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Powerful yet challenging: Mechanistic Niche Models for predicting invasive 1 

species potential distribution under climate change 2 

 3 

Abstract 4 

Risk assessments of invasive species are among the most challenging applications of species 5 

distribution models (SDMs). This challenge arises from the disequilibrium in invasive distributions, 6 

where recorded occurrences do not fully represent the species' potential range. The spatiotemporal 7 

dynamics of invasive populations are shaped by intraspecific variability, human-mediated 8 

introductions, novel biotic interactions, climate change, and ecological niche shifts, which are only 9 

indirectly incorporated into correlative SDMs. Predicting future potential distributions under these 10 

conditions requires moving beyond traditional frameworks reliant on historical climatic data to models 11 

that explicitly capture the mechanisms underlying species potential. Mechanistic niche models (MNMs) 12 

address these limitations as process-explicit models that integrate species' physiological performance 13 

across environmental gradients. By incorporating physiological constraints and vital rates, MNMs 14 

define species distribution limits, offering a mechanistic understanding of species-environment 15 

relationships and enabling more robust predictions under changing conditions. However, a unified 16 

MNM framework remains elusive. In this review we delve into the theoretical foundations of MNMs, 17 

emphasizing their advantages over correlative approaches, especially for invasive species. We provide 18 

insights into diverse modelling techniques across taxa and examine the benefits and limitations of 19 

MNMs for predicting species distributions under novel conditions. Our systematic review revealed that 20 

MNMs have been applied sparingly to invasive species, focusing primarily on insects and plants, likely 21 

due to high data requirements. While MNMs do not explicitly capture spatial processes, they remain 22 

the most suitable approach for defining species distribution limits under novel conditions, but their 23 

success depends on the relevance of input data and effective parameterization, including genotype 24 

selection, model type, experimental conditions, and physiological curve-fitting techniques. MNMs offer 25 

significant potential for advancing ecological research and providing robust tools for evidence-based 26 

management decisions. By addressing key challenges, they can enhance our understanding of invasive 27 

species and other populations in disequilibrium under changing environmental conditions. 28 

 29 

Keywords: Alien species, Biophysical, Ecophysiological niche models, Distribution forecast, Invaded 30 

range, Metabolic rates, Systematic review, Vital rates.  31 
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Challenges for modelling invasive species using species occurrence data 32 

Understanding the constraints of species distribution and abundance has been a central goal in ecology 33 

for decades (Andrewartha and Birch, 1954). This topic remains highly relevant as climate change 34 

reshapes species distributions (Sutherland et al. 2013; Pecl et al. 2017; Lenoir et al. 2020). Invasive 35 

species provide unique insights into how organisms expand their ranges and respond to novel 36 

conditions, offering a basis to understand and predict the impacts of climate change on native species 37 

distributions (Cadotte et al. 2021). 38 

Species Distribution Models (SDMs) are the most widely used tools for spatially explicit predictions of 39 

species' environmental suitability (Guisan et al. 2017) and have been extensively applied to explore 40 

invasive species' potential (Guisan et al. 2014). SDMs use statistical models to describe relationships 41 

between species occurrence or abundance records and spatial predictors (e.g. temperature, 42 

precipitation). These relationships are then used to map occurrence probabilities and make forecasts 43 

across time and space (Elith and Leathwick 2009; Elith 2017). 44 

However, correlative SDMs face critical limitations, including observation bias, the inability to capture 45 

non-equilibrium or source-sink dynamics, statistical extrapolation fallacies, and the lack of integration 46 

of species dispersal or biotic interactions (Lee-Yaw et al. 2022). Some of those limitations might be 47 

particularly relevant for invasive species, since they show non-equilibrium distributions because of 48 

incomplete range expansion, transient dynamics, or niche shifts from native and invaded ranges (Gallien 49 

et al. 2012; Elith et al. 2017). Biased observed occurrences challenge SDMs for all organisms (Dubos 50 

et al. 2022) but might be even more complex for species with rapid colonization speed like invasives 51 

(Gallien et al. 2012; Moudrý et al. 2024). Approaches such as pooling species, accounting for imperfect 52 

detection, and implementing autoregressive structures can help address spatial and sampling biases in 53 

species’ native range (Dorazio 2014; Fithian et al. 2015; Pacifici et al. 2017; Hui 2023; Soley-Guardia 54 

et al. 2024). However, mitigating bias for alien species in their invaded ranges is more complex, as 55 

additional mechanisms beyond heterogeneous sampling effort or imperfect detection are involved (as 56 

depicted in Figure 1, and exemplified in a specific case in Box 1). As a result, invasive species 57 

distributions are frequently under- or over-predicted, as current records fail to reflect their potential 58 

ranges (Hui 2023). 59 

Given the need to understand invasive species potential distributions for global biodiversity 60 

conservation, and the limitations of correlative approaches, alternative methods have been proposed. In 61 

this review we aim to (i) decompose the mechanisms behind biases or limitations that cause correlative 62 

SDM failure in invasive species, (ii) justify and define the foundations of mechanistic niche models 63 

(MNMs) and their potential for invasive species to solve correlative limitations. Specifically, MNMs 64 

(or ecophysiological models) aggregate process-explicit distribution models that explicitly test 65 

responses to specific environmental factors, approaching the species fundamental niche. Other process-66 
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explicit models such as demographic models, or abundancy dynamics will not be considered in this 67 

review, since they approach the realized niche, and thus they might fail to predict invasive species 68 

dynamics under changing conditions. While discussing these different mechanistic models, we will also 69 

(iii) explore how MNMs have been applied to project invasive species potential distributions and (iv) 70 

assess whether MNMs truly address the limitations of correlative SDMs for invasive species.  71 

 72 

Complex source-sink dynamics: Global trade and disturbance might drive invasive 73 
species presence  74 

The presence of species outside their native ranges is primarily a consequence of human movement 75 

across the globe (Turbelin et al. 2017). Globalisation has facilitated the crossing of previously 76 

impenetrable geographic barriers, sometimes even transporting species in regions (i.e. geographic 77 

space) which climatic conditions are outside the species’ native niche (i.e. environmental space). 78 

Transportation networks, trade, and international travel now serve as effective vectors for introducing 79 

non-native species (Westphal et al. 2008; Hulme et al. 2021; Gippet and Bertelsmeier 2021). 80 

Historical empires have also left a legacy on global biodiversity. For instance, Lenzner et al. (2022) 81 

demonstrated how the colonial activities of four European empires—British, Spanish, Portuguese, and 82 

Dutch—structured current alien floras worldwide. Their study revealed that flora compositional 83 

similarity is higher than expected among regions previously under the same empire's influence. In one 84 

example, South African Aizoaceae plants, long cultivated in British gardens, likely facilitated the 85 

invasion of species such as hottentot-fig (Carpobrotus edulis), baby sun rose (Aptenia cordifolia), and 86 

pink ice plant (Drosanthemum floribundum) in Europe (Preston 1988; Campoy et al. 2018). 87 

In addition to global trade, increased propagule pressure might allow urbanised areas to temporally 88 

sustain invaders. Urbanisation is a major driver of exotic species richness (Heringer et al. 2022). 89 

Disturbed communities often host lower biodiversity and have been described as less resistant to 90 

invasions, although this relationship may vary with the invasion stage (Stachowicz and Tilman 2005; 91 

Guo et al. 2024). Lower biotic resistance and increased resource availability in disturbed environments 92 

explain the presence of the bermuda buttercup (Oxalis pes-caprae) in its invaded range (González-93 

Moreno et al. 2015). 94 

Highly populated areas are subject to higher invasive propagule pressure due to global trade, which 95 

increases the likelihood of successful establishment (Borden and Flory 2021). For example, the 96 

pinewood nematode (Bursaphelenchus xylophilus) in China is more likely to occur in areas with high 97 

human population density (Robinet et al. 2009). Connectivity, such as road networks, further facilitates 98 

human-mediated species distribution by amplifying plant invasions and enabling dispersion in disturbed 99 

habitats (Son et al. 2024). Connectivity not only enhances range expansion but also the likelihood of 100 
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species detection. Spatial autocorrelation in species records (not only at the invaded range) often reflects 101 

uneven sampling efforts and site accessibility (e.g. roads, urban areas; Dormann et al. 2007; Botella et 102 

al. 2020). An interesting case involves the invasive bluegill (Lepomis macrochirus), where the fish's 103 

presence in ponds correlates with the visibility of those ponds from nearby roads. Increased visibility 104 

attracts fishing activities, a key introduction pathway for this species (Kizuka et al. 2014). 105 

Even though connectivity might explain the arrival of a species in a specific location, it does not 106 

guarantee species success. Approximately 40% of global invasive species were intentionally introduced 107 

for their charismatic appeal or specific functional uses, such as terrain stabilisation, fishery support, or 108 

culinary purposes (Turbelin et al. 2017). These intentional introductions often occurred outside the 109 

species’ native climatic niches. Human activity has been found to drive the establishment of non-native 110 

plants on islands, but not their subsequent invasion (Pfadenhauer et al. 2024). Records in citizen science 111 

platforms such as iNaturalist may fail to indicate whether observations represent casual or wild 112 

populations (López-Guillén et al. 2024), impacting correlative SDM predictions. Similarly, Hui (2023) 113 

highlights that occurrence records often lack details on whether they represent established or sink 114 

populations, which would pose distinctive expansion risk. Consequently, invasive occurrences are 115 

strongly influenced by the impact of human activities and movement. 116 

Overall, urban and disturbed areas exhibit increased alien species richness due to heightened propagule 117 

pressure, reduced biotic resistance, and increased resource availability. Whereas using the native range 118 

occurrences to capture species presence in the invaded range might fail due to underestimation around 119 

urbanized areas, using the invaded range occurrences to predict future distribution might fail as well 120 

since occurrences do not constitute established populations. The usage of both native and invaded 121 

ranges registers has been proposed (Broennimann and Guisan 2008) but this approach might require 122 

niche conservatism, which will be discussed in the next section.  123 

 124 

Niche shifts: Invasive species might grow in conditions outside their native niche 125 

After arriving in a novel environment, one of the primary factors determining a species’ establishment 126 

is habitat suitability (Weiher and Keddy 1995). Habitat suitability depends on the climate, resource 127 

availability, and the presence of native competitors or predators (Hirzel and Le Lay 2008). Invasive 128 

species often thrive in environments resembling their native habitats but with fewer natural enemies, 129 

allowing rapid spread—a concept known as the Enemy Release Hypothesis (Keane and Crawley 2002). 130 

For example, invasive mammals are more likely to establish when introduction sites fall within their 131 

native climatic niche (Broennimann et al. 2021). However, invasive species can also experience shifts 132 

of their niche during invasion (Guisan et al. 2014), in which case fitting the SDMs with data from both 133 

the native and invaded ranges could capture better the current species distribution (Broennimann and 134 

Guisan 2008; Kearney et al. 2010).  135 
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When contrasting realised niches from invaded and native ranges, studies with plants generally support 136 

niche conservatism (Petitpierre et al. 2012; Liu et al. 2020a). However, while arriving in conditions 137 

belonging to the realized native niche may facilitate initial establishment, it does not guarantee invasive 138 

success (Broennimann et al. 2007; Divíšek et al. 2018). This discrepancy might be due to (i) 139 

evolutionary processes that lead to a differentiation of the fundamental niche during the invasion 140 

process and/or (ii) even though the fundamental niche is conserved, only a subset of it was occupied in 141 

the native range (due to habitat availability or biotic interactions) (Broennimann et al. 2007; Qiao et al. 142 

2017). This second case falls within the niche variation hypothesis, that suggests that populations 143 

released from competition (i.e. natural enemies for invaders), are able to expand their realised niche 144 

(Van valen 1965, Bolnick et al. 2007) For example, island endemics such as amphibians and reptiles 145 

demonstrate high potential to expand their realised niches, illustrating how environmental matching 146 

(i.e. matching conditions from occurrences between native and invaded range) is not always required 147 

for invasion (Liu et al. 2020b; Stroud 2020). Diverging metrics for niche contrasts accounting for habitat 148 

availability have hindered conclusive evidence regarding niche conservatism in invasive species (Bates 149 

and Bertelsmeier 2021). 150 

Beyond habitat availability, evolutionary processes can explain invasive species success outside the 151 

abiotic conditions observed in the native range (Broennimann et al. 2007; Pearman et al. 2008). Rapid 152 

adaptation associated with the lack of natural enemies, founder effect and/or genetic drifts (Eckert et al. 153 

1996), plays a critical role in invasive success, potentially leading to niche evolution (Pearman et al. 154 

2008; Colautti and Barrett 2013; Fenollosa and Munné-Bosch 2019a; Campoy et al. 2021). For 155 

example, differential thermal sensitivity (i.e. fundamental niche shift) was reported between individuals 156 

from the native and invaded ranges in the hottentot-fig under controlled conditions (Carpobrotus edulis, 157 

Box 1). In such cases, using occurrences from the native range to fit SDMs is discouraged. For example, 158 

for the Asian yellow-legged hornet (Vespa velutina nigrithorax), correlative SDMs performed better 159 

when native distribution data were excluded (Barbet-Massin et al. 2018). Mixed results were observed 160 

for invasive beetles, with two of five species showing niche conservatism (Duncan et al. 2009), while 161 

cane toads (Rhinella marina) demonstrated a realised niche shift (Tingley et al. 2014).  162 

Overall, whereas environmental matching might contribute to species establishment into novel regions, 163 

native occurrences do not always explain species potential growth on the invaded range. Native realised 164 

niche unfilling due to habitat or dispersal limitation and biotic interactions, as well as fundamental niche 165 

shifts due to genetic bottlenecks and/or rapid adaptative processes in response to enemy release and/or 166 

founder effects, explain this climatic mismatch. Selecting the proper data for fitting SDMs (only native, 167 

only invaded, both or specific subsets of occurrences) would require a full characterization of those 168 

processes, which is not usually available.  169 

 170 

https://nsojournals.onlinelibrary.wiley.com/doi/full/10.1111/ecog.06257#bib-0014
https://nsojournals.onlinelibrary.wiley.com/doi/full/10.1111/ecog.06257#bib-0005
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Non-equilibrium distribution: lag-phase, range expansion and management  171 

Time plays a complex and non-linear role in defining the distribution of invasive species (Broennimann 172 

et al. 2014; Theoharides and Dukes 2007; Robeck et al. 2024). After a species arrives in a novel 173 

environment, the lag period before noticeable population growth varies significantly, creating an 174 

"invasion debt" (González-Moreno et al. 2017; Evers et al. 2021; Duncan 2021). This establishment lag 175 

phase is influenced by certain functional traits, with annual self-fertilising or non-sexual reproduction 176 

species being less likely to experience prolonged lags (Robeck et al. 2024). Once established, the spatial 177 

spread of an invasive species is often determined by local environmental conditions and reproductive 178 

strategies. Species with high fecundity and adaptability tend to colonise new areas more rapidly 179 

(Capellini et al. 2015; Allen et al. 2017). A recent meta-analysis found that invasive plants' population 180 

growth rates increase with residence time, highlighting how these vital rate changes can complicate 181 

predictions of species potential (Suárez-Seoane et al. 2017; Gruntman and Segev 2024). 182 

Climate shifts, land-use changes, management actions or resource availability can trigger sudden 183 

outbreaks, accelerating the spatial and temporal spread of invasive species. These shifts can lead to 184 

rapid, unpredictable changes in distribution patterns. In the case of the spotted knapweed (Centaurea 185 

stoebe), its invasion followed an initial spread phase in ruderal habitats, and a niche expansion into 186 

climates not occupied in the native range was observed after an extended lag phase (Broennimann et al. 187 

2014). Additionally, conservation actions—such as mitigation efforts or habitat restoration—can 188 

further influence invasion dynamics, although these are often underrepresented in distribution models 189 

(Pyšek and Richardson 2010). SDMs fitted at different scales can be strongly informative to design 190 

management actions and monitor invasion potential, as done with the giant hogweed (Heracleum 191 

mantegazzianum) in Switzerland (Shackleton et al. 2020). Overall, registered occurrences at a given 192 

time often fail to capture the full potential of invasive species, as they are shaped by establishment lags, 193 

adaptive processes, and management interventions as well as by the complex source-sink dynamics 194 

discussed previously. 195 

Populations within the invaded range may have different potential distributions. High intraspecific 196 

variability within invaded ranges due to multiple introductions, along with hybridisation and rapid 197 

adaptation, can result in population differentiation within a single species’ invaded range, potentially 198 

leading to niche differentiation (Pearman et al. 2008; Pearman et al. 2010; Colautti and Barrett 2013). 199 

For example, local adaptation in purple loosestrife (Lythrum salicaria) was observed along a 1000-200 

kilometer climatic gradient in the invaded range (Colautti and Barrett 2013). Rapid adaptation during 201 

range expansion may lead to genetically distinct populations, as demonstrated by wolves (Canis lupus) 202 

in Central Europe (Szewczyk et al. 2019). SDMs calibrated with occurrences from both confirmed and 203 

unconfirmed populations of the invasive turtle pond slider (Trachemys scripta) revealed contrasting 204 

projections, emphasising its strong expansion potential (Cordier et al. 2020). SDM calibration with 205 
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naturalised populations outperformed SDMs calibrated using combined native and invasive records of 206 

common ragweed (Ambrosia artemisiifolia) (Dullinger et al. 2009). Similarly, models calibrated with 207 

early invasion data may underperform compared to those using established populations (Václavík and 208 

Meentemeyer 2009). 209 

Human assistance to exotic species outside their climatic niche can also promote invasive populations 210 

differentiation and fundamental niche shifts within the invaded range. We propose coining this 211 

phenomenon as “invasive nurturing” (i.e. assisting organisms outside their climatic niche opening the 212 

possibility for adaptation). Botanical gardens exemplify this phenomenon, assisting species to survive 213 

outside the environmental conditions of the native range, with extensive documentation in China (Ni 214 

and Hulme 2021), Indonesia (Junaedi et al. 2021), and Europe (Klonner et al. 2019). Urban trees planted 215 

outside their native niches also exhibit wider realised niches than native species (Kendal et al. 2018). 216 

Economic interests, such as the ornamental trade, contribute to this process, as seen with sacred bamboo 217 

(Nandina domestica) in the USA (Beaury et al. 2021; Bradley et al. 2022). 218 

Populations at the edges of a species’ range—where physiological stress, drift, expansion load, and 219 

swamping gene flow from range interiors are more pronounced—add further uncertainty to distribution 220 

models (Gaston 2009; Sexton et al. 2009). The centre-periphery hypothesis posits that demographic 221 

performance declines from the centre of a species' range towards its edges, potentially overestimating 222 

distribution when edge populations are treated as established ones. While this hypothesis has been 223 

supported in marginal climates (Bontrager et al. 2021; Perez-Navarro et al. 2022), calls for its re-224 

evaluation highlight the need for empirical studies, particularly for invasive species (Purves 2009; 225 

Csergö et al. 2017; Pironon et al. 2017; Angert et al. 2020; Chevalier et al. 2021; Kunstler et al. 2021). 226 

Interestingly, probably due to the expansion dynamics, invasive plants often exhibit higher growth rates 227 

in edge populations compared to central populations (Gruntman and Segev 2024). 228 

Despite its critical importance, intraspecific variability (including population’s variability within 229 

species range) remains underrepresented in distribution models (Pearman et al. 2010; Collart et al. 230 

2021). The high sampling effort required to capture this variability and the absence of established 231 

frameworks to integrate it pose significant barriers (Collart et al. 2021; Song and Li 2023). This gap in 232 

modelling limits the ability to accurately predict distributions for species with variable populations, 233 

particularly those undergoing rapid expansion or adaptation in their invaded ranges. 234 

 235 

Hybridization, genetic admixture and genetic drift might hinder invasive species 236 
identification 237 

Identification challenges are a general limitation of correlative SDMs as they depend on occurrence 238 

data. Small, camouflaged, elusive, or subterranean species pose additional barriers to accurate 239 

monitoring (Jarić et al. 2019; Richter et al. 2021). However, these challenges are exacerbated in invasive 240 
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species. Hybridisation, strong genetic admixture, or genetic bottlenecks because of the fast adaptation 241 

processes at novel environmental conditions might hinder a clear identification, leading to incomplete 242 

or inaccurate occurrence records. 243 

Crypticity in species identity in its invaded range (Jarić et al. 2019) or during range expansion (Rosche 244 

et al. 2024) represent a significant source of observational bias, deeply affecting the outputs of 245 

correlative SDMs. While citizen science platforms such as iNaturalist provide valuable insights into 246 

invasive species distribution, the quality of data—particularly proper species identification—requires 247 

careful consideration (López-Guillen et al. 2024). 248 

Fast adaptations, genetic admixture, and hybridisation during invasive expansion can lead to significant 249 

genetic and morphological complexities, making species identification challenging, particularly in 250 

plants. Examples include the native-invasive admixture of common reed (Phragmites australis) (Pyšek 251 

et al. 2018), genetic clusters of hottentot-fig (Carpobrotus edulis) (Campoy et al. 2018; Novoa et al. 252 

2023), shifts in cytotype frequency in the spotted knapweed (Centaurea stoebe) (Treier et al. 2009; 253 

Rosche et al. 2024), the enigmatic complex of lantana (Lantana camara) (Goyal et al. 2015), and 254 

confusion between devil's backbone (Kalanchoe daigremontiana) and its invasive hybrid K. × 255 

houghtonii (Herrando-Moraira et al. 2020). Taxonomic uncertainty can also hinder invasive species 256 

monitoring, as seen with peppermint shrimp (Lysmata vittata), where conflicting morphological 257 

descriptions, inconsistent terminology, and limited molecular data complicate identification (Aguilar et 258 

al. 2022).  259 

 260 

Predicting to novel conditions requires a full understanding of species' physiological 261 
limitations 262 

Different climatic scenarios can significantly alter species’ potential for persistence and colonisation 263 

(Pironon et al. 2017). This necessitates training models not only with past and current environmental 264 

conditions but also with information on species' ability to face novel conditions (Kearney and Porter 265 

2009) including extreme climatic events (Perez-Navarro et al. 2022). Incorporating such data is critical 266 

for predicting species distributions under climate change scenarios. 267 

Novel environmental conditions can result from environmental drivers falling out of the explored 268 

ranges, or because novel combinations arise (Elith 2017). Climatic or bioclimatic variables of known 269 

species locations are the predominant predictors used in invasive SDMs, often supplemented with 270 

topographic, pedological, and anthropogenic variables (López-Tirado and Gonzalez-Andújar 2023). 271 

However, novel climatic conditions, which by definition have not been observed, require the 272 

understanding of the species’ fundamental niche to make accurate predictions (Kearney et al. 2009; 273 

Elith 2017; Briscoe et al. 2023).  274 
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Correlative SDMs assume that abundance reflect species physiological limitations, which are 275 

homogeneous within the species range. However, physiological plasticity is a complex trait susceptible 276 

to local adaptation (Fenollosa and Munné-Bosch 2019b). Lower temperature physiological limits are 277 

not constant across the invaded range of the cane toad (Kolbe et al. 2010), as it isn’t some woody species 278 

drought tolerance to extreme events (Perez-Navarro et al. 2022). Such dynamics remain unaddressed in 279 

correlative SDMs that rely on past and present conditions on registered presences to define species 280 

physiological limits, which limits their predictive accuracy to under changing climates. 281 

 282 

Invasive species spatio-temporal complexities as an adaptation laboratory  283 

The distribution of invasive species is uniquely shaped across space and time (Laxton et al. 2022, 284 

Figure 1, Box 1). Since the species distribution on the invaded range is in equilibrium with their 285 

environment, their distributions and impacts are affected by factors beyond abiotic conditions and are 286 

changing at relatively fast rates (Werner et al. 2024). Alternatives to correlative SDMs offer promising 287 

approaches to capturing these complexities, especially under climate change scenarios. This is crucial 288 

not only for addressing the biodiversity threats posed by invasive species but also for advancing our 289 

understanding of ecological adaptation over relatively short time-periods. 290 

 291 

 292 

Figure 1. Schematic representation of spatio-temporal complexities of invasive species 293 

distributions, from their arrival to their expansion. Multiple introductions increase propagule 294 

pressure and facilitates invasions. Some species might not occupy all potential climatic niche due to lag 295 

phase and might shift with climate change. Connectivity to disturbed habitats and without natural 296 

enemies of the introduced species might facilitate and accelerate invasive spread. Invasion nurturing 297 

facilitates climate discovery to novel areas. Not all occurrences might constitute stablished or source 298 

populations. Identification complexities might hinder invasive species registrations. For further details, 299 

refer to the text. Created with BioRender.  300 
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 301 

BOX 1. Spatio-temporal complexities of an invaders case study, the hottentot-fig invasion. 302 

The invasive hottentot-fig (Carpobrotus edulis) is a succulent clonal plant native to the Cape region of 303 

South Africa. Its reptant stems form dense mats, enabling it to thrive in diverse environments (Wisura 304 

and Glen 1993). The species has successfully invaded Mediterranean climate regions, spreading 305 

extensively across coastal sand dunes, rocky coasts, and sea cliffs in Europe (Campoy et al. 2018). This 306 

invasion negatively impacts native communities, reducing local richness and diversity (Vilà et al. 2006; 307 

Santoro et al. 2012; Sarmati et al. 2019). Additionally, C. edulis modifies soil conditions through 308 

necromass production, altering pH, moisture, nutrient content, and microbial activity (Santoro et al. 309 

2011; Novoa et al. 2013; Vieites-Blanco and González-Prieto 2018).  310 

Here, we selected ten examples that exposed mechanistic determinants behind C. edulis success that 311 

limit the predictive capacity of correlative SDM as a case example (Numbered in Figure 2). (1) 312 

Ornamental interest increases propagule pressure both within and outside its suitable range. For 313 

instance, in its native range, the species experiences annual rainfall of 464 mm but invades areas like 314 

Galicia (NW Spain), which receive 1228 mm (Picture: E. Fenollosa). (2) The species presence is 315 

associated with habitat disturbance (Lechuga-Lago et al. 2017). (3,4) Differential stress responses have 316 

been observed between native and invasive populations under varying water and temperature conditions 317 

(Pictures from Campoy et al. 2021 and Fenollosa and Munné-Bosch 2019a). (5) Realised niche shift 318 

towards colder regions was found between European (invasive) and the native ranges (Fenollosa and 319 

Munné-Bosch 2019a). (6) Multiple genetic clusters have been identified within invaded ranges (Novoa 320 

et al. 2023). (7) Large intraspecific variability in seed production has been observed over short distances 321 

(Fenollosa et al. 2021). (8) Populations form persistent soil seed banks with different longevities 322 

(Fenollosa et al. 2020). (9) CAM shift and physiological integration enable resilience to resource 323 

heterogeneity (Roiloa 2019). (10) Growth and death cycles regulate the exponential impacts of the 324 

invasion (Fenollosa et al. 2016). This case study illustrates the spatio-temporal complexities of invasion, 325 

demonstrating the limitations of correlative SDMs and emphasising the importance of mechanistic 326 

approaches. 327 

 328 
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 329 

Figure 2. Ten studies compendia with the invasive hottentot-fig (Carpobrotus edulis) via mechanistic 330 

lens, highlighting the elements that shape its distribution, hindering accurate forecasts using correlative 331 

SDMs. Pictures credit is acknowledged in Box 1.  332 

Mechanistic Niche Models: forecasting species potential from physiological limitations  333 

Given that correlative SDMs may be unreliable for species with non-equilibrium distributions (Briscoe 334 

et al. 2019; Lee-Yaw et al. 2022), alternative or complementary approaches are needed to predict 335 

invasive species distributions, determine potential habitats, and understand eco-evolutionary processes 336 

under climate uncertainty. In response, ecologists are increasingly incorporating biological processes 337 

into distribution predictions.  338 

There are a range of process-explicit models that explicitly account for processes such as physiology, 339 

dispersal, demography evolution and biotic interactions (Briscoe et al. 2019; Urban et al. 2022). Here 340 

we focus on models that capture physiological constraints by explicitly incorporating the mechanistic 341 

links between the functional traits of an organism and its environment (Kearney and Porter 2009). These 342 

models are variously referred to as eco-physiological models, biophysical models, mechanistic SDMs 343 

or mechanistic niche models, with terminology depending partially on the extent to which mechanistic 344 

links are identified via experimental data (e.g. on physiological tolerances, thermal performance) or 345 

calculated using first principles (Gates 1980). For simplicity, we refer to these collectively as 346 

mechanistic niche models (MNMs) hereafter but highlight the implications and potential challenges of 347 

differences in parameterisation.  348 
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We focus on MNMs because they are grounded in the species' fundamental niche, making them 349 

particularly suited for predicting the potential distribution of invasive species, including under climate 350 

change. MNMs use experimental data or calculated physiological limitations—such as thermal limits 351 

and water requirements—to define species' range limits and project distributions (Kearney and Porter 352 

2009; Evans et al. 2015). By incorporating biological mechanisms from experimental data including 353 

physiological tolerances (e.g. thermal limits, growth rates) and demographic traits (e.g. survival and 354 

fecundity), MNMs provide a nuanced understanding of species distributions independent of recorded 355 

occurrences. In principle, this would allow predictions under novel environmental conditions, and could 356 

aid conservation and management efforts, such as identifying critical thermal thresholds or optimising 357 

invasive species management. 358 

While MNMs share some similarities with process-explicit models that also aim to capture demographic 359 

responses to environments (i.e. demographic distribution models; Merow et al. 2017), we differentiate 360 

them here by emphasizing their mechanistic basis in physiological processes and constrains as a 361 

function of environmental variables, as opposed to relying primarily on demographic patterns from field 362 

data or modelling individual’s physiological processes without considering environmental influence.  363 

Building MNMs demands a substantial amount of detailed, species-specific empirical data linked to 364 

relevant environmental variables. Physiology has been proposed as a key component of species 365 

distribution models (SDMs) (e.g. Schwinning and Parsons 1996; Kearney and Porter 2009), and the 366 

need for combined expertise in modelling, demography, and environmental physiology has hindered 367 

the widespread adoption of MNMs (e.g. Buckley et al. 2010; Kearney et al. 2012; Woodin et al. 2013). 368 

Kearney and Porter (2009) identified a major barrier in linking behavioural, morphological, and 369 

physiological traits with GIS datasets on climate and terrain. To address this challenge, they proposed 370 

using biophysical ecology, a field rooted in ectotherm studies (Tracy 1982) that applies thermodynamic 371 

principles to organisms to derive mechanistic models of their physiological processes and responses 372 

(Gates 1980). Biophysical models require data on species’ morphological, physiological and 373 

behavioural traits, and can be parameterised using data from a range of sources including museum 374 

specimens, behavioural observations, physiological experiments and allometry (recently reviewed by 375 

Ridell et al. 2023). Biophysical models have mainly been used in ectotherms, though their use in 376 

endotherms is growing (Angilletta 2009; Briscoe et al. 2023; Ridell et al. 2023). Similarly, dynamic 377 

energy budget (DEB) models, which can be integrated within biophysical ecology (Kearney et al. 2010), 378 

have been also proposed for modelling resource allocation and species distribution in plants (Schouten 379 

et al. 2020; Russo et al. 2022).  380 

Key data inputs of MNMs include physiological parameters, such as metabolic rates, thermal tolerances 381 

(upper thermal limit, lower thermal limit, activity window), developmental rate, hypoxia tolerance, and 382 

growth rates under environmental gradients (Evans et al. 2015). However, physiological constraints 383 
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may occur in a hierarchical manner, with some processes (or during certain developmental stages) being 384 

more sensitive to environmental change. For example, species survival is often possible over a wider 385 

range of temperatures than locomotion or reproduction (Buckley and Kingsolver 2012). Overall, data 386 

requirements for MNMs vary significantly depending on the organism type, as different species demand 387 

unique physiological, demographic, or environmental datasets to accurately represent their responses 388 

to ecological conditions. 389 

While MNMs have primarily focused on environmental variables such as temperature, other key 390 

mechanistic elements that shape species distributions could also be incorporated. Although temperature 391 

significantly influences species performance, species-specific critical temperatures often fail to fully 392 

explain biogeographical patterns (Sunday et al. 2012), mainly because they are often not solely or 393 

directly related to range limits and need to be integrated with other parameters in biophysical models 394 

(Chevalier et al. 2024). Other global gradients—such as oxygen levels, light availability, pressure, pH, 395 

and water balance—play vital roles in shaping species distributions. These factors covary with latitude, 396 

elevation, and ocean depth, and species exhibit strong physiological and behavioural adaptations to 397 

these abiotic variables within their historic ranges (Spence and Tingley 2020). A greater focus on these 398 

underexplored variables into MNMs could enhance the models' ability to predict distributions across 399 

diverse environments and under changing climate conditions (Kearney et al. 2018; Telemeco et al. 400 

2022). 401 

Mechanistic niche models mark a significant advancement in ecological modelling by linking 402 

physiological processes with species distributions to deliver biologically grounded predictions. Unlike 403 

correlative SDMs, MNMs explicitly incorporate physiological and demographic data, allowing in 404 

principle for more robust projections under novel environmental conditions, such as those induced by 405 

climate change or species invasions. By simulating species interactions with key environmental 406 

factors—such as temperature, water availability, and other gradients—MNMs enhance our 407 

understanding of the fundamental niche. Despite their substantial data and parameterisation 408 

requirements, making them currently difficult to apply to large numbers of species (as SDMs can do, 409 

e.g. Adde et al. 2024), these models provide unparalleled insights into ecological dynamics. 410 

Consequently, MNMs are essential for advancing ecological research and optimising conservation and 411 

management strategies in a rapidly changing world (Kearney and Porter 2009; Elith et al. 2010; Higgins 412 

et al. 2020). 413 

  414 
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MNMs on invasive species 415 

Mechanistic niche models have emerged as a powerful tool for understanding the environmental and 416 

biological constraints shaping the distribution of species (Kearney and Porter 2009; Evans et al. 2015; 417 

Briscoe et al. 2019). Relative to SDMs, MNMs are still not widely used, but modelling invasive species 418 

distributions has been one of their main applications (Briscoe et al. 2019). To explore the number of 419 

studies that have attempted to predict invasive species distributions from physiological limitations, 420 

understand the diversity of nomenclature and model types, as well as types of empirical data used to 421 

parametrize the model, we performed a systematic review of published studies using MNMs in invasive 422 

species worldwide (Supplementary material 1). Briefly, we based our search on Briscoe et al. 2019 423 

search terms to obtain three types of models: MNMs, demographic distribution models (DDMs) and 424 

individual-based models (IBMs), combined with filters to detect studies with invasive species. Although 425 

demographic distribution and individual-based models were out of the scope, we included them in the 426 

search terms to check if some of them could be also categorized as MNMs. This was common for IBMs, 427 

which simulate populations considering discrete individuals each with a set of attributes. We included 428 

IBMs that accounted for individual’s performance in response to environmental constrains from 429 

experimental data, as well as DDMs that were fitted using experimental data (and not field data, as 430 

discussed in the previous section).  431 

Mechanistic niche models have been used to a very limited extent. Our systematic review resulted in 432 

53 articles including MNMs for invasive species from 2007 to 2024 (Figure 3). This relatively low 433 

number highlights the challenges of gathering the complex data required to construct MNMs and apply 434 

them effectively in the field. Additionally, the lack of unified nomenclature to name these models across 435 

studies further complicates their application. In this regard, our systematic review revealed diverse 436 

model nomenclature usages when building MNMs with invasive species. Across the 53 articles authors 437 

named MNMs as: physiologically based (Higgins et al. 2012), biologically informed (Lozier and Mills 438 

2011), biophysical (Tingley et al. 2014), temperature-driven (Logan et al. 2007), ecophysiological 439 

(Ginal et al. 2021), process-based (Gutierrez et al. 2007), mechanistic phenology (Iwamura et al. 2020) 440 

and phenotypically explicit model (Brass et al. 2024). Surprisingly, we found that a full description of 441 

physiological processes that constrain species performance under different environmental conditions 442 

was rather rare. Instead, researchers have been attempting to include some key processes or 443 

physiological constrains, and in some cases use pre-built frameworks or transferring physiological data 444 

from other species. Since some of those pre-built frameworks can include some data from species 445 

occurrences, when they do, they do not constitute mechanistic but hybrid approaches. Some examples 446 

of these pre-built frameworks (some of them could be mechanistic, or hybrid depending on the data use 447 

to parametrize it) are the CLIMEX model mainly used for insects (e.g. Ponti and Gutierrez 2023), the 448 

TTR (Thornley transport resistance) (Higgins and Richardson 2014; Higgins et al. 2020) or dynamic 449 

vegetation models such as LPJ-GUESS for plants (Leiblein et al. 2016), DBEM (dynamic bioclimate 450 
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envelop models) for fishes (Zhu et al. 2020), and NicheMapper for ectotherms and endotherms 451 

(Kearney et al. 2008; Kolbe et al. 2010; López-Collado et al. 2013; Tingley et al. 2014; Strubbe et al. 452 

2023). Considering the strong data requirements for a fully mechanistic approach, we decided to include 453 

and discuss benefits and limitations of all those approaches, which in some cases will not be suited to 454 

understand invasive species potential distribution under novel environmental conditions. When 455 

classifying the studies in our review by MNM modelled taxonomic groups, over 50% focused on insects 456 

while nearly 20% addressed plants (Figure 3). Invasive insects such as the tomato pinworm (Tuta 457 

absoluta; Ponti et al. 2021; Early et al. 2022; Ponti and Gutiérrez 2023), mosquitos (Aedes sp.; Iwamura 458 

et al. 2020; Pasquali et al. 2020; Brass et al. 2024) and plants, such ambrosia (Ambrosia artemisiifolia; 459 

Chapman et al. 2014; 2017; Leiblein-Wild et al. 2016) have been frequent subjects of these models due 460 

to their ecological impact and ability to rapidly colonise new environments. The extensive usage of 461 

MNMs in insects responds mainly to these species’ strong dependence on temperature as well as their 462 

potential to act as vectors for disease (Rebaudo and Rabhi 2018). Besides insects and plants, four articles 463 

reported MNMs with amphibians, microorganisms (virus, Taylor et al. 2019), three with other 464 

vertebrates (a mammal, (Tablado and Revilla 2012), a reptile (Lin et al. 2019) and a fish (Zhu et al. 465 

2020)), and one study with a mollusc (Feng et al. 2020) (Figure 3, Supplementary Material 2).  466 

Of the 53 articles found, 25 (47.2%) included projections of invasive species distribution under climate 467 

change scenarios, while the remainder focused on present environmental conditions. However, some of 468 

these studies aim was not solely to project species distribution under climate change conditions, but 469 

other applications. The second most common application of MNMs was to explore the contributions of 470 

environmental versus non-environmental drivers in shaping invasive species distributions (Figure 3). 471 

To do so, authors built both correlative models and MNMs and contrasted the resultant projections 472 

sometimes considering variables of interest. One of the examples of this application is the study of the 473 

sub-Antarctic insect by Pertierra et al. (2020). In this work, a MNM was parametrized from vital rates 474 

as function of temperature obtained after laboratory experiments where survival, growth and fecundity 475 

were monitored in larvae exposed to 0, 2, 4, 6 and 8ºC for 30 days simulating the austral summer. The 476 

contrast of this MNM to a correlative SDM revealed high potential for the species to expand their 477 

invaded range and exposed how its current distribution is shaped by human presence.  478 

Other applications of MNM in invasive species included: comparing multiple invaders’ potential 479 

distribution to assist management actions decision-making (Gutierrez and Ponti 2013), test niche 480 

conservatism or niche shifts between invaded and native ranges (Tingley et al. 2014) and understand 481 

the role of intraspecific variability in species distributions (Kolbe et al. 2010). In some cases, both native 482 

and invasive species distributions were parameterized, such as the pathogen Bsal (Batrachochytrium 483 

salamandrivorans) with the threatened native fire Salamandra (Salamandra salamandra) to determine 484 

extinction risk (Deiß et al. 2024). In addition, some articles also used MNMs to predict invasion 485 

dynamics, but to do so, mechanistic models were coupled with occupancy data to predict spread. This 486 
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is the case of the study by Walter et al. (2023), where the temperature-dependent developmental 487 

performance of the spongy moth (Lymantria dispar dispar) was used as a covariate within a Bayesian 488 

occupancy model that considered tree canopy cover, local diffusive spread, habitat connectivity and 489 

population density from pheromone-baited traps. Other studies predicted invasion spread from 490 

physiological data by parametrizing the model with time-dependant rates (Hartley et al. 2010). In this 491 

study by Hartley et al. (2010) a degree-day model of development was used to model growth and 492 

distribution of the Argentine ant (Linepithema humile) in Hawaii, resulting into a rate-of-spread, and 493 

predicting future range expansion.  494 

Our review identified several approaches used to meet data requirements for constructing MNMs. 495 

Thermal tolerance was the most frequently used variable to build response curves for invasive MNMs 496 

(e.g. Ginal et al. 2021 in an invasive frog, Brass et al. 2024 for an invasive mosquito). Following 497 

temperature, the relationship of temperature with species phenology or developmental rates was the 498 

second most common studied process to parametrize MNMs. Some examples include modelling the 499 

timing of the breeding season with invasive rabbits (Tablado and Revilla 2012), or Ambrosia’s cold 500 

limitation by phenology (Chapman et al. 2014). Contrastingly, Zhang et al. (2021) built an MNM with 501 

soil water and nutrient requirements data from a microcosm experiment with cogongrass (Imperata 502 

cylindrica). Beyond environmental variables, other mechanisms that have been included when building 503 

MNMs in invasive species are multiple trophic systems (e.g. with the invasive yellow star-thistle in 504 

Gutierrez et al. 2008), demographic stochasticity (e.g. with the invasive European rabbit in Tablado and 505 

Revilla 2012) or evolutionary dynamics (e.g. with the dengue mosquito Aedes aegypti in Kearney et al. 506 

2009). Whilst survival has been the most selected trait in the reviewed studies, other traits, such as 507 

reproductive components or specific metabolites levels have also been incorporated to reflect species 508 

performance. For example, corticosterone levels influence avian range limits (Treen et al. 2015) or 509 

glycogen stores reflect the optimal status for aquatic ectotherms (Maazouzi et al. 2011).  510 

Whereas some studies based the MNM on energy budget models (or more generally, resource allocation 511 

models), others were built from laboratory tests conducted under a limited number of experimental 512 

conditions (e.g. five different temperatures) or combined both via energy-mass balance equations. All 513 

modelling approaches result in a model where a performance variable is a function of the environmental 514 

conditions. Whereas laboratory-based models are constrained by the data used for parameterisation (e.g. 515 

specific laboratory-tested temperatures, life stage selected), resource allocation models are limited by 516 

the equations used, which are based on prior knowledge of the species. Regarding laboratory-based 517 

models, Fadda et al. (2024) modelled the ambrosia beetle (Xyleborus bispinatus) performance by fitting 518 

a convex function to growth rate data obtained from individuals exposed to a temperature gradient (17, 519 

20, 26, 29, 35 °C) over 36 days. Similarly, Pertierra et al. (2020) exposed midge larvae to 0, 2, 4, 6, and 520 

8 °C for 30 days, while Lin et al. (2019) subjected invasive lizard adults to four temperature groups: 10, 521 

12, 14, and 16 °C for 28 days. In contrast, Feng et al. (2020) used a plateau model, representing the 522 
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abiotic niche with three connected segments of differing slopes. This model was fitted with data from 523 

various experiments conducted at different temperature intervals.  524 

On another hand, MNMs that use energy-mass balance equations can take multiple complexity levels 525 

(Briscoe et al. 2023). An example of an energy budget model is the MNM of the cane toad (Rhinella 526 

marina) in Australia. For this species, core body temperature was modelled by solving a steady-state 527 

energy balance equation (Kearney et al. 2008). While such approaches produce a continuous thermal 528 

curve, they require extensive species-specific knowledge. For instance, Kearney et al. (2008) 529 

incorporated numerous parameters for amphibians, including equations for heat exchange via cutaneous 530 

evaporation, surface-body mass functions, the distance of an average adult from the ground, active 531 

posture surface fraction, postural change effects, nocturnal activity regimes, relationships between body 532 

temperature and water loss, movement capacity and frequency at different temperatures, feeding rates, 533 

annual water balance, metabolic rate and body temperature relationships, cutaneous and respiratory 534 

water loss rates, water excretion, lethal temperatures for eggs and larvae, egg development rates at 535 

different temperatures, and sensitivity to pond configurations. 536 

Individual’s representativity must be considered when building MNMs, since it might limit our ability 537 

to capture invasive species’ non-equilibrium dynamics. Kolbe et al. (2010) showed that low temperature 538 

tolerance is not a constant trait across the invaded range of the cane toad, and therefore, just a sampling 539 

site to collect individuals would not represent the potential expansion of the species. For this reason, 540 

some works considered using multiple genotypes (Chapman et al. 2017), selected a source population 541 

likely to be the introduction point (Coulin et al. 2019) or using at least a second generation to avoid 542 

maternal effects (Pertierra et al. 2020).  543 

Factors limiting species distributions are not always replicable under controlled conditions, 544 

necessitating alternative approaches. This challenge is particularly relevant for species with low growth 545 

rates (e.g. trees) or those whose distributions are shaped by the interaction of multiple factors. For 546 

example, there has been recent criticism on the use of physiological thermal limits obtained from 547 

physiological experiments to capture the species distribution limits, particularly at lower temperatures, 548 

since adaptive and/or facilitative mechanisms could allow species to survive in temperatures below 549 

physiological limits (Chevalier et al. 2024). Unlike direct methods, inverse data collection (from 550 

individuals occurring in areas with differentiated environmental conditions) can capture environmental 551 

complexity beyond fixed temperature regimes (Evans et al. 2016). Latitudinal, altitudinal, or moisture 552 

gradients have been employed to parameterise some parts of MNMs for invasive species (Augustinus 553 

et al. 2020; Pasquali et al. 2020). However, it is crucial to note that inverse methods model the realised 554 

niche rather than the fundamental niche. Given that the realised niche of invasive species may not fully 555 

represent their potential range, projections based on such models may be biased, limiting their reliability 556 

for predicting future distributions.  557 
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Another used method to integrate more environmental conditions rather than a single environmental 558 

variable is the one taken by Merow et al. (2017), who modelled the invasive garlic mustard (Alliaria 559 

petiolata) and Japanese barberry (Berberis thunbergii) by collecting demographic data from an 560 

experimental setup including a series of transplant plots across diverse environments within the invaded 561 

range. However, categorising this approach as a MNM is delicate, as the model was defined as a 562 

demographic distribution model, but data from experimentation (not under fully natural conditions) was 563 

used to explore physiological responses to the environment. More importantly, the capacity of these 564 

type of models to capture invasive species fundamental niche to project their potential to novel 565 

conditions is strongly limited by the fact that non-novel conditions are explored. Experimental design 566 

and data parametrization must be wisely designed according to the study aim and species status. 567 

During the filtering phase of our systematic review, we identified several articles that integrate both 568 

physiological limit data and species occurrence records (hybrid models), sometimes based on pre-built 569 

frameworks. Depending on how these models are parameterised, they may either inherit the limitations 570 

of correlative SDMs or align more closely with MNMs by incorporating non-environmental drivers, 571 

but the limit will be difficult to assess in most cases (Chevalier et al. 2024). CLIMEX was the most 572 

frequently used pre-built framework in the reviewed studies, appearing in 13 of the 53 articles, mainly 573 

with insects (but see Webber et al. (2011) and Shabani and Kumar (2015) for plants). CLIMEX is a 574 

commercially available software (Sutherst and Maywald 1985), specifically developed for modelling 575 

invasive species, which assumes a normalised concave growth response of species to various factors, 576 

with minimum, maximum and optimum values. In CLIMEX and other pre-build mechanistic 577 

frameworks, reaction norms in response to environmental factors can be fitted with experimental data 578 

but also with species occurrences, and only the first case will be a mechanistic approach (Ponti and 579 

Gutierrez 2023).  580 

Some studies using the CLIMEX framework derived species physiological limits from native versus 581 

invasive occurrence data (Shabani and Kumar 2015). While this approach accounts for realised niche 582 

shifts between native and invaded ranges, it remains constrained by reliance on registered occurrences, 583 

which may not fully capture the species' potential range. For example, the usage of previously described 584 

thermal curves (e.g. Walter et al. 2023) from populations from the native range might not represent the 585 

invasive individuals. Recently, Formoso-Freire et al. (2023) demonstrated how a hybrid model 586 

combining an MNM with a correlative SDM for the invasive Asian hornet (Vespa velutina) provided 587 

insights into both the temporal dynamics of range expansion and long-term potential distributions. Since 588 

hybrid models also allow the inclusion of dispersal aspects in invasive species (Robinet et al. 2009; 589 

Klonner et al. 2019) the authors suggest are appropriated when aiming to model invasion rates under 590 

global change, particularly in data-limited contexts (Rodríguez et al. 2019; Bosch-Belmar et al. 2021; 591 

Guillaumot et al. 2022; Tourinho et al. 2023). However, considering the recent work by Chevalier et al. 592 

(2024) we are critical with combining physiological thermal limits with species presence, especially for 593 
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invasive species with non-equilibrium distributions and complex spatio-temporal dynamics. These 594 

critical physiological measures need to be instead integrated, together with other parameters, in a 595 

mechanistic model. 596 

Beyond CLIMEX, other pre-built frameworks being used for invasive species fall within a subset of 597 

MNMs that integrates species' thermodynamical relationships with their environment and includes): 598 

TTR (Higgins et al. 2020), or LPJ-GUESS (Leiblein-Wild et al. 2016). These models focus on 599 

simulating energy, resource transport, and physiological processes to estimate species performance and 600 

potential growth. TTR models simulate the transport of nutrients, water, and other resources and tend 601 

to focus on quantifying the resistance to transport between tissues and ultimately estimate individual’s 602 

potential growth (Higgins and Richardson 2014; Higgins et al. 2020). Similarly, NicheMapper is based 603 

on energy balance equations and are mainly applied to endotherms and ectotherms (Kearney and Porter 604 

2019; Briscoe et al. 2023). These biophysical models have been used mainly on invasive amphibians, 605 

and they use detailed physiological parameters such as metabolic rates and survival, development or 606 

growth in response to temperature, given these taxa strong dependence on temperature. Other models 607 

not yet used in invasion research include: Phenofit (Chuine and Beaubien 2001), Sortie-ND (Canham 608 

and Murphy 2016), 3-PG model (Gupta and Sharma 2019) and AquaMaps (Kaschner et al. 2006). 609 

Despite the high variation in model types and integrated processes identified in our review, the 610 

geographical distribution of studies was relatively limited. Consistent with findings from other 611 

systematic reviews on correlative SDMs (Lantscher et al. 2018; López-Tirado and Gonzalez-Andújar 612 

2023), North America accounted for the highest number of invasive species MNM studies (Figure 3). 613 

However, most MNMs were developed at global scales, spanning more than one continent. The strong 614 

data requirements for MNMs likely contribute to this inequality. Access to well-equipped laboratory 615 

facilities or experimental installations, combined with large budget grants available in more privileged 616 

regions, disproportionately supports the development of MNMs in wealthier areas. Addressing this 617 

imbalance may require increased international collaboration and capacity-building efforts to ensure 618 

broader representation in MNM research. 619 

 620 



20 
 

 621 

Figure 3. Summary of the systematic review performed to evaluate the usage of Mechanistic Niche 622 

Models with invasive species. A) Continental distribution of MNMs with invasive species. Bubble size 623 

and colour intensity reflect the number of articles in each continent. On the left bottom, scale of the 624 

articles. B) Taxonomic group used for the examination of invasions using MNMs (brown), and global 625 

number of invasive species according to IPBES 2023 (Roy et al. 2024) (grey). Note that each series has 626 

its own axis, reflecting no-proportionality between variables. Even though insects are predominant 627 

protagonists in invasive MNMs, the number of invasive plants is much higher than the number of insect 628 

invasive species. Species icons obtained from BioRender. C) Applications of MNMs for invasive 629 

species. Under brackets, the number of articles.  630 
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A unified framework for invasive mechanistic niche modelling 631 

Despite several articles covering the do’s and don'ts, key aspects to consider, top hazards, and step-by-632 

step guides for correlative SDMs (for recent articles see e.g. Araújo et al. 2019; Zurell et al. 2020; 633 

Sillero et al. 2021; Hui 2023; Soley-Guardia et al. 2024; Davis et al. 2024), a framework for designing, 634 

building, and reporting MNMs in invasive species is still missing (but see Kearney and Enriquez-635 

Urzelai (2023) framework for developing eggs mechanistic modelling, Ridell et al. (2023) review on 636 

biophysical models, Da Re et al. (2022) unified modelling framework for invasive Aedes mosquitos and 637 

Buchadas et al. (2017) review on dynamic models for invasive species management). We propose here 638 

the following steps when building an MNM for determining the potential distribution of invasive 639 

species, schematized in Figure 4. 640 

1) Research aim. Given the importance of the research aims on the parameterization of the MNM, the 641 

first step when building an invasive MNM is to delimit the ecological question, management goal, or 642 

knowledge gap that we intend to address. As discussed in the previous section, MNMs are adequate for 643 

determining the potential for expansion of an invasive species toward higher latitudes, estimating 644 

distribution shifts with climate change, quantifying the niche overlap with threatened species, or 645 

potential biocontrol agents, test the contribution of environmental versus non-environmental 646 

distribution drivers or detect niche unfilling (Figure 3). The research aim will allow us to distinguish if 647 

we should look for upper thermal limits (in case we want to assess niche shifts towards warmer climates; 648 

but see Chevalier et al. 2024), quantify vital rates (if we aim to find species reproductive limits) or to 649 

prepare an experimental design with competition and density-dependence (in case we want to model 650 

species competition with climate change). In biophysical models, multiple complexity levels can be 651 

included. For example, we can aim to model the heat budget of a single life stage, multiple life stages, 652 

include activity or not only include temperature balances but also water and food for instance (Briscoe 653 

et al. 2023). Finally, the spatio-temporal complexity associated with the invasion process must be 654 

gathered (Figure 1). These key aspects include the overlap between niches obtained from native and 655 

invaded occurrences, if the species has ornamental interest that could led to invasion nurturing, if it has 656 

commercial interest that could lead to increased propagule pressure in highly connected areas, if there 657 

are any identification complexities, and the time since introduction. The choices made at this stage will 658 

shape the outcomes of the MNM, making it essential to align model complexity and data requirements 659 

with the research aim. 660 

2) Genetic integrity. Prior to building a physiological model the species material must be selected 661 

according to the research aims, the degree and importance of the described genetic variability and 662 

considering the invasion dynamics literature. In Figure 4 we depicted four species material selection 663 

strategies for MNMs used in the reviewed literature. However, some of them might limit our capacity 664 

to overcome correlative SDMs limitations for invasive species, and thus, must be carefully selected. 665 

For example, Kolbe et al. (2010) showed that individuals from different populations of the cane toad 666 
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within the invaded range had differential low-temperature tolerances. To capture such intraspecific 667 

variability, it is required to sample multiple populations from the invaded range representing the 668 

climatic and geographic niches (Gallien et al. 2012). Other alternatives, such as using a single 669 

population, can be considered in case low variability across populations has been described for this 670 

species for the selected trait, or to use data from the native range only if we know the trait is maintained 671 

between native and invaded ranges. Sensitivity analysis can assist delimiting the importance of intra or 672 

inter-population variability over certain traits. One approach to include trait variation is the one taken 673 

by Strubbe et al. (2023), who first built species-level model for several bird species. The species-level 674 

model was subjected to a sensitivity analysis uncovering the most influential variables, which were used 675 

to build a and an intraspecific-level model accounting for trait variation. However, it must be noted that 676 

fitting a physiological model from a single population will not allow capturing range-edge processes. 677 

In all cases we encourage reporting the niche margin index (NMI) described by Broennimann et al. 678 

(2021), which reflects the relative distance of a population inside or outside the niche after estimating 679 

it and can also be used in a climate change context (Pearman et al. 2024). Since closely related species 680 

are likely to possess similar niche requirements (Wiens et al. 2009; Crisp and Cook 2012) a final 681 

alternative would be to use data from similar species could be a way to address data scarcity (James et 682 

al. 2021). In addition to species origin, we must consider life stage that we will be considering for our 683 

physiological model. Larvae are commonly used in insects’ models given their sensitivity to climate 684 

change (Kingsolver and Buckley 2020). 685 

3) Environmental drivers and response variables. MNM building requires the selection of 686 

environmental driver(s) and response variables as well as the delimitation of the relevant interval (e.g. 687 

temperature from 0 to 10°C) including the forecasted increase or decrease under climate change 688 

scenarios (e.g. +2ºC in mean temperature). Environmental drivers can include abiotic factors 689 

(Temperature, humidity, soil moisture, and atmospheric CO2) and biotic factors (predators, competitors, 690 

host species, and symbionts). Environmental drivers’ selection must follow an understanding of the 691 

abiotic and biotic factors that limit species survival, growth, and reproduction, and the spatial resolution 692 

at which they should be used (Spence and Tingley 2020), but these may strongly differ depending on 693 

the organism type. In case a biophysical model is used, which is often a preferred choice for endotherms, 694 

ectotherms and plants, a first step will be to design and decompose the model. Recent reviews by Riddell 695 

et al. (2023) and Briscoe et al. (2023) present multiple approaches taken for this crucial step. Interactions 696 

between environmental variables (e.g. moisture and temperature) frequently occur and should be 697 

considered when designing experiments to measure physiological responses. In addition to 698 

environmental variables, response or performance variables must be carefully selected. Performance 699 

measurements can include vital rates, metabolic rates, or specific metabolite accumulation, and its 700 

selection will depend on our research question, scale of the study, and type of organism. Multivariate 701 
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approaches can be also considered to integrate trade-offs in response curves (Evans et al. 2015, 702 

Fefferman and Romero 2013).  703 

4) Physiological model: parameter estimation and model fitting. If the MNM is fitted using 704 

biophysical ecology, parameter estimation is required depending on our model complexity level (life-705 

stages, energy and water balance, locomotion, etc. See point 3). For species response curves, both linear 706 

and non-linear or asymmetric physiological responses should be considered to properly capture the 707 

trade-offs organisms face under changing climates (Fenollosa and Munne-Bosch 2019b; Buckley et al. 708 

2022). Selecting the appropriate equations for baseline models depends on the species’ physiology and 709 

can range from simple linear models to more complex non-linear equations that account for thresholds 710 

and tipping points in species’ responses to environmental variables. Some of the observed studies used 711 

convex functions (Fadda et al. 2024), a plateau model (Feng et al. 2020). In insects, the theorical 712 

temperature-dependent developmental rate curve is generally assumed to follow a unimodal shape, with 713 

a linearity zone before the optimal temperature (Rebaudo and Rabhi 2018). However, multiple models 714 

have been used to fit those curves, such as Logan-10, Lactin-2, Briere-2, Taylor, Beta models (Rebaudo 715 

and Rabhi 2018) showing slightly different projections at extreme temperatures. We must consider as 716 

well if we are interested in understanding species response to a wide environmental range, discrete 717 

conditions or if the physiological model will be used to extract only optimal, mean or limit points. Using 718 

at least five experimental conditions is common to fit a thermal curve (e.g. Lin et al. 2019; Pertierra et 719 

al. 2020; Fadda et al. 2024), but the experimental design will depend on the modelling aim. Temporal 720 

regimes must be considered, for example deciding if the physiological model is fitted with constant or 721 

cycling temperatures. Beyond laboratory experimentation, some alternative data sources include 722 

phylogenetic imputation (James et al. 2021; Fadda et al. 2024) or the integration of expert knowledge 723 

(Murray et al. 2012). 724 

5) Physiological model projection. Once response curves are fitted, the next step is translating the 725 

physiological model into geographic space. This usually requires estimating environmental conditions 726 

experienced by the organism at relevant temporal and spatial scales (see point 3 above). This may 727 

involve using microclimate models to translate gridded climate data into predictions of historic, current 728 

or future microclimates, ideally considering behaviour and habitat use of the target organism (Kearney 729 

et al. 2020; MacLean et al. 2021). Our review revealed substantial diversity in the temporal and spatial 730 

resolution of environmental drivers, ranging from monthly air temperatures (e.g. Tablado and Revilla 731 

2012) to hourly soil or air temperatures (e.g. Hartley et al. 2010; Chapman et al. 2014). The usage of 732 

ERA5 climatic data is recommended to build microclimatic models (Klinges et al. 2022). To evaluate 733 

climate change impact on invasive species distribution, a forecast of the chosen variable under different 734 

climate change scenarios must be acquired. The temporal resolution of environmental data is as 735 

important as its spatial resolution (Guisan et al. 2019). An MNM based on energy budget might still 736 

work at global scale, but an MNM based on physiology and fine-scale processes might not make much 737 
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sense if applied to large scale based on very coarse environmental maps. We recommend reporting the 738 

variable used for the geographic projection as well as the rationale of the chosen temporal and spatial 739 

resolution when building MNMs. Once the potential distribution is obtained, we might be interested 740 

into comparing projected distribution areas (Vaughan and Ormerod 2005; Levine et al. 2009; Wilson 741 

2011; Huang et al. 2018) and use it for a closer examination of specific regions, such as invasion 742 

hotspots, protected areas or range edges, can yield critical information on species spread, habitat 743 

suitability, and the effectiveness of management interventions. Finally, contrasting MNM with 744 

correlative SDM following standard procedures might be strongly informative to detect non-745 

environmentally driven occurrences and further understand the invasion process (e.g. Higgins et al. 746 

2020; Dormann et al. 2012).  747 

6) Limitations acknowledgement. A final recommended step is to revise the whole modelling process 748 

and acknowledge potential limitations of the mechanistic model. A few examples that we might miss 749 

out when building MNMs (depending on how they are built) are dispersion, habitat availability, other 750 

species relevant interactions, further intraspecific variability, hysteresis responses, interaction between 751 

multiple environmental variables, impact of spatial and temporal resolution of the environmental 752 

variables and modelled processes, life stages considered, extreme events and memory or priming 753 

responses (See full description in Suárez-Seoane et al. 2017; Briscoe et al. 2019; Briscoe et al. 2023; 754 

Riddell et al. 2023). Sensitivity analysis can be used for unknown parameters and/or include trait 755 

variability into the model (Mitchell et al. 2016; Strubbe et al. 2023). 756 

 757 

 758 
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Figure 4. Elements to consider when building Mechanistic Niche models for invasive species, from 759 

genotype selection, the construction of the physiological model and geographic projection. Exclamation 760 

signs symbolise that by taking those approaches the model might not be suited for invasive species 761 

projections. 762 

 763 

Revisiting correlative SDMs limitations: when and how is an MNM appropriate? 764 

Beyond being limited to selected environmental drivers and available data, the limitation of MNMs is 765 

that, while they offer detailed, process-driven insights into species’ physiological responses to 766 

environmental conditions, they may miss important fine-scale temporal and spatial information. This 767 

can include factors like microhabitat features, local competition, and biotic interactions that are often 768 

implicitly captured by correlative SDMs (Davis et al. 2024). MNMs excel at providing broad-scale 769 

predictions by linking species distributions to underlying mechanisms such as thermal tolerance, 770 

metabolic rates, or water balance (Kearney and Porter 2009). At the same time, if parametrized with 771 

fine-scale variables, MNMs are very useful at the range edge, where climate is limiting (Briscoe et al. 772 

2016). However, it must be noted that sometimes species might occur beyond their physiological limits 773 

thanks to adaptative or facilitative mechanisms (Chevalier et al. 2024). Essential spatio-temporal 774 

invasion complexities such as human activity influences, like trade, transportation, urbanisation, and 775 

land-use changes, introduce additional layers of complexity that are not easily modelled through 776 

physiological limitations frameworks. In this section we will revisit whether MNM can overcome all 777 

the limitations of correlative SDMs for invasive species. 778 

Overcoming correlative SDM limitations by MNMs is not an easy endeavour, especially for modelling 779 

large number of species (which SDMs can do, e.g. Adde et al. 2024, but see the mechanistic model built 780 

for 20 birds in Europe: Strubbe et al. 2023), an effort that will largely depend on how our MNM is 781 

constructed (Figure 4). Careful parameterisation is essential to ensure that MNMs address specific 782 

challenges associated with correlative SDMs in invasive species modelling. MNMs can overcome 783 

almost all correlative SDM limitations when our aim is to understand its potential distribution under 784 

novel climates (as well as the derived applications described in Figure 3). For applications such as 785 

estimating invasion speed or reconstructing the history of an invasion, MNMs alone are not the most 786 

suitable approach (Wilson et al. 2007), although estimated dispersal capacity from an MNM (e.g. 787 

Kearney et al. 2008) could be incorporated into spatially explicit models such as IBMs. 788 

MNMs might fail when (1) predicting species distribution limits where species is not being limited by 789 

the environment, (2) a single environmental factor is used, and the species response strongly depends 790 

on the interaction with another (e.g. temperature and moisture), (3) model is not complex enough to 791 

capture real conditions the species is submitted to. This last point includes not selecting the proper 792 
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temporal and spatial resolution and range of the modelled processes and environmental matching data, 793 

but also not capturing intraspecific or interpopulation variability.  794 

Conversely, MNM will be better than correlative SDMs to predict future distribution when: (1) the 795 

species is on early stages of invasion and invasive region has a lot of novel environments not captured 796 

in native range, (2) it is known that biotic interactions are likely to be very different at the invaded 797 

range, (3) the species shows strong genetic diversity on the invaded range leading to identification 798 

complexities, (4) the species is used for commercial interests (i.e. planted trees) and are naturalized and 799 

not invasive in certain areas outside the native range, (5) time-lags are driving the invader expansion at 800 

the invaded range, (6) there are strong range-edge processes taking place. In case 3 and 6, the MNM 801 

must be fitted with representative genotypes across the invaded range and/or at range-edge.  802 

Although the usage of hybrid models such as CLIMEX fitted using occurrence data might bypass data 803 

needs, the capacity of those models to respond certain research questions will be strongly limited 804 

depending on specifically how this model is populated. Models including data from invasive species 805 

occurrences, will not allow us to build predictions under novel conditions, especially on early invasion 806 

stages.  807 

Other mechanistic approaches such as demographic distribution models, individual-based models or 808 

dynamic models are better fitted to simulate population responses after a specific perturbation, a 809 

management action or calculate invasion expansion rate (Briscoe et al. 2019). Domisch et al. (2018) 810 

further argue that spatially explicit modelling (i.e. considering spatially-explicit processes, such as in 811 

DDMs or occupancy dynamics models) is an underused tool in conservation planning, offering the 812 

potential to integrate species’ distributions with habitat connectivity and management strategies Further 813 

steps would be the inclusion of genetic dynamics or evolutionary processes within SDMs and MNMs 814 

to capture species' adaptive potential, further improving the model’s predictive power (García-Ramos 815 

and Rodríguez 2002; Kearney et al. 2009; Beninde et al. 2016; Bush et al. 2016).  816 

 817 

Conclusions 818 

Meaningful management decisions from SDMs require understanding the modelling decision process 819 

(Guisan et al. 2013; Schuwirth et al. 2019). Mechanistic niche models constitute an essential tool to link 820 

physiology with management decisions by explicitly considering the drivers of species distribution 821 

(Evans et al. 2015). MNMs are particularly suited for predicting potential distribution of invasive 822 

species as these organisms are often distributed across the landscape under non-equilibrium conditions 823 

that are difficult to simulate with correlative approaches.  824 
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Despite their potential, the application of MNMs to not only invasive but also other species remains 825 

limited due to substantial data requirements. Hybrid approaches, particularly those focused on invasive 826 

insects, dominate the field. The decisions made during MNM parameterisation—from genotype 827 

selection and fitting techniques for physiological models to projecting potential distributions—critically 828 

affect their accuracy and appropriateness for specific applications. 829 

The ideal MNM design would incorporate biophysical models parameterised with laboratory 830 

experimental data obtained by submitting considering trait multiple representative genotypes across the 831 

invaded range to a wide range of environmental predictors. However, such designs demand expensive 832 

and time-consuming experimental efforts, limiting their feasibility. While building fully mechanistic 833 

models may be impossible—given that the necessary experimental data will probably never be 834 

available, but also particularly given the context-dependent and spatio-temporal complexities of 835 

biological invasions (Laxton et al. 2022)— aim-oriented MNM for invasive species will definitely 836 

constitute better management tools than correlative SDMs to predict invasive species potential under 837 

climate change conditions at early invasion stages. Beyond the revised applications when MNMs would 838 

be a good choice, we also encourage the usage of MNMs to assess potentially invasive species risk 839 

under climate change.  840 

Integrating phylogenetic signals can reveal evolutionary constraints on species' responses to novel 841 

environments (Wiens et al. 2009), while trait-based approaches highlight the potential of functional 842 

traits to inform climatic niches (Medeiros et al. 2023). Cross-disciplinary collaboration—bridging 843 

physiology, physics, genetics, and ecology—can enhance the development of robust MNMs and 844 

standardise reporting practices, ultimately improving their reproducibility and broader applicability. 845 

Finally, the insights gained from MNMs extend beyond invasive species modelling, offering valuable 846 

contributions to understanding climate-driven range shifts and guiding management actions for broader 847 

biodiversity conservation (Caplat et al. 2013; Wallingford et al. 2020).  848 
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SUPPLEMENTARY MATERIAL 849 

Supplementary Material 1. Detailed procedure followed to conduct the systematic review. 850 

Supplementary Material 2. Complete list of articles included in the systematic review, including all 851 

published articles using mechanistic niche models for invasive species up to the present date.  852 

853 
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Supplementary Material 1. Detailed procedure followed to conduct the systematic review. 1 

To evaluate the existence of literature using mechanistic niche models to forecast invasive species distribution, we 2 

performed a systematic review. Due to the multiple terminology related to mechanistic niche models we compiled 3 

and deleted duplicates from multiple SCOPUS searches.  4 

In 2019, Briscoe et al compiled all literature using process-explicit models until that date used for multiple purposes. 5 

Since here we focus exclusively on the potential of mechanistic niche models for invasive species, we used the 6 

literature list compiled by Briscoe et al. (2019) and filtered the studies evaluating invasive potential. Moreover, we 7 

used the search terms used to re-do the search and include the work published in the last 5 years. As Briscoe et al. 8 

did, we limit our search to studies that project the distribution of the species, with filtering studies that included in 9 

their title, keywords or abstract “species distribution model” or “occupancy dynamics” or the terms “geographic 10 

distribution”, “species distribution” or “species range". We included only research articles within the subject fields 11 

“Environmental science” and “Agricultural or biological science” or “Multiple” (We included ‘Multiple’ to capture 12 

articles in journals such as PLoS One, PNAS that publish research on a range of topics). The search was conducted 13 

on the 15th of September 2024. Despite the aim of the systematic review is to find all articles performing mechanistic 14 

niche models, we used the search terms from Briscoe et al. 2019 to acquire also demographic distribution models 15 

and individual-base models since as discussed in the review the limit might be a bit diffuse and we preferred to revise 16 

all articles in case a few might include estimates of the fundamental niche, which might categorize them as MNMs.  17 

Type of process-

explicit model 
Scopus search terms 

Number 

of items 

Mechanistic niche 

models (or 

Ecophysiological 

models) 

( TITLE-ABS-KEY ( ( "species distribution model" OR "range dynamics" OR "occupancy 

dynamics" OR ( "species distribution" AND predic* ) OR ( "species range" AND predic* ) 

OR ( "geographic distribution" AND predic* ) ) AND ( ecophysiolog* OR eco-

physiolog* OR mechanistic OR biophysical OR "physiolog* based" OR "physiolog* 

driven" ) AND ( invasive* OR invader* OR *alien* OR non-

native* OR neophy* OR neobiot* OR ias OR exotic* OR invasion OR pest*) ) AND NOT 

SRCTITLE ( human OR medic* ) ) AND ( LIMIT-TO ( SUBJAREA , "AGRI" ) OR 

LIMIT-TO ( SUBJAREA , "ENVI" ) OR LIMIT-TO ( SUBJAREA , "MULT" ) OR LIMIT-

TO ( SUBJAREA , "BIOC" ) OR LIMIT-TO ( SUBJAREA , "EART" ) ) AND ( LIMIT-TO 

( DOCTYPE , "ar" ) ) 

107  

Demographic 

distribution models 

( TITLE-ABS-KEY ( ( "species distribution model" OR "range dynamics" OR "occupancy 

dynamics" OR ( "species distribution" AND predic* ) OR ( "species range" AND predic* ) 

OR ( "geographic distribution" AND predic* )) AND ( demograph* OR "integral projection 

model" OR "matrix population model" OR "transition matrix" OR "population model" OR 

"population growth rate*" OR "vital rate*" ) AND ( invasive* OR invader* OR *alien* OR 

non-native* OR neophy* OR neobiot* OR ias OR exotic* OR invasion OR pest*) ) AND 

NOT SRCTITLE ( human OR medic* ) ) AND ( LIMIT-TO ( SUBJAREA , "AGRI" ) OR 

LIMIT-TO ( SUBJAREA , "ENVI" ) OR LIMIT-TO ( SUBJAREA , "MULT" ) OR LIMIT-

TO ( SUBJAREA , "BIOC" ) OR LIMIT-TO ( SUBJAREA , "EART" ) ) AND ( LIMIT-TO 

( DOCTYPE , "ar" ) ) 

139 



Individual based 

models 

( TITLE-ABS-KEY ( ( "species distribution model" OR "range dynamics" OR "occupancy 

dynamics" OR ( "species distribution" AND predic* ) OR ( "species range" AND predic* ) 

OR ( "geographic distribution" AND predic* ) ) AND ( "individual based model*" OR 

"agent based model" OR individual-based OR agent-based OR ibm ) AND ( invasive* OR 

invader* OR *alien* OR non-native* OR neophy* OR neobiot* OR ias OR exotic* OR 

invasion OR pest*)) AND NOT SRCTITLE ( human OR medic* ) ) AND ( LIMIT-TO ( 

SUBJAREA , "AGRI" ) OR LIMIT-TO ( SUBJAREA , "ENVI" ) OR LIMIT-TO ( 

SUBJAREA , "MULT" ) OR LIMIT-TO ( SUBJAREA , "BIOC" ) OR LIMIT-TO ( 

SUBJAREA , "EART" ) ) AND ( LIMIT-TO ( DOCTYPE , "ar" ) ) 

25 

 18 

Duplicated articles were identified and removed by DOI. Still 4 articles about medical treatments from the journals 19 

“Breast Cancer Research and Treatment” and “Cancer” were found and discarded. After removing duplicates and 20 

medical research articles, the total number of articles was: 235, from 1996 to 2024. However, about 50% of the 21 

articles did not actually include a mechanistic niche model in invasive species and contain only mechanistic diffusion 22 

for example or evaluated the correlation of invasive species abundance with a non-invasive target species when 23 

performing a correlative SDM. After individually checking all articles, only 97 were found to perform a MNM, 24 

demographic distribution, or individual-based model with one or more invasive species. 25 

From those articles, we selected the ones that fit into the definition of MNMs: process-explicit models where 26 

measurements or calculations of physiological limitations of the environment on vital rates are used to define species’ 27 

range limits and used to project species potential distribution (Kearney and Porter, 2009; Evans et al. 2015). 28 

Demographic distribution models that were built solely from field data, and individual-based models that did not 29 

include environmentally explicit performance were discarded. 30 

From those articles we recorded the following information: Species studied and their taxonomic group, whether the 31 

study was based on one or more species, aim of the study, name of the model used, type of the model, if climate 32 

change projections were included, which type of empirical data was used to parametrize the model, scale of the 33 

projection, captured processes and insights to advance in biological invasions forecasting. 34 

The obtained list of articles can be found in Supplementary Material 2. 35 


