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Abstract 

Artificial Intelligence (AI) can rapidly process large ecological datasets, uncover patterns, and inform conservation 
decisions. However, its adoption by ecologists is often hindered by steep learning curves, overwhelming model 
options with varying transparency, and uneven access to data, code, and technical skills. We led a workshop, 
EcoViz+AI: Visualization and AI for Ecology, that brought together 35 experts to synthesize a guide for ecologists as 
they navigate, implement, interpret, and contribute to the fast-evolving AI landscape. Using workshop discussions 
and experiences as a foundation, this review article synthesizes the opportunities and risks for AI in ecology as well 
as practical challenges and solutions for adopting AI. Four solutions include: (1) educational resources to help 
researchers assess the opportunity cost associated with AI compared to traditional methods, (2) communities of 
practice to combat the overwhelming landscape of AI with knowledge, technical skills, collaboration, and inclusivity, 
(3) effective visualizations to address the transparency deficit of AI for understanding and communicating results 
including model outputs, performance, and functionality, and (4) computational resources to ease the 
implementation burden of AI through shared data, modifiable code, and accessible computing. Our workshop 
compiled resources, including science communication videos for five AI use cases and repositories for ecology-
related AI models and communities of practice. Aligning AI initiatives with broader movements towards 
interdisciplinary open science and computational literacy will promote inclusivity and the ecological relevance of 
novel tools, advancing basic research and impactful translational ecology. 



 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
1. Introduction 
 
Applications of AI in ecology and evolution are now increasing the speed, scale, and resolution of 
computational analysis (Christin et al. 2019). AI can help predict species responses based on 
environmental conditions, facilitate the integration of models and theory for complex systems-level 
understanding, and generate novel hypotheses to pave the way for conservation (Han et al. 2023). While 
AI is not necessary in every, or even most, situations, it is nonetheless a powerful, adaptable tool available 
to ecologists for answering pressing research questions. However, the significant practical challenges to 
AI-adoption, such as a lack of domain-specific tutorials and communities of practice, and the considerable 
ethical concerns associated with AI (well described in the literature [Chapman et al., 2024; Cooper et al., 
2024; Scoville et al., 2021; Tabassi, 2023]) have generated skepticism and trepidation among ecologists 
and likely slowed AI adoption. To address this issue, we gathered 35 experts in ecology and artificial 
intelligence for a week-long facilitated workshop (EcoViz+AI: Visualization and AI for Ecology; ecoviz-
ai.github.io (Kendall-Bar 2024a); see Supplementary Material for workshop details and outputs). We 
defined AI broadly to include the spectrum of machine learning and deep learning models available to 
ecologists, although strict definitions of AI may preclude machine learning and even deep learning (Wang 
2019, Sheikh et al. 2023). 
 
For this overview, we first provide a summary of the current opportunities and risks for using AI in 
ecological research. We then present a review of the key challenges to AI adoption for ecologists followed 
by specific examples and ethical considerations for key solutions to these challenges. We organized these 
solutions around access to and development of educational resources, communities of practice, effective 
visualizations, and computational resources. Overall, we hope this review will help ecologists who are 
considering adopting AI methods navigate the tools available to them and apply them with responsibility 
and rigor.  
 
Challenges regarding model selection, implementation, interpretation, and communication are not unique 
to AI, but its use exacerbates challenges posed by traditional methods and computational analysis more 
broadly. Therefore, we emphasize that AI’s increased transparency deficit and implementation burden 
call for a renewed emphasis on technical training, community, and science communication. Our solutions 
section details AI-specific initiatives, cultural shifts, and best practices that help make AI in ecology more 
approachable, relevant, and understandable, while aligning synergistically with broader movements 
towards open science and technical literacy. 
 

Impact Statement 
AI can rapidly process large datasets, uncover patterns, and inform conservation decisions. However, its 

adoption by ecologists is often hindered by steep learning curves, overwhelming model options, and uneven 

access to data, code, and technical skills. When the benefits of AI outweigh the risks, we argue that ecologists 

are likely dissuaded from using AI due to practical challenges. We propose four solutions: (1) educational 

resources to assess the opportunity cost associated with AI compared to traditional methods, (2) communities of 

practice to foster technical skills and interdisciplinary collaboration, (3) effective visualizations to mitigate AI’s 

transparency deficit by communicating results and functionality, and (4) computational resources to ease the 

implementation burden of AI through open data, extensible code, and accessible computing. Aligning AI 

initiatives with broader movements towards interdisciplinary open science and computational literacy will 

increase the ecological relevance of novel tools, advancing basic research and impactful translational ecology. 

https://ecoviz-ai.github.io/
https://ecoviz-ai.github.io/


 
 
Fig. 1. A diagram describing our workshop participants’ definitions of AI, showing a spectrum of models 

from less interpretable and more complex models on the left (darker red values) to more interpretable 
and less complex on the right (lighter blue values). Icons next to a definition represent votes from 

workshop participants. The spectrum is divided into four categories: General AI (or strong AI), Deep 
Learning (DL including Large Language Models [LLM], Generative Adversarial Networks [GAN], Long 

Short-Term Memory Networks [LSTM], Recurrent Neural Networks [RNN], and Convolutional Neural 

Networks [CNN]), Machine Learning (encompassing DL models as well as Gradient Boosting Machines 
[GBM], Random Forest [RF], Support Vector Machines [SVM], and Decision Trees [DT]), and Statistics 

(including e.g. linear, logistic, and multivariate regressions, Principal Component Analysis [PCA], and 
Analysis of Variance [ANOVA]). 

 
2. Opportunities and risks of AI applications in ecology  
 
AI, defined broadly as a spectrum of machine learning to deep learning models (Fig. 1), can be applied to 
ecological research through: (1) data processing, such as labelling, annotating, clustering, or filtering raw 
data, (2) inference, where processed data can be used to answer ecological or evolutionary questions via 
testable hypotheses, and (3) decision-making, where the answers to these questions can serve as the 
basis for policy or management recommendations. For example, sleep studies of wild animals could apply 
AI to help assign labeled sleep states based on electrophysiological data (AI for data processing), as 
demonstrated by Allocca et al. (2019) and Vallat & Jajcay (2020). Whether or not AI was used to assist 
sleep scoring, the resulting labelled data could be fed to an AI-based habitat suitability model to identify 
the locations within an animal’s range that are best suited for sleep (AI for inference; e.g., (Saarenmaa et 
al. 1988, DŲeroski 2009). Finally, a conservation-focused AI model could incorporate this knowledge with 
other aspects of animal behavior to recommend the prioritization of habitats for conservation (AI for 
decision-making) (Silvestro et al. 2022). 
 
We discuss the opportunities and risks of AI applications across these three stages: data processing, 
inference, and decision-making. Early in the field of ecology, inference primarily relied on strong 
experimental design and statistical methods, while data processing and decision-making were led by 
human experts. While ecologists sought to use statistical models to describe biological systems and 
observational processes (Hilborn and Mangel 1997), relatively small datasets allowed manual labeling 
and annotation (Besson et al. 2022). Traditionally, conservation and management decisions have also 



relied on the consensus of domain experts (Kirlin et al. 2013). However, the increasing size and 
complexity of datasets have augmented the burden of manual processing, making it harder for experts to 
manually process data or to consider all sources of information relevant to conservation (Besson et al. 
2022). These complex, multidimensional datasets also present unique opportunities for AI even in the 
traditionally statistics-dominated space of inference. For each of these three tasks, we discuss emerging 
uses of AI, particularly pertaining to machine learning and deep learning, as alternatives for more 
traditionally implemented statistical or manual methods. 
 

2.1. AI for data processing 

Opportunities. With relatively fast and inexpensive models, AI approaches allow ecologists to rapidly 
process large datasets with algorithms to detect or classify habitat types, species, or behaviors (Schirpke 
et al. 2023). AI accelerates tasks like labelling sleep states, annotating the edges of coral colonies, and 
detecting anomalies in time series data, enabling more data to be processed (i.e., increases scalability), 
but can lower prediction accuracy compared to manual methods (Mosqueira-Rey et al. 2022). When 
compared to statistical or signal processing techniques for processing data, AI can improve accuracy in 
addition to speed, introducing the possibility of edge computing, where models can be deployed to 
perform reliable real-time detection in the field or while sensors are deployed on animals (Wasimuddin 
et al. 2020, Yu et al. 2024). 

 
The use of computer vision convolutional neural networks (CNNs) has improved scientists’ capacity to 
process large amounts of video, acoustic, and movement data (Christin et al. 2019, Lauer et al. 2022, Yu et 
al. 2022) with promise for improving conservation and biodiversity monitoring (Galaz García et al. 2023). 
For example, new developments in near-real-time automated processing of ship-based thermal imagery 
can alert captains to potential ship strikes in time to avoid endangered whales (Baille and Zitterbart 
2022). AI tools including WildBook, HappyWhale, FathomVerse, Seek and iNaturalist, and Merlin engage 
the public in the detection and classification of individual plants and animals, enabling citizen science and 
local community engagement (Sullivan et al. 2014, Berger-Wolf et al. 2017, Katija et al. 2022, Manderfield 
2022, Cheeseman et al. 2023). The cyberinfrastructure supporting new AI techniques also accelerates and 
enables traditional signal processing of large datasets. For example, the National Data Platform was built 
for open and equitable data access and computing for AI, but its benefits extend to researchers using 
other methods as well (Parashar and Altintas 2023). 
 
Risks. Even commonplace AI methods for processing ecological data can have significant downstream 
consequences. For instance, AI models that process video to track locomotion and analyze the sublethal 
effects of pesticides on insect behavior (Parkinson et al. 2022) carry the risk of a behavioral anomaly 
being overlooked. AI models that automate species detection for camera traps (images) or automated 
recording units (audio) (Beery et al. 2019, Tuia et al. 2022) carry the risk of overlooking the presence of 
an endangered species. Issues with low recall – the ability of a model to identify all relevant instances – 
could lead to the exclusion of that area from conservation efforts. Conversely, a “cry wolf” effect may also 
undermine these models and erode public trust. Consistent false alerts from automated whale detection 
systems could result in those systems being ignored (Baille and Zitterbart 2022). This highlights the 
importance of optimizing precision – the proportion of correctly identified positive cases out of all 
positive detections – to reduce false alarms. Furthermore, if automated detections are the basis for 
further inference, the impacts of a false result are amplified. For example, a boosted decision tree that 
aims to identify a rare behavior could boast high accuracy despite low sensitivity. Models to detect events 
should therefore consider the tradeoff between sensitivity/recall and specificity/precision. For example, 
models to detect sleep when rare, such as for seals at sea, can optimize for sensitivity to prevent the 
oversight of a critical resting habitat (Kendall-Bar et al. 2023). 
 
Promising solutions. Algorithmic bias can be addressed through averaging techniques that correct for 
class imbalances where certain types of data are overrepresented (Beery et al. 2021). “Human-in-the-
loop” methods include human input in the model training process, incorporating user feedback to refine 
and supervise classifications (Mosqueira-Rey et al. 2022, Wu et al. 2022). These methods can improve the 
accuracy, precision, and transparency of automated tools and foster trust in the model predictions. For 
example, TagLab, an AI-driven tool for coral imagery segmentation, uses semi-automatic methods to 
maintain high accuracy and ease the burden of manual annotation (Pavoni et al. 2021). Similar manual 
review is enabled in sleep scoring software (Allocca et al. 2019) and camera trap annotation (Miao et al. 



2021). The inclusion of human review helps mitigate the consequences of model error and allows for an 
opportunity to consider the practical, scientific, and ethical implications of the model output.  

2.2. AI for inference 

Opportunities. AI methods can provide an alternative to traditional statistics for establishing relationships 
between environmental variables and biological systems. These relationships can be studied at many 
ecological scales, from individuals (physiology and behavior) and populations (abundance and density) to 
communities (species interactions) and ecosystems (species and their environment). For instance, 
species distribution models (SDMs) have been extensively used in ecology to quantify occupancy, density, 
and distribution changes, limits, and expanses (Elith and Leathwick 2009, Grace 2024). SDMs that 
associated species' presence and absence with the environment using statistical methods (e.g., logistic 
regression) originated in the 1980s and gained broader adoption over the following decades (Elith and 
Leathwick 2009). However, these tools often struggled to capture the complex, non-linear relationships 
between species' distributions and their environment, leading many ecologists to adopt ML algorithms 
including boosted regression trees (Elith et al. 2008) and MAXENT (Phillips et al. 2006). Though generally 
considered a machine learning algorithm, Renner and Warton demonstrated the equivalence of MAXENT 
to a Poisson regression model (Renner and Warton 2013). More recently, deep learning algorithms (e.g., 
convolutional neural networks) have been applied to the relatively few occurrence datasets large enough 
for these data-hungry methods (Benkendorf and Hawkins 2020). These algorithms hold potential for 
advancing SDM methodologies by learning novel features from multidimensional environmental data 
(Beery et al., 2021).  
 
Risks. AI for inference in ecosystem monitoring is rapidly becoming a reality (Sethi et al. 2020, Galaz 
García et al. 2023), raising important concerns about how systematic errors in AI alter the derived 
ecological insights. As causal inference methods develop alongside AI, the ability to make predictions may 
outpace the ability to explain the mechanisms behind the predictions (Grace 2024). SDMs require true 
observations of species and robust environmental sampling, each of which has various sources of error 
and uncertainty that must be clearly identified, explained, and controlled for (Beale and Lennon 2012, 
Beery et al. 2021). Black-box deep learning models further exacerbate the challenges associated with 
aggregating multimodal ecological data such as spatial and temporal autocorrelation, differences in 
sampling protocols, and other caveats related to environmental feature generation and ground-truthed 
datasets (Beery et al. 2021). Challenges regarding how to fit models and interpret their results are not 
unique to AI, but its use can exacerbate issues already present with more traditional statistical methods. 
Even with traditional statistics, ecologists sometimes select improper methods for estimating parameters 
of mixed effects models (Bolker et al. 2009). For example, the most used package for fitting mixed effects 
models in R, lme4 (Bates et al. 2015), does not provide functionality for predicting intervals because of 
disagreements regarding standard error estimation. These challenges for interpretation may be 
compounded when using AI methods.  
 
Promising solutions. Improvements in AI interpretability are providing insight into the internal 
mechanisms of models. For example, explainable AI methods can rank feature importance to provide 
global explanations for overall model predictions and local explanations for individual model predictions 
((Ryo et al. 2021, Alicioglu and Sun 2022, Molnar 2024, Zhang et al. 2025); see Fig. 3 and Effective 
Visualizations section (Ryo et al. 2021, Alicioglu and Sun 2022, Molnar 2024, Zhang et al. 2025). Initiatives 
to encode domain knowledge explicitly into algorithms (knowledge-guided and model-based AI) aim to 
improve trust in AI models and address these inherent risks and complexities (Doll et al. 2012, Bishop 
2013, Swischuk et al. 2019). Similar recent efforts within ecology leverage the rich biological structure 
that underlies taxonomy and phylogeny to build upon the generic OpenAI model CLIP to create the 
biology-specific BioCLIP model (Stevens et al. 2023). In addition to improving the accuracy and context of 
image-based species identification, knowledge-guided tools, that seek to incorporate domain-specific 
logic, can lead to the generation of new evolutionary hypotheses. They can reveal missing links in high-
dimensional networks in complex systems, such as suggesting intermediate phenotypes based on 
phylogeny (Han et al. 2023, Stevens et al. 2023). 

2.3. AI for decision-making 

Opportunities. Given the complexity and scale of ecosystem management, AI is increasingly being used to 
support decision-making for conservation (Scoville et al. 2021, Lapeyrolerie et al. 2022) and sustainable 
management of natural resources (Lindkvist et al. 2017, Ebrahimi et al. 2021, Montealegre-Mora et al. 
2023). Conservation prioritization has traditionally involved a spectrum of approaches, from non-



algorithmic processes like the California MPA Network Blue Ribbon Task Force, which heavily relied on 
expert knowledge and stakeholder engagement (Kirlin et al. 2013), to algorithmic tools such as MARXAN, 
a widely used decision-support software for optimizing reserve design (Ball et al. 2009). Newer AI-driven 
platforms like CAPTAIN leverage AI and specifically reinforcement learning to model and predict 
biodiversity outcomes under varying conservation strategies (Silvestro et al. 2022). For instance, 
reinforcement learning, where the model learns by receiving feedback in the form of rewards or 
punishments for its actions, has been identified as particularly useful in fishery science when fish stocks 
display complex patterns in recruitment dynamics (Lapeyrolerie et al. 2022, Chapman et al. 2023, Kühn et 
al. 2024, Montealegre-Mora et al. 2024). Automated methods, repeatable workflows, and 
transdisciplinary research are being used to review and aggregate large, multimodal datasets into 
biodiversity syntheses that assess the status of ecosystems at a global scale (Galaz García et al. 2023, 
Berger-Tal et al. 2024). These global analyses have the potential to inform international policy, 
supporting initiatives like 30 by 30 and other worldwide conservation efforts (Scoville et al. 2021).  
 
Risks. When applied to conservation decisions, AI carries serious implications, especially if it prioritizes 
areas and communities based on biased and uneven data (Chapman et al. 2021, Scoville et al. 2021). In 
forming the design and objectives of these models, researchers optimize for biodiversity or conservation 
outcomes that often reinforce predominant colonial conservation paradigms that neglect the needs of 
local communities and generational knowledge from Indigenous Knowledge Systems (Al-Mansoori and 
Hamdan 2023, Layden et al. 2024). As mentioned for SDMs, black-box models compound these issues by 
adding a layer of obscurity. These algorithmic approaches can encode biases that increase the likelihood 
of colonialist research that neglects the parties most affected by management decisions (Han et al. 2023). 
These ethical risks also arise in the application of AI data processing outputs to conservation and 
management decisions. For example, the identification of illegal environmental activities (e.g. poaching, 
fishing in no-take marine reserves) could eventually serve as the basis for future predictive policing 
practices (Mporas et al. 2020, Swartz et al. 2021). Though this could be viewed as an opportunity, AI for 
policing practice is fraught with ethical challenges (Davis et al. 2022), including but not limited to 
perpetuating biases and the extreme negative consequences of errors in detection. Similar to AI for 
conservation prioritization, the use of AI for automated surveillance and decision-making poses 
significant social and ethical risks beyond ecology. 
 
Potential solutions. When AI is involved in decision-making, long-term partnerships with local 
communities become even more important so that local voices can review what goes into and comes out 
of models to provide feedback and adjust recommended decisions. Clear data-sharing agreements are 
needed to ensure informed public engagement that supports environmental justice and improves 
conservation governance of local communities (Layden et al. 2024). To mitigate compounded ethical 
issues, models can explicitly include data from social science methods like participatory mapping, 
surveys, and interviews to promote the inclusion of more diverse knowledge, values, and identities 
(Bennett et al. 2017). Once algorithmic solutions are suggested by AI, distribution equity assessments 
using similar social science methods, like focus group discussions or community-based research on 
potential outcomes, can help select among several near-optimal solutions to prioritize an equitable 
distribution of cost and benefits (Kockel et al. 2020). Promoting equity in the use of AI for conservation 
and management will require the active integration of co-design principles, social science, procedural 
justice, and equity assessments (Benyei et al. 2020, Chapman et al. 2021, Hsu et al. 2022, Oestreich et al. 
2024). 

3. Practical challenges: barriers to AI adoption in ecology 

Alongside the ethical and scientific concerns outlined previously, ecologists encounter practical 
challenges in understanding when and how to implement AI over more traditional manual or statistical 
methods (Fig. 2C). While many of these challenges are present in learning any technical skill, we highlight 
how AI can exacerbate existing burdens. We describe key practical challenges an ecologist faces when 
applying AI to assist with labelling, clustering, or filtering datasets (AI for data processing), transforming 
data into knowledge (AI for inference), or translating knowledge into action (AI for decision-making): 

3.1. Opportunity cost 

Based on the ecological question at hand, what are the costs and benefits of using an AI model as opposed to 

traditional methods? While it takes time and effort to learn any new skill or method, AI models have a 
steeper learning curve for ecologists. AI relies on complex computational infrastructure and can require 



specialized knowledge of algorithms to navigate the rapidly evolving landscape of tools and methods. 

Additionally, most resources use programming languages that are less familiar to ecologists (e.g., Python 
instead of R). The scale of investment in learning to use AI can vary based on the researcher's career 

stage, level of experience, access to collaborators, and the availability of open-access educational 

materials. Current academic incentive structures (publications, funding, and job opportunities) favor the 

development and use of novel AI models over the creation of accessible educational resources (i.e., 

tutorials, blogs, free online courses). The people who are best suited to create educational materials may 
therefore not have the time or resources to do so. 

3.2. Overwhelming landscape 

Considering your data and question, which AI model, if any, is relevant and could provide value? A rapidly 

evolving landscape of AI models can be overwhelming to an ecologist seeking to responsibly analyze their 

data. They may be tempted to use traditional statistical methods, which may be more familiar and invite 

less skepticism than AI models, therefore missing opportunities to use AI to advance their research. Using 
AI requires keeping pace with rapidly advancing technologies, new architectures, and a proliferation of 

models with varied baseline assumptions and caveats. Researchers must carefully consider the benefits 
and drawbacks of increasingly complex models in terms of decreased transparency and increased 

computational load (Pichler and Hartig 2023). This can be especially overwhelming for researchers who 

cannot draw on the collective knowledge of a community of experts. For cutting-edge technical tools such 
as AI, students often learn informally from more junior mentors, such as senior grad students and 

postdocs, who are not always recognized for their efforts (Higino et al. 2023). Academic research 
incentivizes mentorship at the lab or institutional level, rather than to the broader, interdisciplinary 

research community. 

3.3. Transparency deficit 

How can we understand the model’s performance? How can we understand and trust how the model came to 
its answer? AI models, particularly those using deep learning, introduce unique challenges in 

interpretability and explainability. This makes it difficult to fully understand the reasoning behind their 
predictions compared to traditional methods, which are often perceived as being more transparent and 

grounded in well-understood statistical principles. Tools for interpretability in AI are rapidly evolving but 

can be challenging to navigate without technical expertise. These tools often lack standardization, leaving 

researchers with limited guidance on how to evaluate and trust AI predictions effectively. Because 

ecologists are not typically formally trained in AI methods, they may not be familiar with visualization 
tools that can support model interpretation or the science communication surrounding the data collection 

and the model’s functionality, caveats, and performance.  

3.4. Implementation burden 

How do we acquire the resources and data management systems needed to run our models? How hard is it to 

run the model on new data? How should we share the workflows and models we produce? Unlike traditional 

statistical approaches, AI models often require complex preprocessing steps, significant computational 
power, and fine-tuning of hyperparameters, which can create barriers for researchers with limited 

technical expertise, indecipherable code repositories, or lack of access to computational resources. Once a 

researcher has decided to use a particular model, they must alter the model to fit the structure and scale 
of their dataset. This may mean reconfiguring data pipelines and workflows, engineering features, 

iteratively evaluating model performance, and eventually scaling up this analysis to larger datasets. This 

work can be limited by unavailable or unclear data and code, as well as lack of access to computational 

resources like cloud computing and data management systems (Allen and Mehler 2019). Once 

researchers have created useful tools, they also face several obstacles when seeking to share the code, 
workflows, and models related to reuse concerns, disincentives, and knowledge barriers (Gomes et al. 

2022). This perpetuates the cycle and creates challenges for incoming researchers seeking to understand 

the opportunity cost associated with using AI in ecology. 



 

Fig. 2. This synthesis figure outlines a roadmap for AI-adoption in ecology as it is used for data processing, 

inference, and decision-making. A) Often, human-in-the-loop technologies improve workflows that 
transform data into knowledge that can inform action by mitigating the scientific and ethical pitfalls of AI. 

B) The key stages for ecologists adopting AI: (1) Navigate the landscape of risks and opportunities, (2) 

Implement identified relevant models, (3) Interpret and communicate the results, and (4) Contribute 
data, code, and lessons learned back to the research community. These stages map (C) key practical 

challenges onto (D) key solutions: (1) opportunity cost (unclear benefits and costs) of using AI: 

educational resources, (2) overwhelming landscape of model choices: communities of practice, (3) 

transparency deficit: effective visualizations, and (4) implementation burden: computational resources. 



4. Practical solutions: facilitating AI adoption in ecology 

These practical challenges, while considerable, must be overcome if ecologists want to responsibly 
leverage opportunities offered by AI. We used the wealth of expertise across career stages at our 

workshop to identify practical solutions that collectively ameliorate key challenges. These solutions align 

four key challenges—opportunity cost, overwhelming landscape, transparency deficit, and 

implementation burden—with corresponding interventions: educational resources, communities of 

practice, effective visualizations, and computational resources. The solutions aim to guide ecologists as 
they navigate AI-related risks and opportunities, implement relevant models, interpret and communicate 

their results, and contribute data, code, and lessons learned with their research community.  

For each challenge, we identify an overarching solution and provide ecologists new to AI with a starting 

point for finding resources and initiatives. We pair these examples with broader recommendations for AI 

practitioners across experience levels to collectively advocate for cultural shifts that will facilitate the 
responsible adoption of AI in ecology. Ecologists encountering AI for the first time benefit most from 

accessible educational resources and collaborative communities of practice that demystify AI and provide 

mentorship. For researchers scaling up their use of AI, visualizations play a critical role in helping 
researchers understand and communicate data and the outputs, performance, and function of AI models. 

As researchers advance, they gain valuable expertise that they can share back with their research 

community by sharing data, code, and lessons learned. For each solution, we invite researchers 

experienced in AI to lower barriers for future ecologists by advocating for specific cultural shifts and 

incentives that reward open sharing of data, tools, and expertise. 

4.1. Educational resources 

When ecologists begin to use AI, they often benefit from educational resources, especially those that are 

open-access and available online. Educational resources to learn AI range in accessibility, investment, and 

impact from informal (i.e., blog posts, YouTube videos, tutorials, review papers) to formalized courses, 

workshops, and fellowships. Informal resources are an excellent entry point for students, allowing them 

to learn for free at a flexible pace. While informal resources to learn AI are plentiful, high-quality ecology-
specific resources are rare. Some examples include extensive reviews of how deep learning is being used 

in ecology with practical guides for model selection (Borowiec et al. 2022, Pichler and Hartig 2023), 
conceptual tutorials of deep learning for biologists (Aurisano et al. 2017), or specific coding examples of 

using AI and machine learning in R (Lefcheck 2015) and Python (Gray 2024). Ecologists may want to 

explore tools such as OpenSoundscapes (Lapp et al. 2023), which provide extensive documentation and 
tutorials to walk ecologists through the process of training a Convolutional Neural Network to identify 

sounds in audio data (Lapp et al. 2024). When employed cautiously, ChatGPT and other generative AI 

tools can lower the barrier to entry to Python for ecologists or biologists who may lack formal training, 

especially for simple tasks such as translating syntax from another more familiar language like MATLAB 

or R (Lubiana et al. 2023). However, while helpful to get started, ChatGPT alone is inadequate to guide the 

responsible selection and implementation of a model. Informal, exploratory learning is an important first 

step for ecologists to understand the opportunity cost associated with implementing AI.  

Formal educators, courses, and programs can provide ecologists with a nuanced understanding of the 

field, as well as tailored guidance for bespoke data processing pipelines. Ecologists may consider formal 

educational resources such as Massively Open Online Courses (also known as MOOCs) on machine 
learning (Ng 2024), but they are not typically aimed at ecologists and may not be accessible in terms of 

pricing or prior knowledge. If funding is available, in person courses such as the Oxford Research 
Software Engineering program can introduce rigorous best practices for Python programming to 

scientists, which can provide the skills needed to implement AI and produce useful scientific software 

(Course website: (OxRSE 2024a); Github: (OxRSE 2024b)). Ecology-specific opportunities with in-person 
engagement, while harder to come by, can be transformational for ecologists new to AI, by allowing 

learners to engage directly with instructors and adapt models to their own datasets. In particular, the 
Computer Vision for Ecology (CV4E) workshop led by Beery et al. (Beery et al. 2023, Cole et al. 2023) 

combines formal instruction with coding support so that students come away with a conceptual 

understanding of the model to accompany their code and model outputs. Ecologists who are considering 
significant use of AI in their work may seek fellowships such as those offered by Schmidt Sciences and the 



Allen Institute (Allen Institute 2020, Schmidt Sciences 2022). These opportunities can also give ecologists 

the time and resources to receive formal training and connect with expert mentors in the field of AI. 
However, as educational opportunities increase in support, they decrease in accessibility in the form of 

greater costs and fewer spots available. 

Cultural shifts towards greater emphasis on programming education are already underway, as ecology 

departments increasingly hire dedicated teaching faculty, research software engineers, and data science 

educators (Harlow et al. 2020). Moving forward, academia should reward the creation of accessible 
educational resources by recognizing these contributions in tenure and promotion decisions. Increased 

value and opportunities for interdisciplinary co-instruction by ecology and computer science educators 
can improve the quality and availability of formal and informal educational resources for ecologists. 

Finally, education and the resulting increase in understanding will provide ecologists with tools to 

critically evaluate research using AI. These shifts are essential not only for AI adoption but also for 
advancing computational literacy more broadly, enabling ecologists to confidently integrate AI, when 

applicable, alongside other scalable computational methods in their research. 

4.2. Communities of practice 

Educational opportunities provide a launching point, but ecologists who are new to AI may struggle to set 

their work within a broader, collaborative context. In ecology and other fields, communities of practice 

have been a valuable tool for scaling and tailoring education and mentorship opportunities. Communities 
of practice are social structures composed of individuals who share a common domain of interest and 

collectively enhance their expertise through sustained interactions and knowledge exchange (Wenger 
2011). We argue that ecologists new to AI, especially “advanced beginners,” may benefit from joining a 

community of practice where they can interact with domain experts (Stevens et al. 2018). Communities of 

practice for AI in ecology allow members to share technical knowledge, provide interdisciplinary 

expertise, and create inclusive environments across expertise levels.  

Communities of practice can provide important support for scientists in fields that, like ecology, require 

intensive technical skill-building (Stevens et al. 2018). For example, organizations like PyOpenSci 
(pyOpenSci 2024) and rOpenSci (2024) create supportive environments where scientists can learn how 

to practice programming and open science. Communities of practice are also key in interdisciplinary 
fields to understand gaps and areas of synergy between fields. In the AI domain, interdisciplinary 

communities like Climate Change AI (Climate Change AI 2024), the NSF-funded COnvergence REsearch 

(CORE) Institute at San Diego Supercomputer Center (NSF CICORE 2024), and the NSF- and NSERC-
funded AI and Biodiversity Change Center (ABC Global Climate Center, 2024) bridge disciplines between 

computer science, climate science, and ecology. Such links have improved methods to monitor, analyze, 
and assess changes in global biodiversity (MacWilliams et al. 2024). Organizations like the Turing 

Institute and professional societies like NeurIPS also provide structures for interdisciplinary 

collaboration to establish guiding principles for the ethical use of AI (NeurIPS 2024, Turing Institute 

2024). While not specific to AI, the National Center for Ecological Analysis & Synthesis (NCEAS) seeks to 

intentionally foster the Environmental Data Science community through events like their inaugural 
Summit in 2023 (NCEAS 2023). Ecologists who would like to use AI can benefit from engaging in 

communities relevant to their interests and goals that have strong community agreements (Bates et al. 

2024), dedicated facilitators (Cravens et al. 2022), and inclusive, engaging events (Woodley and Pratt 
2020). Choosing to join but also contribute to intentional, inclusive spaces can help counteract pervasive 

challenges associated with the impostor syndrome and STEM (Bates et al. 2024).  

While vital for ecologists navigating an evolving AI landscape, in-person opportunities with ample 

funding for travel and accommodation are inherently exclusive and involve difficult ethical decisions 

regarding who gets invited. This is especially important to consider in cases where participatory decision-
making informs conservation through communities of practice focused on translational ecology (Lawson 

et al. 2017). It is also important to consider the pros and cons of social learning, as has been well studied 
in the field of behavioral ecology, where there is the potential for stagnation and inertia without active 

inclusion of diverse perspectives (Laland and Williams 1998, Johnstone et al. 2002, Barrett et al. 2019). 

To prevent this stagnation, AI in ecology can serve as an opportunity to invite expertise and best practices 
across disciplines, cross-pollinating across groups, including within a single university. At multiple scales, 



we hope that communities of practice can be increasingly used to foster science identity and agency as 

new programmers learn to leverage AI. 

4.3. Effective visualizations 

As computational analyses scale and AI models become more complex, ecologists gaining familiarity with 

AI can benefit from effective data visualization to understand patterns in the data, interpret model 
functionality, communicate model outputs, and foster transparency with stakeholders. The use of AI, 

especially black-box deep learning methods, can exacerbate the lack of transparency associated with 

scientific research; this calls for a renewed emphasis on effective visualizations for diverse audiences. 
While visualization is important to master at all career stages, leveraging its impact for applied AI has the 

potential to better engage scientists, decision makers, and the public (Kendall-Bar et al. 2024).  

The design and intent of these visualizations depend heavily on an ecologist’s target audience. We present 

two primary purposes for the visualization of AI in ecology: exploration and explanation (Fig. 3). 

Exploratory visualizations for AI include those dedicated to exploring the data and the model to a narrow 
audience of experts, intimately familiar with the data and questions. These visualizations are used to 

uncover patterns in the data, identify key features, understand model performance, and diagnose model 
functionality (Fig. 3A). For example, an ecologist seeking to visualize data prior to fitting an AI-based 

species distribution model may first examine satellite imagery or maps with color-coded sensor 

measurements (Fig. 3A1a) to obtain processed features for model inputs (Fig. 3A1c). Visualizations of 
ground-truth presence/absence data from manual censuses can help visually assess model accuracy (Fig. 

3A1b). After fitting and visualizing the model (Fig. 3A1d), AI predictions of habitat suitability can be 
assessed against this ground truth, e.g. through a receiver operating characteristic (ROC) curve (Fig. 

3A2a). Such a curve helps identify a habitat suitability threshold for the model (above which it is 

considered habitable) that optimizes for tradeoffs in model performance, between a sensitive model 

(measured via true positive rate) and one with low false positive rate (or high specificity). Model 

performance for a given suitability threshold can be visualized with a confusion matrix (Fig. 3A2b). Colors 

for these performance metrics (true/false positives/negatives) can then be arranged across space (Fig. 
3A2b: Spatial accuracy) or time, in the case of time series data. Overall model functionality as well as 

individual model predictions can then be explained through bar plots that rank the relative contributions 
of each feature (Fig. 3A3a-b; see supplemental text for more details on Explainable AI methods). 

Explanatory visualizations offer a curated presentation of data, key results, model outputs, and 

implications paired with contextual information to effectively guide a broader audience less familiar with 
the dataset and question (see example in Fig. 3B). Explanatory visualizations build upon standalone 

versions of plots, line charts, or heatmaps useful for data exploration, often by adding annotations, 
infographics, scientific illustrations, voiceover narration, or data-driven animations. The perceived 

complexity of AI models may alienate or foster distrust with local community partners or decision 

makers, making it more important to visually explain the scientific basis of the model's use and its 

proposed decisions. Interactive web-based data browsers can increase trust and transparency regarding 

the use of AI in ecology by allowing direct engagement with the public (HappyWhale: (Cheeseman et al. 
2017); FlukeBook: (Blount et al. 2022)) or decision makers through decision support tools designed for 

dynamic management (Welch et al. 2020). While interaction can be valuable for those closely involved, 

short videos can incorporate visualizations and narration provide a wide-reaching, standalone overview 
of a topic (Kendall-Bar et al. 2021, Kendall-Bar 2023).  

Shaping a narrative through visualizations involves ethical decisions about what data to highlight, 
simplify, or omit (Walsh 2015). Researchers can accurately depict results and uncertainty with 

responsible visualizations that foster trust in science and broaden who has access to information about AI 

in ecology, supporting the critical role of science communication (Longdon 2023). While not exclusive to 
AI, visualizations can present valuable opportunities for AI-related science communication and 

stakeholder engagement with the wide array of inherently visual datasets in ecology such as computer 
vision for camera traps and aerial imagery or physics-based AI models for weather, flood, or fire 

simulation (Kendall-Bar et al. 2024). To promote technical literacy of AI among ecologists and 

collaborators, institutions and funding agencies must more formally incentivize science communication 
(Swain 2023). Recognizing visual storytelling as a valued contribution—on par with traditional metrics 



like publications—can incentivize researchers to invest time and effort in creating widely accessible, 

high-quality visualizations that responsibly and effectively communicate their use of AI. 

 

Fig. 3. (A) Exploratory visualizations to understand AI models include: (1) Data and model 

exploration: (a) Raw data visualization, including satellite imagery and geospatial representations of 

species’ presence/absence, (b) Feature visualizations (e.g., rainfall, temperature) used as model inputs, 

(c) Model output geospatial predictions of habitat suitability; (2) Model performance: (a) Receiver 

Operating Characteristic (ROC) curve illustrating the tradeoff between true positive rate and false 

positive rates at different habitat suitability thresholds (s), (b) Confusion matrix for a suitability threshold 

of 0.5, showcasing true/false positives and negatives, with accuracy ((TP+TN)/(P+N)), sensitivity (i.e., 

true positive rate; TP/(TP+FN)), and specificity (TN/(FP+TN)); (3) Model explanation: (a) Global 
explanations highlighting feature importance and partial dependence plots to interpret the contributions 

of key variables, (b) Local explanations illustrating feature-level contributions for individual predictions 
(possible using explainable AI methods like LIME or SHAP with bar plots to rank feature importance for 

specific predictions). (B) Explanatory visualization composite infographic with plots and data adapted 

from Ryo et al. 2021 to provide example graphics, annotations, and interpretations that can guide the 

viewer to better understand AI model outputs. For additional details and references for LIME and SHAP, 

see the Supplemental Text. 



4.4. Computational resources 

As researchers narrow in on the methods essential to their question, their key limitation may shift to their 

access and expertise with computation. Here, we define computational resources broadly to encompass 
the hardware and software to train and run AI models, including openly available labelled datasets, 

transferrable AI models (i.e. usable code repositories), data management systems, and cloud computing 
resources. Ecologists’ use of computational methods, not just AI, is hindered by the lack of formal training 

on sharing data, curating code repositories, managing datasets, and accessing supercomputers (Stockwell 

et al. 2000). Open science and its growing support by funding agencies aim to democratize AI and 
accelerate computational science (Parashar and Altintas 2023, Würthwein 2024). Ecologists can act as 

partners in these efforts to better connect domain-specific needs and existing initiatives with new tools 
and best practices from AI and computer science. 

Due to the large size of datasets and associated computing requirements, the use of AI is limited without 

cloud computing. Ecologists who want to use AI should familiarize themselves with broadly accessible 
cloud computing services such as Nautilus, the National Research Platform, designed to democratize AI 

internationally (Parashar and Altintas 2023, NRP 2024, Würthwein 2024). Nautilus and other 
government-funded initiatives like ACCESS (NSF 2024) leverage academic institutions to offer low-cost 

and scalable computational resources. Industry tools, such as Amazon Web Services or Google, can be 

more expensive but may offer more technical support. As ecologists leverage supercomputing to scale 
analyses, the non-negligible environmental impacts of AI (Strubell et al. 2020) can be partially alleviated 

by adjusting the extent, timing, and location of resource use (Dodge et al. 2022). 

After adapting AI models to specific use cases, or even developing new models, ecologists often aim to 

share models and their training data with others, whether to meet publication requirements or to 

contribute to their communities of practice. Ecology-specific databases may not be designed to enforce 

existing best practices for AI datasets, such as benchmarking or datasheets for datasets (paper: (Gebru et 

al. 2021); Overleaf template: (Garbin 2021)). However, ecologists can learn and adopt AI-specific 

documentation methods, including dataset datasheets as well as AI model cards (paper: (Mitchell et al. 
2019); Markdown template: Garbin, 2020 & 2024). BioTrove is a large, well-documented benchmark 

dataset based on iNaturalist’s Open Dataset (iNaturalist 2024) images, scientific and common names, and 
taxonomic hierarchies with code and example cards for the data and model (paper: (Yang et al. 2024a); 

website: (Yang et al. 2024b)). Standardized AI-specific documentation describes caveats associated with 

models and datasets, specifies appropriate downstream use, and facilitates open sharing via platforms 
like Hugging Face (Jain 2022). For instance, the Cookiecutter Data Science framework also provides 

guidance for sharing AI models in Python; and these structures are flexible to accommodate complex data 

processing pipelines and model workflows (Rybicki 2019). Ecologists who want to use AI can learn more 

about these best practices for Python as well as the recommendations for sharing ecological analyses 

made in R via research compendia, e.g. (Marwick et al. 2018). There is a growing need for educational 
materials and explicit recommendations for systematic AI model sharing for ecological audiences that 

may have less technical expertise or familiarity with Python- or AI-specific best practices.  

For ecologists or computer scientists ready to start sharing their AI tools with others, we have curated a 

list of practical recommendations for how to best facilitate the adoption of these tools by ecologists with 

little technical training (Fig. S1). We have also illustrated what type of tool may best serve tool-adopters 
at different levels of technical proficiency and familiarity with ecological datasets and questions (Fig. S2.). 

Future work in AI in ecology can incorporate model cards and dataset datasheets into browsable model 

zoos, similar to the one for microscopy computer vision models with the BioImage Model Zoo (Ouyang et 

al. 2022). We have curated a starter-pack Model Zoo for AI models in ecology on our website (ecoviz-

ai.github.io/modelzoo (Kendall-Bar, 2024a)) which can receive new contributions via Github (Kendall-
Bar 2024b).  

As more ecologists begin to use AI, the careful and generous sharing of models and datasets will help 
reduce the need to train models or relabel datasets. As data sharing and data availability statements 

become more prevalent (Jiao et al. 2024), journals will need to formally incentivize the review of data and 

code. For instance, the Journal of Open Source Software (JOSS 2024) and Methods in Ecology and 
Evolution have dedicated editors for reviewing software, code, and data; we are also aware that other 



journals have prioritized maintaining data editors as key staff members (Muench 2023). Practitioners of 

AI in ecology should be mindful of the ethical considerations associated with sharing code and data. Open-
sourcing datasets or models used in large language models like ChatGPT present serious ethical concerns 

outside the scope of this manuscript (Liesenfeld et al. 2023, Cooper et al. 2024). We recommend that any 

ecologist new to AI familiarize themselves with practical guides set forth by the British Ecological Society 

(2025) and ethical guidelines set forth by NeurIPS and others as they begin to implement and share AI 

models (NeurIPS 2024). Within the scope of environmental science, data management plans co-designed 
with Indigenous and local knowledge holders have innovated upon open data frameworks like FAIR and 

CARE to provide local context labels that indicate provenance, protocols, or permission tied to 
disseminated materials that could contain culturally sensitive or sacred information (Anderson and 

Christen 2013, Carroll et al. 2021). Overall, a cultural shift towards incentivizing conscientiously open, 

modular, and expandable tools moves away from redundant, proprietary, or opaque analyses and 
contributes to more transparent, robust, and defensible science (Brunsdon and Comber 2021, Czapanskiy 

and Beltran 2022). 

5. Conclusion 

AI in ecology is quickly gaining momentum, offering unprecedented opportunities to speed and scale 

ecological research (Christin et al. 2019). There are several important challenges to leveraging AI for 
ecology, ranging from a lack of trust in AI approaches to the risk of overeager, undiscerning, and 

potentially dangerous implementation of existing models. Compared to traditional statistical methods, AI 

often entails a higher transparency deficit and implementation burden, increasing the risk that training 
data could encode biases or lead to misleading results. Despite these risks, there are many cases where AI 

presents significant opportunities and low risk for automating tedious manual tasks or leveraging large 

datasets (Besson et al. 2022, Galaz García et al. 2023, Han et al. 2023). Here we reviewed the key 

challenges and solutions facing ecologists seeking to leverage AI in their research. When the benefits of AI 

outweigh the risks, we argue that ecologists are likely to be dissuaded from using AI due to practical 
challenges such as: (1) the opportunity costs while understanding the risks and opportunities of AI, (2) 

an overwhelming landscape while selecting and implementing a model, (3) a transparency deficit 
when interpreting model performance and function, and (4) the implementation burden when 

attempting to modify models, scale their use, and share tools with others. Addressing and/or alleviating 

these challenges likely requires a multifaceted approach combining: (1) educational resources to create 
openly available informal and formal learning resources, (2) communities of practice to create 

interdisciplinary and inclusive environments for technical social learning, (3) effective visualizations to 
interpret and communicate the functionality and performance of models, and (4) computational 

resources for adapting models, scaling deployments to large datasets, and sharing data, code, and lessons 

learned with the research community.  

Our initiative, EcoViz+AI, has created a website that collates several AI-related resources for ecological 

researchers (ecoviz-ai.github.io; (Kendall-Bar 2024a)). There, we have curated a list of communities of 

practice to connect ecological researchers to initiatives in the field of ecology and AI. To reduce the time 

spent looking for models, we have also curated a list of AI tools into a model zoo. We describe five case 

studies for AI in ecology with science communication videos (see supplement for more information). We 

invite others to contribute additional models or communities of practice via Github (github.com/ecoviz-

ai/ecoviz-ai.github.io; (Kendall-Bar 2024b)).  

Looking to the future, a cultural shift is needed to emphasize and reward efforts to produce open and 
reproducible science that promotes the responsible reuse of data, code, and models (Gundersen et al. 

2018, Czapanskiy and Beltran 2022). This cultural shift is already underway, as ecologists replace 
perceived barriers to sharing data and code with the recognition that these efforts will ultimately save us 

time, help us establish explicit data sharing agreements, avoid proprietary formats, and help us 

contribute to communities of practice (Gomes et al. 2022). While the benefits of open science and 

technical training are not exclusive to AI, the rapid growth, opacity, and implementation challenges of AI 

highlight the need to prioritize technical education, community development, and science 
communication. Efforts to improve approachable and responsible AI adoption are strengthened when 

https://ecoviz-ai.github.io/
https://github.com/ecoviz-ai/ecoviz-ai.github.io
https://github.com/ecoviz-ai/ecoviz-ai.github.io


deployed synergistically with broad, interdisciplinary initiatives to increase computational and scientific 

literacy, such as the AAAS Vision and Change Action Plan for undergraduate education (Woodin et al. 
2009). AI presents an opportunity to harness new momentum, cyberinfrastructure, and computational 

techniques to incentivize responsible and generous sharing of resources to educate, train, and empower 

the next generation of ecologists. 
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