal or external sources) into the focus 248 

of attention. In other words, ectotherms would possess Kahneman’s System 1 only (Kahneman, 249 

2011; Fig. 2) whereas endotherms would possess both automatic System 1 and voluntary 250 

System 2. To give an example, attentional control is crucial in a situation where one is 251 

approached by a lion on the African savannah, a highly salient external stimulus. To respond 252 

effectively, one must override the instinct to focus on the threat and instead shift attention 253 
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toward information that is necessary to protect oneself, such as the internal knowledge used 254 

to load and fire a gun in the air to scare the lion away. These voluntary shifts in the focus of 255 

attention are what characterize attentional control ability.  256 

Independently of whether voluntary or automatic processes are at work, efficient decisions 257 

depend on individuals directing their attention to the relevant information. Given that there are 258 

many stimuli in the outside world and various information in the memory, individuals need a 259 

filter. This filter is called ‘selective attention’. Following Vandierendonck (2014) and Van Ede & 260 

Nobre (2023), we view attentional control (that they call executive attention) as the conscious, 261 

deliberate control over selective attention (Fig. 2). According to Van Ede et Nobre (2023), we 262 

can distinguish between two types of selective attention. One type that acts on the perceptual 263 

(i.e., external) information for internal processing, called the outside-in selective attention, is an 264 

equivalent to Baddeley’s (1986) concept of perceptual selective attention. The second type, 265 

referred to as the inside-out selective attention, also called internal selective attention (e.g., 266 

Ester & Nouri, 2023), selects the relevant content of the WM to create a goal-directed behavior. 267 

We would like to expand this definition to the selection of relevant information from internal 268 

content or knowledge more generally (Fig. 2). This, because an information can be used as is 269 

from another type of short-term storage, without being manipulated and processed in WM 270 

(Bonin et al., 2025; Manrique et al., 2024). 271 
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Figure 2: Schematic representation of the two systems that modulate the content of the focus of attention 

via their actions on outside-in and inside-out selective attention filters. “a pretty good imperfect figure” 

The environment is at the origin of constant sensory information. The outside-in selective attention filter filters the 

relevant sensory information (Van Ede & Nobre, 2023). This filter can be modulated by two systems: the automatic 

system 1 and the voluntary System 2 (Kahneman, 2011), also called attentional control. Via acting on the “mesh 

size” of the filter, whether positively or negatively, these two systems can vary the type of, or how many, sensory 

information can be transferred into the focus of attention (arrow a). Similarly, the systems can act on the inside-

out selective attention filter that selects which information from our knowledge (Van Ede & Nobre, 2023) or 

internal state can be transferred into the focus of attention (arrow b). 

When an information is within the focus of attention, it can act on the systems, influencing those that will then act 

on the selective attention filters so that associated relevant information can be perceived from the environment 

or brought from our knowledge (dashed arrows from the focus of attention to each system). 

In addition, knowledge and internal state have a direct impact on both systems. The automatic system 1 mainly 

relies on associative learning (Kahneman, 2011); newly learned information can further impact how the system 

modulates the selective attention filters. Similarly, the voluntary choices operated by system 2 will also vary with 

learning. 

Lastly, we represented the process of working memory. When facing a problem in the present, individuals are 

provided with sensory information (brown square). In order to solve the problem, relevant information from the 

knowledge must be brought in the focus of attention (brow circle). Together, these information are manipulated, 

combined, and processed to create a new information (brown triangle) that can, in turn, be transferred to our 

storage unit and become part of the knowledge. It is currently unclear whether the voluntary system 2 is required 

for WM or whether the automatic system 1 would be enough. 

We acknowledge that this figure is a rather simplified representation, highlighting only the aspects most relevant 

to our argument rather than capturing the full complexity of attentional control and its mechanisms. It does not 

explicitly link attention to behavior, as this would require distinguishing between conscious and unconscious 

processes (e.g. instinct), which would further complicate the figure. It also omits an intermediate state of 

information activation that allows individuals to be aware of stimuli without fully focusing on them (a notion similar 

to Cowan’s activated portion of long-term memory (Fig. 1) that we also did not include, but for sensory 

information). Finally, the figure’s layout might suggest that we reject certain attentional models, such as the 

spotlight model (Posner et al., 1980), whereas this is not the case. We chose to show information moving into the 

focus of attention, rather than the focus itself shifting, as a simpler way to illustrate our point. 

 272 

1. Outside-in selective attention 273 

It is intuitive to think that individuals must pay attention to the problem they face in order to 274 

solve it. It is no different with cleaner wrasse. In general, when working with cleaner wrasse, 275 

we are able to manipulate the focus of their outside-in attention so that they participate in 276 

experiments. We hypothesize that cleaner wrasse might be able to maintain their attention on 277 

an object using behavioral adjustments (such as body orientation), but that, if the focus breaks 278 

due to internal factors (such as a time delay) or external factors (such as a distraction, e.g. 279 

sudden appearance of a predator), they are not able to decide to focus again on the object. 280 

Support for this idea can be found in Aellen et al. (2021). They found that adding objects to 281 

enable subjects to use self-distraction did not increase the success of cleaner wrasse in a 282 

delayed-gratification paradigm. This may occur as self-distraction is a distractor, hence 283 

breaking the focus of cleaner wrasse’s attention without them being able to voluntarily re-focus 284 

(i.e., top-down processes) on the relevant information. This would contrast with what studies 285 

on human infants and primates revealed, with self-distraction having a positive impact on the 286 

success (Evans & Beran, 2007; Raghunathan et al., 2023), highlighting that individuals were 287 

able to re-focus (again, via top-down processes) to complete the task. 288 

More broadly, the outside-in selective attention was found in multiple ectotherm vertebrate 289 

species (review in Krauzlis et al., 2018). One example Krauzlis et al. (2018) highlight involves 290 

Anolis lizards, which face the challenge of detecting prey movement amid dynamic 291 

environmental backgrounds, such as swaying leaves. To overcome this, Anolis lizards exhibit 292 

an automatic visual preference, i.e. an involuntary attraction of gaze, toward specific types of 293 

motion patterns. This demonstrates the existence of selective attention directed toward 294 
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ecologically relevant features of their environment. However, no study to date has tested the 295 

voluntary control over it. Hence, this could only reflect the action of the automatic System 1 (as 296 

supposed by the terms “automatic visual preference” or “involuntary attraction”) instead of the 297 

voluntary System 2 (Fig. 2; Kahneman, 2011) 298 

In other words, outside-in selective attention might differ between ectotherms and endotherms 299 

in its unique reliance on automatic processes or the possibility of controlling it through 300 

voluntary processes. Therefore, attentional control over outside-in selective attention should 301 

be broadly investigated across multiple vertebrate species to verify this possibility. 302 

2. Inside-out selective attention  303 

We know that the attentional control over internal information (i.e., the content of memory) is 304 

essential for solving complex problems in humans (i.e., Kane et al., 2001; Van Ede & Nobre, 305 

2023). The research on inside-out selective attention is almost non-existent in non-human 306 

animals and is completely non-existent in ectotherm species. However, we can still think about 307 

it. Because cleaner wrasse were able to use past knowledge to adapt in a foraging task 308 

(Salwiczek & Bshary, 2011) without showing WM abilities in more specific experimental 309 

designs (Bonin et al., 2025), we hypothesize that they can use past knowledge according to 310 

the present situation as long as the present environmental context provides the information 311 

that will result in the transfer into the focus of their attention of the relevant stored information 312 

(i.e. that will allow to solve the problem), without them having voluntary control over it. Following 313 

the representation of Figure 2, the sensory information would arrive into the focus of attention, 314 

whether because it is relevant (importance was learned in the past, hence affecting the outside-315 

in selective attention filter through the automatic system) or because it acts as a disturbance. 316 

Then it can, in turn, impact the automatic system via the automatic activation (for instance, if 317 

you are told the word “mother”, you will automatically think of a range of other words 318 

associated with it) that will act on the inside-out selective attention filter to let stored information 319 

related to that information enter the focus of attention. This would explain how cleaner wrasse 320 

are able to engage in seemingly complex problem-solving by adapting their cleaning behaviors 321 

depending on multiple factors in the present (e.g., Bshary & Grutter, 2002, 2005; Pinto et al., 322 

2011; Raihani et al., 2012) without having a voluntary control over their inside-out selective 323 

attention.  324 

3. Potentially challenging previous findings 325 

If ectotherms lack attentional control, one may ask how cleaner wrasse and guppies have 326 

performed well in tasks commonly used to assess inhibitory control (i.e., another executive 327 

function; Diamond, 2013). These include detour tasks, where individuals must go around a 328 

transparent obstacle (e.g., a cylinder or barrier) to reach a reward (Aellen, Burkart, et al., 2022; 329 

Guadagno & Triki, 2024; Lucon-Xiccato et al., 2017; Triki & Bshary, 2021), and delayed 330 

gratification tasks that require waiting to obtain a better outcome (Aellen et al., 2021).Indeed, 331 

at first glance, such results might seem inconsistent with the LAC hypothesis. However, these 332 

tasks primarily assess self-control—also called behavioral inhibition, which does not seem to 333 

involve voluntary attentional shifts as opposed to interference control (Diamond, 2013). In 334 

detour tasks, the goal and obstacle are both directly perceptible and the testing environment 335 

typically lacks competing distractions (for a review and discussion, see Kabadayi et al., 2018), 336 

which reduces the need for attentional control. Moreover, encountering physical obstacles is 337 

common in the wild for most species, meaning that prior experience and learning may 338 

contribute to successful performance (Van Horik et al., 2020; Kabadayi et al., 2018), allowing 339 

the automatic System 1 to be at play. Similarly, in delayed gratification paradigms, success can 340 
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rely on passive waiting or the inhibition of motor impulses without requiring voluntary 341 

attentional shifts. Even if self-control and interference control are correlated, those are still 342 

separate mechanisms (Diamond, 2013; Wolff et al., 2016), which means that cleaner wrasse 343 

(and other species) could possess self-control without interference control. In this light, the 344 

cognitive abilities demonstrated in these tasks do not contradict the LAC hypothesis. Rather, 345 

they raise an additional question related to executive functions in general: could all EFs possess 346 

two subcomponents, one requiring attentional control and one not? Meaning, one version 347 

relying only on Kahneman’s automatic System 1? This question will not be addressed here, 348 

but it is a possibility for further thinking. 349 

How do cleaner wrasse, and other species, face 350 

ecological challenges? The CON framework 351 

The LAC hypothesis proposes that the capacity to voluntarily decide which stored information 352 

(i.e. knowledge, Fig. 2) or sensory information from the environment can be in the focus of 353 

attention, instead of exclusively relying on environmental changes, could separate endotherms 354 

from ectotherm vertebrates. This ability seems crucial for everyday life as it allows voluntary 355 

decision-making when facing a precise situation in the present, so it is essential to develop a 356 

theoretical evolutionary model where the lack of such attentional control does not impede 357 

cognitive performance, especially in ecologically relevant tasks.   358 

1. Repeated exposure and associative learning in cleaner wrasse 359 

One possible solution for ectotherms (and to a lesser degree for small-brained endotherms) is 360 

to rely on more automatic mechanisms. We already cited Daniel Kahneman’s work previously, 361 

but here are more details. On the basis of considerable previous literature in cognitive 362 

psychology and years of investigations, he defines two reasoning processes (Kahneman, 363 

2011). The first, System 1, is automatic, intuitive, effortless, and fast and could be the base for 364 

ectotherms cognition following our framework.  An example of an automatic process is 365 

familiarity. It is a process defined as the ability to react to a previously encountered stimulus 366 

without explicit recollection of the information associated with it (see Yonelinas, 2002, for the 367 

distinction between familiarity and recollection). In other words, it is an automatic reaction to a 368 

known stimulus, it does not require voluntary control (e.g., such as the automatic retrieval of 369 

the name of someone you know well). In addition to such an automatic process, numerous 370 

learning opportunities may be at play. For instance, cleaner wrasse have up to 3000 cleaning 371 

interactions per day (Triki et al., 2018), providing them with these numerous opportunities. 372 

During each one of these interactions, the focus of cleaner wrasse’s attention could change 373 

through the stimulus-driven capture of attention (Theeuwes et al., 2010). This means that 374 

across the many interactions, cleaner wrasse may eventually have the relevant information in 375 

the focus of their attention for solving the problem, and the resulting reward will initiate 376 

reinforcement learning processes. Repeated exposure will increase the salience of the 377 

information (see previous section for details), and the new behavior may eventually become 378 

familiar enough to be executed automatically. Hence, the emergence of a new successful 379 

behavior could occur without the intervention of voluntary control, but via a ‘simple’ behavioral 380 

pattern repetition strategy based on positive-outcome random shifts in focus of attention. This 381 

could be the basis for cleaner wrasse impressive diversity of natural strategies (e.g., Binning 382 

et al., 2017; Bshary & Noë, 2003; Gingins & Bshary, 2016; Kohda et al., 2023; Soares et al., 383 
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2008). This view is coherent with Kahneman’s statement that associative learning is the primary 384 

process supporting the functioning of the automatic System 1 (Kahneman, 2011). 385 

The above-presented framework may also explain why cleaner wrasse outperform primates in 386 

the basic and complex biological market / ephemeral reward task when the relevant information 387 

is in the two plates (Salwiczek et al., 2012).  The plates represent the client fish, which for 388 

cleaner wrasse represent the most relevant indicators of food rewards (Grutter, 1995; Roche 389 

et al., 2021). It is thus likely that they can easily associate plate features with consequences 390 

(using chaining and configurational learning; Prat et al., 2022; Quiñones et al., 2020), while 391 

primates never focus their attention on the plates. If the relevant information is in the color of 392 

the food items or an icon on a screen, capuchin monkeys focus their attention correctly and 393 

hence also solve the task (Prétôt et al., 2016).  394 

2. Generalization: The CON framework 395 

To generalize the results from the biological market / ephemeral reward test to other species, 396 

we propose that cognitive performance largely arises from three factors: i) the cognitive 397 

component ‘C’ that reflects the brain’s computing capacities; ii) the learning opportunities ‘O’ 398 

that depend on how often an individual faces a certain problem in nature; and iii) the ecological 399 

need ‘N’ that causes selection on individuals to solve the problem at hand, such that cognition 400 

and opportunities combined will allow individuals to fulfil their ecological needs: 𝐶 + 𝑂 → 𝑁 401 

(Fig. 3). While a lack of need 402 

strongly increases the 403 

probability of failure in a task 404 

(i.e. if a task does not reflect an 405 

ecological need, in laboratory 406 

setup for example), the CON 407 

framework offers two options 408 

for solving a relevant problem: 409 

evolving strong computing 410 

powers (Fig. 3a) or having 411 

frequent exposure to the 412 

problem (Fig. 3b). Based on 413 

the CON framework, we can 414 

predict that ectotherm 415 

vertebrates will only excel at 416 

complex tasks if they have 417 

plenty of learning 418 

opportunities or an 419 

innate/already developed automatic attention for the relevant stimuli (Fig. 3b). This is important 420 

to consider when testing wild-caught individuals (Bshary & Triki, 2022). For example, in cleaner 421 

wrasse, performance in the biological market / ephemeral reward task depends on their 422 

previous exposure to visitor clients leaving if being made to wait for inspection (Triki et al., 423 

2019, 2020). More generally, cleaner wrasse fail in tasks in which the correct solution 424 

mismatches with what they face in nature, such as giving priority to the smaller of two look-425 

alike plates (Wismer et al., 2016) or learning that one laminated fish picture provides a safe 426 

haven against being chased while a simultaneously present other one does not when both 427 

species are functionally equivalent in nature (i.e. both are predators or visitors). Conversely, 428 

the cognitive power of endotherms could allow them to succeed even with few (or no) learning 429 

 

 
 

 

 
 

Figure 3: The CON framework 

Schematic illustration of the hypothesized relationship between the 

cognitive component ‘C’, the number of learning opportunities ‘O’, and 

the ecological needs ‘N’. In this simplified model, ‘N’ is represented 

equally in both scenarios to simplify the logic. In scenario (a), a species 

can meet its ecological needs despite limited learning opportunities due 

to high computational power (i.e., a strong cognitive component). In 

scenario (b), a species with lower computational power can still meet its 

ecological needs by having numerous learning opportunities. 

a b 
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opportunities and in tasks of little (or no) ecological relevance. Within endotherms, such 430 

abilities should correlate with relative brain size. Lastly, it is important to note that the N 431 

component would be mostly defined by the variability of an environment. For instance, even if 432 

a species faces numerous problems in its daily life, if those are always the same, then simple 433 

learning mechanisms could be sufficient. However, a changing environment, even with fewer 434 

problems, would require adaptability, potentially in a shorter time period than what learning 435 

based on a bottom-up process would allow. Such conditions would require voluntary control 436 

over the focus of attention to enable quick and appropriate responses. 437 

Conclusion 438 

Research in the past 20 years on the cognitive abilities of ectotherm vertebrates, in particular 439 

fishes, has challenged assumptions about a cognitive gap between endotherms and 440 

ectotherms. Here, we propose that such a gap may exist for the attentional control ability, that 441 

is, the voluntary control over the content of the focus of attention, which we formulated in the 442 

LAC hypothesis. While ectotherms might lack attentional control abilities, their cognitive 443 

performance can potentially be explained by the CON framework which emphasizes the 444 

interplay between computing capacities, learning opportunities, and ecological needs. In other 445 

words, the evolution of computing power leads to less reliance on frequent learning 446 

opportunities for survival. This framework highlights how repeated problem-solving scenarios 447 

can compensate for limited brain computational power, offering a new perspective on why 448 

cleaner wrasse, in particular, show so much evidence for sophisticated interspecific social 449 

strategies. Future research should explore attentional control abilities in both endo- and 450 

ectotherm vertebrates to draw evolutionary conclusions across vertebrates. A crucial 451 

prediction from our framework is that we need to complement neatly designed laboratory 452 

experiments, usually performed with minimal distraction, with experimental setups that include 453 

distractors in order to potentially find clear patterns of endotherms outperforming ectotherms, 454 

and to explain performance variation within endotherms.  455 
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