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Abstract 34 

1. Motivation: Artificial Intelligence (AI) can rapidly process large ecological datasets, 35 

uncover patterns, and inform conservation decisions. However, its adoption by 36 

ecologists is often hindered by steep learning curves, overwhelming model options 37 

with varying transparency, and uneven access to data, code, and technical skills. We 38 

led a workshop, EcoViz+AI: Visualization and AI for Ecology, that brought together 35 39 

experts to synthesize this review and related resources that collectively aim to guide 40 

ecologists as they navigate, implement, interpret, and contribute to the fast-evolving 41 

AI landscape.  42 

2. Methods: Workshop facilitators led discussions and collaborative coding sessions 43 

around five use cases of AI in ecology for processing image, ecophysiological, and 44 

acoustic data. Using workshop discussions and experiences as a foundation, this 45 

review article synthesizes the opportunities and risks for AI in ecology as well as 46 

practical challenges and solutions for adopting AI.  47 

3. Outcomes: Ethical and scientifically sound use of AI requires human review, 48 

interpretable methods, and greater technical literacy to minimize risks. However, 49 

practical challenges more often prevent adoption than ethical concerns. Four 50 
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solutions include: (1) educational resources to help researchers assess the 51 

opportunity cost associated with AI compared to traditional methods, (2) 52 

communities of practice to combat the overwhelming landscape of AI with 53 

knowledge, technical skills, collaboration, and inclusivity, (3) effective 54 

visualizations to address the transparency deficit of AI for understanding and 55 

communicating results including model outputs, performance, and functionality, 56 

and (4) computational resources to ease the implementation burden of AI through 57 

shared data, modifiable code, and accessible computing. Our workshop compiled 58 

resources, including science communication videos for five AI use cases and 59 

repositories for ecology-related AI models and communities of practice. 60 

4. Synthesis: Cultural shifts towards formal incentivization of open-access educational 61 

materials, inclusive mentorship, science communication, and open science will 62 

empower ecologists to leverage AI responsibly. Aligning AI initiatives with broader 63 

movements towards interdisciplinary open science and computational literacy will 64 

promote inclusivity and the ecological relevance of novel tools, advancing basic 65 

research and impactful translational ecology. 66 

Key words: artificial intelligence, AI, ecology, education, cyberinfrastructure, visualization, 67 

science communication, communities of practice 68 

Background 69 

Applications of AI in ecology and evolution are now increasing the speed, scale, and 70 

resolution of computational analysis (Christin et al., 2019). AI can predict species 71 

responses based on environmental conditions (Chollet Ramampiandra et al., 2023), 72 

facilitate the integration of models and theory for complex systems-level understanding 73 

(Han et al., 2023), and generate novel hypotheses (Stevens et al., 2023) to pave the way for 74 

conservation (Chapman et al., 2021). While AI is not necessary in every, or even most, 75 

situations, it is nonetheless a powerful, adaptable tool available to ecologists for answering 76 

pressing research questions. However, the significant practical challenges to AI-adoption, 77 

such as a lack of domain-specific tutorials and communities of practice, and the 78 

considerable ethical concerns associated with AI (well described in the literature 79 

[Chapman et al., 2024; Cooper et al., 2024; Scoville et al., 2021; Tabassi, 2023]) have 80 

generated skepticism and trepidation among ecologists and likely slowed AI adoption. To 81 

address this issue, we gathered 35 experts in ecology and artificial intelligence for a week-82 

long facilitated workshop (EcoViz+AI: Visualization and AI for Ecology; ecoviz-ai.github.io 83 

[Kendall-Bar, 2024a]; see supplement for workshop details and outputs). We defined AI 84 

broadly to include the spectrum of machine learning and deep learning models available to 85 

ecologists, although strict definitions of AI may preclude machine learning and even deep 86 

learning (Fig. 1; Sheikh et al., 2023; Wang, 2019). For this review, we discussed and 87 

distilled the following: 88 

1. A summary of the current opportunities and risks for using AI in ecological research. 89 

2. A review of the key challenges to AI adoption for ecologists.  90 

3. Specific examples and ethical considerations for key solutions to these challenges: 91 

educational resources, communities of practice, effective visualizations, and 92 

computational resources.  93 

https://ecoviz-ai.github.io/


 

Overall, we hope this review will help ecologists who are considering adopting AI methods 94 

navigate the tools available to them and apply them with responsibility and rigor.  95 

 96 
Figure 1. A diagram describing our workshop participants’ definitions of AI, showing a 97 

spectrum of models from less interpretable and more complex models on the left (darker red 98 

values) to more interpretable and less complex on the right (lighter blue values). Icons next to 99 

a definition represent votes from workshop participants. The spectrum is divided into four 100 

categories: General AI (or strong AI), Deep Learning (DL including Large Language Models 101 

[LLM], Generative Adversarial Networks [GAN], Long Short-Term Memory Networks [LSTM], 102 

Recurrent Neural Networks [RNN], and Convolutional Neural Networks [CNN]), Machine 103 

Learning (encompassing DL models as well as Hidden Markov Models [HMM], Gradient 104 

Boosting Machines [GBM], Random Forest [RF], Support Vector Machines [SVM], and Decision 105 

Trees [DT]), and Statistics (including e.g. linear, logistic, and multivariate regressions, 106 

Principal Component Analysis [PCA], and Analysis of Variance [ANOVA]). 107 

(1) Opportunities and risks of AI applications in ecology 108 

AI, defined broadly as a spectrum of machine learning to deep learning models (Fig. 1), can 109 

be applied to ecological research through: (1) data processing, such as labelling, 110 

annotating, clustering, or filtering raw data, (2) inference, where processed data can be 111 

used to answer ecological or evolutionary questions via testable hypotheses, and (3) 112 

decision-making, where the answers to these questions can serve as the basis for policy or 113 

management recommendations. For example, sleep studies of wild animals could apply AI 114 

to help assign labeled sleep states based on electrophysiological datastreams (AI for data 115 

processing), as demonstrated by Allocca et al. (2019) and Vallat & Jajcay (2020). Whether 116 



 

or not AI was used to assist sleep scoring, the resulting labelled data could be fed to an AI-117 

based habitat suitability model to identify the locations within an animal’s range that are 118 

best suited for sleep (AI for inference; e.g., Saarenmaa et al., 1988). Finally, a conservation-119 

focused AI model could incorporate this knowledge with other aspects of animal behavior 120 

to recommend the prioritization of sleep habitats for conservation (AI for decision-making) 121 

(Silvestro et al., 2022).  122 

 We discuss the opportunities and risks of AI applications across these three stages: 123 

data processing, inference, and decision-making. Early in the field of Ecology, inference 124 

primarily relied on strong experimental design and statistical methods, while data 125 

processing and decision-making were led by human experts. While ecologists sought to use 126 

statistical models to describe biological systems and observational processes (King, 2014), 127 

relatively small datasets allowed manual labeling and annotation (Besson et al., 2022). 128 

Traditionally, conservation and management decisions have also relied on the consensus of 129 

domain experts (Kirlin et al., 2013). However, the increasing size and complexity of 130 

datasets have augmented the burden of manual processing, making it harder for experts to 131 

manually process data or to consider all sources of information relevant to conservation 132 

(Besson et al., 2022). These complex, multidimensional datasets also present unique 133 

opportunities for AI even in the traditionally statistics-dominated space of inference. For 134 

each of these three tasks, we discuss emerging uses of AI, particularly pertaining to 135 

machine learning and deep learning, as alternatives for more traditionally implemented 136 

statistical or manual methods.  137 

AI for data processing 138 

Opportunities. With relatively fast and inexpensive models, AI approaches allow 139 

ecologists to rapidly process large datasets with algorithms to detect or classify habitat 140 

types, species, or behaviors (Schirpke et al., 2023). AI accelerates tasks like labelling, 141 

annotation, and anomaly detection, enabling more data to be processed (i.e., increases 142 

scalability), but can lower prediction accuracy compared to manual methods (Mosqueira-143 

Rey et al., 2022). When compared to statistical or signal processing techniques for 144 

processing data, AI can improve accuracy in addition to speed, introducing the possibility 145 

of edge computing, where models can be deployed to perform reliable real-time detection 146 

in the field or while sensors are deployed on animals (Wasimuddin et al., 2020; Yu et al., 147 

2024).  148 

The use of computer vision convolutional neural networks (CNNs) has improved 149 

scientists’ capacity to process large amounts of video, acoustic, and movement data 150 

(Christin et al., 2019; Lauer et al., 2022; Yu et al., 2022) with promise for improving 151 

conservation and biodiversity monitoring (Galaz García et al., 2023). For example, new 152 

developments in near-real-time automated processing of ship-based thermal imagery can 153 

alert captains to potential ship strikes in time to avoid endangered whales (Baille & 154 

Zitterbart, 2022). AI tools including WildBook, HappyWhale, FathomVerse, Seek and 155 

iNaturalist, and Merlin engage the public in the detection and classification of individual 156 

plants and animals, enabling citizen science and local community engagement (Berger-Wolf 157 

et al., 2017; Cheeseman et al., 2023; Katija et al., 2022; Manderfield, 2022; Sullivan et al., 158 

2014). The cyberinfrastructure supporting new AI techniques also accelerates and enables 159 

traditional signal processing of large datasets. For example, the National Data Platform was 160 



 

built for open and equitable data access and computing for AI, but its benefits extend to 161 

researchers using other methods as well (Parashar & Altintas, 2023).  162 

Risks. Even commonplace AI methods for processing ecological data can have 163 

significant downstream consequences. For instance, consistent errors in an AI model that 164 

processes video to track locomotion and analyze the sublethal effects of pesticides on 165 

insect behavior could lead to a behavioral anomaly being overlooked (Parkinson et al., 166 

2022). Inadequately sensitive AI models to automate species detection for camera traps 167 

(images) or automated recording units (audio) could also overlook the presence of an 168 

endangered species (Beery et al., 2019; Tuia et al., 2022). This low recall – the ability of a 169 

model to identify all relevant instances – could lead to the exclusion of that area from 170 

conservation efforts. Conversely, a “cry wolf” effect may also undermine these models and 171 

erode public trust. Consistent false alerts from automated whale detection systems could 172 

result in those systems being ignored (Baille & Zitterbart, 2022). This highlights the 173 

importance of optimizing precision – the proportion of correctly identified positive cases 174 

out of all positive detections – to reduce false alarms. Furthermore, if automated detections 175 

are the basis for further inference, the impacts of a false result are amplified. For example, a 176 

boosted decision tree that aims to identify a rare behavior could boast high accuracy 177 

despite low sensitivity, a common issue with rare event detection (Shyalika et al., 2024). 178 

Models to detect a rare event such as sleep in wild animals should therefore optimize for 179 

sensitivity to prevent the oversight of a critical resting habitat (Kendall-Bar et al., 2023).  180 

Promising solutions. Algorithmic bias can be addressed through alternative 181 

evaluation metrics or adaptive sampling techniques that correct for class imbalances where 182 

certain types of data are overrepresented (Beery et al., 2021). “Human-in-the-loop” 183 

methods include human input in the model training process, incorporating user feedback 184 

to refine and supervise classifications (Mosqueira-Rey et al., 2022; Wu et al., 2022). These 185 

methods can improve the accuracy, precision, and transparency of automated tools and 186 

foster trust in the model predictions. For example, TagLab, an AI-driven tool for coral 187 

imagery segmentation, uses semi-automatic methods to maintain high accuracy and ease 188 

the burden of manual annotation (Pavoni et al., 2021). Similar manual review is enabled in 189 

sleep scoring software (Allocca et al., 2019) and camera trap annotation (Miao et al., 2021). 190 

The inclusion of human review helps mitigate the consequences of model error and allows 191 

for an opportunity to consider the practical, scientific, and ethical implications of the model 192 

output. 193 

AI for inference 194 

Opportunities. AI methods can provide an alternative to traditional statistics for 195 

establishing relationships between environmental variables and biological systems. These 196 

relationships can be studied at many ecological scales, from individuals (physiology and 197 

behavior) and populations (abundance and density) to communities (species interactions) 198 

and ecosystems (species and their environment). For instance, species distribution models 199 

(SDMs) have been extensively used in Ecology to quantify occupancy, density, and 200 

distribution changes, limits, and expanses (Elith & Leathwick, 2009; Grace, 2024). 201 

Traditionally, these methodologies are grounded on statistical inference through 202 

approaches using Bayesian statistics (i.e., Markov chain simulations) or maximum 203 

likelihood estimation (Martínez-Minaya et al., 2018). Recently, however, there has been 204 



 

momentum for applying deep learning methodologies to SDMs (Beery et al., 2021). These 205 

novel approaches offer an alternative to traditional statistical inference and the possibility 206 

to relax statistical assumptions, such as independent and identically distributed sampling 207 

efforts and linear independence of covariates. The numerical efficiency gained doing so is 208 

attractive when fitting complex multi-species models (Beery et al., 2021), opening the door 209 

for scaling food webs and ecosystem studies at the scale of species distributions.  210 

Risks. AI for inference in ecosystem monitoring is rapidly becoming a reality (Galaz 211 

García et al., 2023; Sethi et al., 2020), raising important concerns about how systematic 212 

errors in AI alter the derived ecological insights. As causal inference methods develop 213 

alongside AI, the ability to make predictions may outpace the ability to explain the 214 

mechanisms behind the predictions (Grace, 2024). SDMs require true observations of 215 

species and robust environmental sampling, each of which has various sources of error and 216 

uncertainty that must be clearly identified, explained, and controlled for (Beale & Lennon, 217 

2012; Beery et al., 2021). Black-box deep learning models further exacerbate the challenges 218 

associated with aggregating multimodal ecological data such as spatial and temporal auto-219 

correlation, differences in sampling protocols, and other caveats related to environmental 220 

feature generation and ground-truthed datasets (Beery et al., 2021). Challenges with 221 

regard to how to fit models and interpret their results are not unique to AI, but its use can 222 

exacerbate issues already present with more traditional statistical methods. Even with 223 

traditional statistics, ecologists sometimes select improper methods for estimating 224 

parameters of mixed effects models (Bolker et al., 2009). For example, the most commonly 225 

used package for fitting mixed effects models in R, lme4 (Bates et al., 2015), does not 226 

provide functionality for predicting intervals because of disagreements over how to 227 

estimate standard errors. These challenges for interpretation may be compounded when 228 

using AI methods.  229 

Promising solutions. Improvements in AI interpretability are providing insight into 230 

the internal mechanisms of models. For example, explainable AI methods can rank feature 231 

importance to provide global explanations for overall model predictions and local 232 

explanations for individual model predictions (Alicioglu & Sun, 2022; Molnar, 2024; Ryo et 233 

al., 2021; Zhang et al., 2025; see Fig. 3 and Effective Visualizations section). Initiatives to 234 

encode domain knowledge explicitly into algorithms (knowledge-guided and model-based 235 

AI) aim to improve trust in AI models and address these inherent risks and complexities 236 

(Bishop, 2013; Doll et al., 2012; Swischuk et al., 2019). Similar recent efforts within ecology 237 

leverage the rich biological structure that underlies taxonomy and phylogeny to build upon 238 

the generic OpenAI model CLIP to create the biology-specific BioCLIP model (Stevens et al., 239 

2023). In addition to improving the accuracy and context of image-based species 240 

identification, knowledge-guided tools can lead to the generation of new evolutionary 241 

hypotheses. They can reveal missing links in high-dimensional networks in complex 242 

systems, such as suggesting intermediate phenotypes based on phylogeny (Han et al., 2023; 243 

Stevens et al., 2023). 244 

AI for decision-making 245 

Opportunities. Given the complexity and scale of ecosystem management, AI is 246 

increasingly being used to support decision-making for conservation (Lapeyrolerie et al., 247 

2022; Scoville et al., 2021) and sustainable management of natural resources (Ebrahimi et 248 



 

al., 2021; Lindkvist et al., 2017; Montealegre-Mora et al., 2023). Conservation prioritization 249 

has traditionally involved a spectrum of approaches, from non-algorithmic processes like 250 

the California MPA Network Blue Ribbon Task Force, which heavily relied on expert 251 

knowledge and stakeholder engagement (Kirlin et al., 2013), to algorithmic tools such as 252 

MARXAN, a widely used decision-support software for optimizing reserve design (Ball et 253 

al., 2009). Newer AI-driven platforms like CAPTAIN leverage AI and specifically 254 

reinforcement learning to model and predict biodiversity outcomes under varying 255 

conservation strategies (Silvestro et al., 2022). For instance, reinforcement learning, where 256 

the model learns by receiving feedback in the form of rewards or punishments for its 257 

actions, has been identified as particularly useful in fishery science when fish stocks display 258 

complex patterns in recruitment dynamics (Chapman et al., 2023; Kühn et al., 2024; 259 

Lapeyrolerie et al., 2022; Montealegre-Mora et al., 2024). Automated methods, repeatable 260 

workflows, and transdisciplinary research are being used to review and aggregate large, 261 

multimodal datasets into biodiversity syntheses that assess the status of ecosystems at a 262 

global scale (Berger-Tal et al., 2024; Galaz García et al., 2023). These global analyses have 263 

the potential to inform international policy, supporting initiatives like 30 by 30 and other 264 

worldwide conservation efforts (Scoville et al., 2021).  265 

Risks. When applied to conservation decisions, AI carries serious implications, 266 

especially if it prioritizes areas and communities based on biased and uneven data 267 

(Chapman et al., 2021; Scoville et al., 2021). In forming the design and objectives of these 268 

models, researchers optimize for biodiversity or conservation outcomes that often 269 

reinforce predominant colonial conservation paradigms that neglect the needs of local 270 

communities and generational knowledge from Indigenous Knowledge Systems (Al-271 

Mansoori & Hamdan, 2023; Layden et al., 2024). Algorithmic approaches can reinforce 272 

biases from uneven data or preconceived notions of desirable outcomes, increasing the risk 273 

of perpetuating colonialist research practices that neglect the parties most affected by 274 

management decisions (Han et al., 2023). As mentioned for SDMs, black-box models 275 

compound these issues by adding a layer of obscurity. These ethical risks also arise in the 276 

application of AI data processing outputs to conservation and management decisions. For 277 

example, the identification of illegal environmental activities (e.g. poaching, fishing in no-278 

take marine reserves) could eventually serve as the basis for future predictive policing 279 

practices (Mporas et al., 2020; Swartz et al., 2021). Though this could be viewed as an 280 

opportunity, AI for policing practice is fraught with ethical challenges (Davis et al., 2022), 281 

including but not limited to perpetuating biases and the extreme negative consequences of 282 

errors in detection. Similar to AI for conservation prioritization, the use of AI for automated 283 

surveillance and decision-making poses significant social and ethical risks beyond Ecology. 284 

Potential solutions. When AI is involved in decision-making, long-term partnerships 285 

with local communities become even more important so that local voices can review what 286 

goes into and comes out of models to provide feedback and adjust recommended decisions. 287 

Clear data-sharing agreements are needed to ensure informed public engagement that 288 

supports environmental justice and improves conservation governance of local 289 

communities (Layden et al., 2024). To mitigate compounded ethical issues, models can 290 

explicitly include data from social science methods like participatory mapping, surveys, and 291 

interviews to promote the inclusion of more diverse knowledge, values, and identities 292 

(Bennett et al., 2017). Once algorithmic solutions are suggested by AI, distribution equity 293 

assessments using similar social science methods, like focus group discussions or local 294 



 

community-based research on potential outcomes, can help select among several near-295 

optimal solutions to prioritize an equitable distribution of cost and benefits (Kockel et al., 296 

2020). Promoting equity in the use of AI for conservation and management will require the 297 

active integration of co-design principles, social science, procedural justice, and equity 298 

assessments (Benyei et al., 2020; Chapman et al., 2021; Hsu et al., 2022; Oestreich et al., 299 

2024).  300 

(2) Practical challenges: barriers to AI-adoption in ecology 301 

Alongside the ethical and scientific concerns outlined previously, ecologists encounter 302 

practical challenges in understanding when and how to implement AI over more traditional 303 

manual or statistical methods (Fig. 2C). While many of these challenges are present in 304 

learning any technical skill, we highlight how AI can exacerbate existing burdens. We 305 

describe key practical challenges an ecologist faces when applying AI to assist with 306 

labelling, clustering, or filtering datasets (AI for data processing), transforming data into 307 

knowledge (AI for inference), or translating knowledge into action (AI for decision 308 

making): 309 

 310 

1. Opportunity cost: Based on the ecological question at hand, what are the costs and 311 

benefits of using an AI model as opposed to traditional methods? While it takes time 312 

and effort to learn any new skill or method, AI models have a steeper learning curve 313 

for ecologists. AI relies on complex computational infrastructure and can require 314 

specialized knowledge of algorithms to navigate the rapidly evolving landscape of 315 

tools and methods. Additionally, most resources use programming languages that 316 

are less familiar to ecologists (e.g., Python instead of R). The scale of investment in 317 

learning to use AI can vary based on the researcher's career stage, level of 318 

experience, access to collaborators, and the availability of open-access educational 319 

materials. Current academic incentive structures (publications, funding, and job 320 

opportunities) favor the development and use of novel AI models over the creation 321 

of accessible educational resources (i.e., tutorials, blogs, free online courses). The 322 

people who are best suited to create educational materials may therefore not have 323 

the time or resources to do so. 324 

2. Overwhelming landscape: Considering your data and question, which AI model, if 325 

any, is relevant and could provide value? A rapidly evolving landscape of AI models 326 

can be overwhelming to an ecologist seeking to responsibly analyze their data. They 327 

may be tempted to use traditional statistical methods, which may be more familiar 328 

and invite less skepticism than AI models, therefore missing opportunities to use AI 329 

to advance their research. Using AI requires keeping pace with rapidly advancing 330 

technologies, new architectures, and a proliferation of models with varied baseline 331 

assumptions and caveats. Researchers must carefully consider the benefits and 332 

drawbacks of increasingly complex models in terms of decreased transparency and 333 

increased computational load (Pichler & Hartig, 2023). This can be especially 334 

overwhelming for researchers who cannot draw on the collective knowledge of a 335 

community of experts. For cutting-edge technical tools such as AI, students often 336 

learn informally from more junior mentors, such as senior grad students and 337 

postdocs, who are not always recognized for their efforts (Higino et al., 2023). 338 



 

Academic research incentivizes mentorship at the lab or institutional level, rather 339 

than to the broader, interdisciplinary research community. 340 

3. Transparency deficit: How can we understand the model’s performance? How can we 341 

understand and trust how the model came to its answer? AI models, particularly 342 

those using deep learning, introduce unique challenges in interpretability and 343 

explainability. This makes it difficult to fully understand the reasoning behind their 344 

predictions compared to traditional methods, which are often perceived as being 345 

more transparent and grounded in well-understood statistical principles. Tools for 346 

interpretability in AI are rapidly evolving, but can be challenging to navigate 347 

without technical expertise. These tools often lack standardization, leaving 348 

researchers with limited guidance on how to evaluate and trust AI predictions 349 

effectively. Because ecologists are not typically formally trained in AI methods, they 350 

may not be familiar with visualization tools that can support model interpretation 351 

or the science communication surrounding the data collection and the model’s 352 

functionality, caveats, and performance.  353 

4. Implementation burden: How do we acquire the resources and data management 354 

systems needed to run our models? How hard is it to run the model on new data? How 355 

should we share the workflows and models we produce? Unlike traditional statistical 356 

approaches, AI models often require complex preprocessing steps, significant 357 

computational power, and fine-tuning of hyperparameters, which can create 358 

barriers for researchers with limited technical expertise, indecipherable code 359 

repositories, or lack of access to computational resources. Once a researcher has 360 

decided to use a particular model, they must alter the model to fit the structure and 361 

scale of their dataset. This may mean reconfiguring data pipelines and workflows, 362 

engineering features, iteratively evaluating model performance, and eventually 363 

scaling up this analysis to larger datasets. This work can be limited by unavailable or 364 

unclear data and code, as well as lack of access to computational resources like 365 

cloud computing and data management systems (Allen & Mehler, 2019). Once 366 

researchers have created useful tools, they also face several obstacles when seeking 367 

to share the code, workflows, and models related to reuse concerns, disincentives, 368 

and knowledge barriers (Gomes et al., 2022). This perpetuates the cycle and creates 369 

challenges for incoming researchers seeking to understand the opportunity cost 370 

associated with using AI in ecology. 371 



 

 372 
Figure 2. This synthesis figure outlines a roadmap for AI-adoption in ecology as it is used for 373 

data processing, inference, and decision-making. A) Often, human-in-the-loop technologies 374 

improve workflows that transform data into knowledge that can inform action by mitigating 375 

the scientific and ethical pitfalls of AI. B) The key stages for ecologists adopting AI: (1) 376 

Navigate the landscape of risks and opportunities, (2) Implement identified relevant models, 377 



 

(3) Interpret and communicate the results, and (4) Contribute data, code, and lessons 378 

learned back to the research community. These stages map (C) key practical challenges onto 379 

(D) key solutions: (1) opportunity cost (unclear benefits and costs) of using AI: educational 380 

resources, (2) overwhelming landscape of model choices: communities of practice, (3) 381 

transparency deficit: effective visualizations, and (4) implementation burden: computational 382 

resources.  383 

(3) Practical solutions: facilitating AI-adoption in ecology 384 

These practical challenges, while considerable, must be overcome if ecologists want 385 

to responsibly leverage opportunities offered by AI. We used the wealth of expertise across 386 

career stages at our workshop to identify practical solutions that collectively ameliorate 387 

key challenges. These solutions align four key challenges—opportunity cost, overwhelming 388 

landscape, transparency deficit, and implementation burden—with corresponding 389 

interventions: educational resources, communities of practice, effective visualizations, and 390 

computational resources. The solutions aim to guide ecologists as they navigate AI-related 391 

risks and opportunities, implement relevant models, interpret and communicate their 392 

results, and contribute data, code, and lessons learned with their research community.  393 

For each challenge, we identify an overarching solution and provide ecologists new 394 

to AI with a starting point for finding resources and initiatives. We pair these examples 395 

with broader recommendations for AI practitioners across experience levels to collectively 396 

advocate for cultural shifts that will facilitate the responsible adoption of AI in ecology. 397 

Ecologists encountering AI for the first time benefit most from accessible educational 398 

resources and collaborative communities of practice that demystify AI and provide 399 

mentorship. For researchers scaling up their use of AI, visualizations play a critical role in 400 

helping researchers understand and communicate data and the outputs, performance, and 401 

function of AI models. As researchers advance, they gain valuable expertise that they can 402 

share back with their research community by sharing data, code, and lessons learned. For 403 

each solution, we invite researchers experienced in AI to lower barriers for future 404 

ecologists by advocating for specific cultural shifts and incentives that reward open sharing 405 

of data, tools, and expertise. 406 

1. Educational resources 407 

When ecologists begin to use AI, they often benefit from educational resources, 408 

especially those that are open-access and available online. Educational resources to learn 409 

AI range in accessibility, investment, and impact from informal (i.e., blog posts, YouTube 410 

videos, tutorials, review papers) to formalized courses, workshops, and fellowships. 411 

Informal resources are an excellent entry point for students, allowing them to learn for free 412 

at a flexible pace. While informal resources to learn AI are plentiful, high quality ecology-413 

specific resources are more rare. Some examples include extensive reviews of how deep 414 

learning is being used in ecology with practical guides for model selection (Borowiec et al., 415 

2022; Pichler & Hartig, 2023), conceptual tutorials of deep learning for biologists (Aurisano 416 

et al., 2017), or specific coding examples of using AI and machine learning in R (Lefcheck, 417 

2015) and Python (Gray, 2024). Ecologists may want to explore tools such as 418 

OpenSoundscapes (Lapp et al., 2023), which provide extensive documentation and 419 



 

tutorials to walk ecologists through the process of training a Convolutional Neural Network 420 

to identify sounds in audio data (Lapp et al., 2024). When employed cautiously, ChatGPT 421 

and other generative AI tools can lower the barrier to entry to Python for ecologists or 422 

biologists who may lack formal training, especially for simple tasks such as translating 423 

syntax from another more familiar language like MATLAB or R (Lubiana et al., 2023). 424 

However, while helpful to get started, ChatGPT alone is inadequate to guide the responsible 425 

selection and implementation of a model. Informal, exploratory learning is an important 426 

first step for ecologists to understand the opportunity cost associated with implementing 427 

AI.  428 

Formal educators, courses, and programs can provide ecologists with a nuanced 429 

understanding of the field, as well as tailored guidance for bespoke data processing 430 

pipelines. Ecologists may consider formal educational resources such as Massively Open 431 

Online Courses (also known as MOOCs) on machine learning (Ng, 2024), but they are not 432 

typically aimed at ecologists and may not be accessible in terms of pricing or prior 433 

knowledge. If funding is available, in person courses such as the Oxford Research Software 434 

Engineering program can introduce rigorous best practices for Python programming to 435 

scientists, which can provide the skills needed to implement AI and produce useful 436 

scientific software (Course website: (OxRSE, 2024a); Github: (OxRSE, 2024b)). Ecology-437 

specific opportunities with in-person engagement, while harder to come by, can be 438 

transformational for ecologists new to AI, by allowing learners to engage directly with 439 

instructors and adapt models to their own datasets. In particular, the Computer Vision for 440 

Ecology (CV4E) workshop led by Beery et al. (2023; Cole et al., 2023) combines formal 441 

instruction with coding support so that students come away with a conceptual 442 

understanding of the model to accompany their code and model outputs. Ecologists who 443 

are considering significant use of AI in their work may seek out fellowships such as the 444 

postdoctoral fellowships by Schmidt Sciences and the Allen Institute (Allen Institute, 2020; 445 

Schmidt Sciences, 2022). These opportunities can also give ecologists the time and 446 

resources to receive formal training and connect with expert mentors in the field of AI. 447 

However, as educational opportunities increase in support, they decrease in accessibility in 448 

the form of greater costs and fewer spots available. 449 

Cultural shifts towards greater emphasis on programming education are already 450 

underway, as ecology departments increasingly hire dedicated teaching faculty, research 451 

software engineers, and data science educators (Harlow et al., 2020). Moving forward, 452 

academia should reward the creation of accessible educational resources by recognizing 453 

these contributions in tenure and promotion decisions. Increased value and opportunities 454 

for interdisciplinary co-instruction by ecology and computer science educators can 455 

improve the quality and availability of formal and informal educational resources for 456 

ecologists. Finally, education and the resulting increase in understanding will provide 457 

ecologists with tools to critically evaluate research using AI. These shifts are essential not 458 

only for AI adoption but also for advancing computational literacy more broadly, enabling 459 

ecologists to confidently integrate AI, when applicable, alongside other scalable 460 

computational methods in their research.  461 



 

2. Communities of practice 462 

Educational opportunities provide a launching point, but ecologists who are new to 463 

AI may struggle to set their work within a broader, collaborative context. In Ecology and 464 

other fields, communities of practice have been a valuable tool for scaling and tailoring 465 

education and mentorship opportunities. Communities of practice are social structures 466 

composed of individuals who share a common domain of interest and collectively enhance 467 

their expertise through sustained interactions and knowledge exchange (Wenger, 2011). 468 

We argue that ecologists new to AI, especially “advanced beginners,” may benefit from 469 

joining a community of practice where they can interact with domain experts (Stevens et 470 

al., 2018). Communities of practice for AI in Ecology allow members to share technical 471 

knowledge, provide interdisciplinary expertise, and create inclusive environments across 472 

expertise levels.  473 

Communities of practice can provide important support for scientists in fields that, 474 

like Ecology, require intensive technical skill-building (Stevens et al., 2018). For example, 475 

organizations like PyOpenSci (pyOpenSci, 2024) and rOpenSci (rOpenSci, 2024) create 476 

supportive environments where scientists can learn how to practice programming and 477 

open science. Communities of practice are also key in interdisciplinary fields to understand 478 

gaps and areas of synergy between fields. In the AI domain, interdisciplinary communities 479 

like Climate Change AI (Climate Change AI, 2024), the NSF-funded COnvergence REsearch 480 

(CORE) Institute at San Diego Supercomputer Center (NSF CICORE, 2024), and the NSF- 481 

and NSERC-funded AI and Biodiversity Change Center (ABC Global Climate Center, 2024) 482 

bridge disciplines between computer science, climate science, and ecology. Such links have 483 

improved methods to monitor, analyze, and assess changes in global biodiversity 484 

(MacWilliams et al., 2024). Organizations like the Turing Institute and professional 485 

societies like NeurIPS also provide structures for interdisciplinary collaboration to 486 

establish guiding principles for the ethical use of AI (NeurIPS, 2024; Turing Institute, 487 

2024). While not specific to AI, the National Center for Ecological Analysis & Synthesis 488 

(NCEAS) seeks to intentionally foster the Environmental Data Science community through 489 

events like their inaugural Summit in 2023 (NCEAS, 2023). Ecologists who would like to 490 

use AI can benefit from engaging in communities relevant to their interests and goals that 491 

have strong community agreements (Bates et al., 2024), dedicated facilitators (Cravens et 492 

al., 2022), and inclusive, engaging events (Woodley & Pratt, 2020). Choosing to join but also 493 

contribute to intentional, inclusive spaces can help counteract pervasive challenges 494 

associated with impostor syndrome and STEM (Bates et al., 2024).  495 

While vital for ecologists navigating an evolving AI landscape, in-person 496 

opportunities with ample funding for travel and accommodation are inherently exclusive 497 

and involve difficult ethical decisions regarding who gets invited. This is especially 498 

important to consider in cases where participatory decision-making informs conservation 499 

through communities of practice focused on translational ecology (Lawson et al., 2017). It 500 

is also important to consider the pros and cons of social learning, as has been well-studied 501 

in the field of behavioral ecology, where there is the potential for stagnation and inertia 502 

without active inclusion of diverse perspectives (Barrett et al., 2019; Johnstone et al., 2002; 503 

Laland & Williams, 1998). To prevent this stagnation, AI in Ecology can serve as an 504 

opportunity to invite expertise and best practices across disciplines, cross-pollinating 505 

across groups, including within a single university. At multiple scales, we hope that 506 



 

communities of practice can be increasingly used to foster science identity and agency as 507 

new programmers learn to leverage AI. 508 

3. Effective visualizations 509 

As computational analyses scale and AI models become more complex, ecologists 510 

gaining familiarity with AI can benefit from effective data visualization to understand 511 

patterns in the data, interpret model functionality, communicate model outputs, and foster 512 

transparency with stakeholders. The use of AI, especially black-box deep learning methods, 513 

can exacerbate the lack of transparency associated with scientific research; this calls for a 514 

renewed emphasis on effective visualizations for diverse audiences. While visualization is 515 

important to master at all career stages, leveraging its impact for applied AI has the 516 

potential to better engage scientists, decision-makers, and the public (Kendall-Bar et al., 517 

2024).  518 

The design and intent of these visualizations depend heavily on an ecologist’s target 519 

audience. We present two primary purposes for the visualization of AI in Ecology: 520 

exploration and explanation (Fig. 3). Exploratory visualizations for AI include those 521 

dedicated to exploring the data and the model to a narrow audience of experts, intimately 522 

familiar with the data and questions. These visualizations are used to uncover patterns in 523 

the data, identify key features, understand model performance, and diagnose model 524 

functionality (Fig. 3A). For example, an ecologist seeking to visualize data prior to fitting an 525 

AI-based species distribution model may first examine satellite imagery or maps with 526 

color-coded sensor measurements (Fig. 3A1a) to obtain processed features for model 527 

inputs (Fig. 3A1c). Visualizations of ground-truthed presence/absence data from manual 528 

censuses can help visually assess model accuracy (Fig. 3A1b). After fitting and visualizing 529 

the model (Fig. 3A1d), AI predictions of habitat suitability can be assessed against this 530 

ground truth, e.g. through a receiver operating characteristic (ROC) curve (Fig. 3A2a). Such 531 

a curve helps identify a habitat suitability threshold for the model (above which it is 532 

considered habitable) that optimizes for tradeoffs in model performance, between a 533 

sensitive model (measured via true positive rate) and one with low false positive rate (or 534 

high specificity). Model performance for a given suitability threshold can be visualized with 535 

a confusion matrix (Fig. 3A2b). Colors for these performance metrics (true/false 536 

positives/negatives) can then be arranged across space (Fig. 3A2b: Spatial accuracy) or 537 

time, in the case of time series data. Overall model functionality as well as individual model 538 

predictions can then be explained through bar plots that rank the relative contributions of 539 

each feature (Fig. 3A3a-b; see supplemental text for more details on Explainable AI 540 

methods). 541 

Explanatory visualizations offer a curated presentation of data, key results, model 542 

outputs, and implications paired with contextual information to effectively guide a broader 543 

audience less familiar with the dataset and question (see example in Fig. 3B). Explanatory 544 

visualizations build upon standalone versions of plots, line charts, or heatmaps useful for 545 

data exploration, often by adding annotations, infographics, scientific illustrations, 546 

voiceover narration, or data-driven animations. The perceived complexity of AI models 547 

may alienate or foster distrust with local community partners or decision-makers, making 548 

it more important to visually explain the scientific basis of the model's use and its proposed 549 

decisions. Interactive web-based data browsers can increase trust and transparency 550 



 

regarding the use of AI in ecology by allowing direct engagement with the public 551 

(HappyWhale: Cheeseman et al., 2017; FlukeBook: Blount et al., 2022) or decision makers 552 

through decision support tools designed for dynamic management (Welch et al., 2020). 553 

While interaction can be valuable for those closely involved, short videos can incorporate 554 

visualizations and narration provide a wide-reaching, standalone overview of a topic 555 

(Kendall-Bar, 2023, 2021; see supplement for example videos for AI case studies from the 556 

workshop).  557 

Shaping a narrative through visualizations involves ethical decisions about what 558 

data to highlight, simplify, or omit (Walsh, 2015). Researchers can accurately depict results 559 

and uncertainty with responsible visualizations that foster trust in science and broaden 560 

who has access to information about AI in ecology, supporting the critical role of science 561 

communication (Longdon, 2023). While not exclusive to AI, visualizations can present 562 

valuable opportunities for AI-related science communication and stakeholder engagement 563 

with the wide array of inherently visual datasets in ecology such as computer vision for 564 

camera traps and aerial imagery or physics-based AI models for weather, flood, or fire 565 

simulation (Kendall-Bar et al., 2024). To promote technical literacy of AI among ecologists 566 

and collaborators, institutions and funding agencies must more formally incentivize science 567 

communication (Swain, 2023). Recognizing visual storytelling as a valued contribution—on 568 

par with traditional metrics like publications—can incentivize researchers to invest time 569 

and effort in creating widely accessible, high-quality visualizations that responsibly and 570 

effectively communicate their use of AI.  571 



 

 572 
Figure 3. (A) Exploratory visualizations to understand AI models include: (1) Data and 573 

model exploration: (a) Raw data visualization, including satellite imagery and geospatial 574 

representations of species’ presence/absence, (b) Feature visualizations (e.g., rainfall, 575 

temperature) used as model inputs, (c) Model output geospatial predictions of habitat 576 

suitability; (2) Model performance: (a) Receiver Operating Characteristic (ROC) curve 577 

illustrating the tradeoff between true positive rate and false positive rates at different habitat 578 

suitability thresholds (s), (b) Confusion matrix for a suitability threshold of 0.5, showcasing 579 

true/false positives and negatives, with accuracy ((TP+TN)/(P+N)), sensitivity (i.e., true 580 

positive rate; TP/(TP+FN)), and specificity (TN/(FP+TN)); (3) Model explanation: (a) Global 581 

explanations highlighting feature importance and partial dependence plots to interpret the 582 

contributions of key variables, (b) Local explanations illustrating feature-level contributions 583 

for individual predictions (possible using explainable AI methods like LIME or SHAP with bar 584 



 

plots to rank feature importance for specific predictions). (B) Explanatory visualization 585 

composite infographic with plots and data adapted from Ryo et al. 2021 to provide example 586 

graphics, annotations, and interpretations that can guide the viewer to better understand AI 587 

model outputs. For additional details and references for LIME and SHAP, see the 588 

Supplemental Text. 589 

4. Computational resources 590 

As researchers narrow in on the methods essential to their question, their key 591 

limitation may shift to their access and expertise with computation. Here, we define 592 

computational resources broadly to encompass the hardware and software to train and run 593 

AI models, including openly available labelled datasets, transferrable AI models (i.e. usable 594 

code repositories), data management systems, and cloud computing resources. Ecologists’ 595 

use of computational methods, not just AI, is hindered by the lack of formal training on 596 

sharing data, curating code repositories, managing datasets, and accessing supercomputers 597 

(Stockwell et al., 2000). Open science and its growing support by funding agencies aim to 598 

democratize AI and accelerate computational science (Parashar & Altintas, 2023; 599 

Würthwein, 2024). Ecologists can act as partners in these efforts to better connect domain-600 

specific needs and existing initiatives with new tools and best practices from AI and 601 

computer science. 602 

Due to the large size of datasets and associated computing requirements, the use of 603 

AI is limited without cloud computing. Ecologists who want to use AI should familiarize 604 

themselves with broadly accessible cloud computing services such as Nautilus, the National 605 

Research Platform, designed to democratize AI internationally (NRP, 2024; Parashar & 606 

Altintas, 2023; Würthwein, 2024). Nautilus and other government-funded initiatives like 607 

ACCESS (NSF, 2024) leverage academic institutions to offer low-cost and scalable 608 

computational resources. Industry tools, such as Amazon Web Services or Google, can be 609 

more expensive but may offer more technical support. As ecologists leverage 610 

supercomputing to scale analyses, the non-negligible environmental impacts of AI (Strubell 611 

et al., 2020) can be partially alleviated by adjusting the extent, timing, and location of 612 

resource use (Dodge et al., 2022). 613 

After adapting AI models to specific use cases, or even developing new models, 614 

ecologists often aim to share models and their training data with others, whether to meet 615 

publication requirements or to contribute to their communities of practice. Ecology-616 

specific databases may not be designed to enforce existing best practices for AI datasets, 617 

such as benchmarking or datasheets for datasets (paper: Gebru et al., 2021; Overleaf 618 

template: Garbin, 2021). However, ecologists can learn and adopt AI-specific 619 

documentation methods, including dataset datasheets as well as AI model cards (paper: 620 

Mitchell et al., 2019; Markdown template: Garbin, 2020 & 2024). BioTrove is a large, well-621 

documented benchmark dataset based on iNaturalist’s Open Dataset (iNaturalist, 2024) 622 

images, scientific and common names, and taxonomic hierarchies with code and example 623 

cards for the data and model (paper: Yang et al., 2024b; website: Yang et al., 2024a). 624 

Standardized AI-specific documentation describes caveats associated with models and 625 

datasets, specifies appropriate downstream use, and facilitates open sharing via platforms 626 

like Hugging Face (Jain, 2022). For instance, the Cookiecutter Data Science framework also 627 

provides guidance for sharing AI models in Python; and these structures are flexible to 628 



 

accommodate complex data processing pipelines and model workflows (Rybicki, 2019). 629 

Ecologists who want to use AI can learn more about these best practices for Python as well 630 

as the recommendations for sharing ecological analyses done in R via research compendia, 631 

e.g. (Marwick et al., 2018). There is a growing need for educational materials and explicit 632 

recommendations for systematic AI model sharing for ecological audiences that may have 633 

less technical expertise or familiarity with Python- or AI-specific best practices.  634 

For ecologists or computer scientists ready to start sharing their AI tools with 635 

others, we have curated a list of practical recommendations for how to best facilitate the 636 

adoption of these tools by ecologists with little technical training (Fig. S1). We have also 637 

illustrated what type of tool may best serve tool-adopters at different levels of technical 638 

proficiency and familiarity with ecological datasets and questions (Fig. S2.). Future work in 639 

AI in ecology can incorporate model cards and dataset datasheets into browsable model 640 

zoos, similar to the one for microscopy computer vision models with the BioImage Model 641 

Zoo (Ouyang et al., 2022). We have curated a starter-pack Model Zoo for AI models in 642 

Ecology on our website (ecoviz-ai.github.io [Kendall-Bar et al. 2024a] and in supplemental 643 

information) which can receive new contributions via Github (Kendall-Bar et al. 2024b).  644 

As more ecologists begin to use AI, the careful and generous sharing of models and 645 

datasets will help reduce the need to train models or re-label datasets. As data sharing and 646 

data availability statements become more prevalent (Jiao et al., 2024), journals will need to 647 

formally incentivize the review of data and code. For instance, the Journal of Open Source 648 

Software (JOSS, 2024) and Methods in Ecology and Evolution have dedicated editors for 649 

reviewing software, code, and data; we are also aware that other journals have prioritized 650 

maintaining data editors as key staff members (Muench, 2023). Practitioners of AI in 651 

ecology should be mindful of the ethical considerations associated with sharing code and 652 

data. Open-sourcing datasets or models used in large language models like ChatGPT 653 

present serious ethical concerns outside the scope of this manuscript (Cooper et al., 2024; 654 

Liesenfeld et al., 2023). We recommend that any ecologist new to AI familiarize themselves 655 

with the ethical guidelines set forth by NeurIPS and others as they begin to implement and 656 

share AI models (NeurIPS, 2024). Within the scope of environmental science, data 657 

management plans co-designed with Indigenous and local knowledge-holders have 658 

innovated upon open data frameworks like FAIR and CARE to provide local context labels 659 

that indicate provenance, protocols, or permission tied to disseminated materials that 660 

could contain culturally sensitive or sacred information (Anderson & Christen, 2013; 661 

Carroll et al., 2021). Overall, a cultural shift towards incentivizing conscientiously open, 662 

modular, and expandable tools moves away from redundant, proprietary, or opaque 663 

analyses and contributes to more transparent, robust, and defensible science (Brunsdon & 664 

Comber, 2021; Czapanskiy & Beltran, 2022). 665 

(5) Conclusion 666 

The use of AI in ecology is quickly gaining momentum, offering unprecedented 667 

opportunities to speed and scale ecological research (Christin et al., 2019). There are 668 

several important challenges to leveraging AI for ecology, ranging from a lack of trust in AI 669 

approaches to the risk of overeager, undiscerning, and potentially dangerous 670 

implementation of existing models. Despite these risks, there are many cases where AI 671 

presents significant opportunities and low risk for automating tedious manual tasks or 672 

https://ecoviz-ai.github.io/


 

leveraging large datasets (Besson et al., 2022; Galaz García et al., 2023; Han et al., 2023). 673 

Here we reviewed the key challenges and solutions facing ecologists seeking to leverage AI 674 

in their research. When the benefits of AI outweigh the risks, we argue that ecologists are 675 

likely to be dissuaded from using AI due to practical challenges such as: (1) the opportunity 676 

costs while understanding the risks and opportunities of AI, (2) an overwhelming 677 

landscape while selecting and implementing a model, (3) a transparency deficit when 678 

interpreting model performance and function, and (4) the implementation burden when 679 

attempting to modify models, scale their use, and share tools with others. Addressing 680 

and/or alleviating these challenges likely requires a multifaceted approach combining: (1) 681 

educational resources to create openly available informal and formal learning resources, 682 

(2) communities of practice to create interdisciplinary and inclusive environments for 683 

technical social learning, (3) effective visualizations to interpret and communicate the 684 

functionality and performance of models, and (4) computational resources for adapting 685 

models, scaling deployments to large datasets, and sharing data, code, and lessons learned 686 

with the research community. 687 

Our initiative, EcoViz+AI, has created a website that collates several AI-related 688 

resources for ecological researchers (ecoviz-ai.github.io [Kendall-Bar et al., 2024a] and in 689 

supplemental information). There, we have curated a list of communities of practice to 690 

connect ecological researchers to initiatives in the field of ecology and AI. To reduce the 691 

time spent looking for models, we have also curated a list of AI tools into a model zoo. We 692 

describe five case studies for AI in Ecology with science communication videos (see 693 

supplement for more information). We invite others to contribute additional models or 694 

communities of practice via Github (Kendall-Bar et al., 2024b).  695 

Looking to the future, a cultural shift is needed to emphasize and reward efforts to 696 

produce open and reproducible science that promotes the responsible reuse of data, code, 697 

and models (Czapanskiy & Beltran, 2022; Gundersen et al., 2018). This cultural shift is 698 

already underway, as ecologists replace perceived barriers to sharing data and code with 699 

the recognition that these efforts will ultimately save us time, help us establish explicit data 700 

sharing agreements, avoid proprietary formats, and help us contribute to communities of 701 

practice (Gomes et al., 2022). While the benefits of open science are not exclusive to AI, 702 

efforts to empower the responsible use of AI are strengthened when deployed 703 

synergistically with broad, interdisciplinary initiatives to increase computational and 704 

scientific literacy, such as the AAAS Vision and Change Action Plan for undergraduate 705 

education (Woodin et al., 2009). AI presents an opportunity to harness new momentum, 706 

cyberinfrastructure, and computational techniques to incentivize responsible and generous 707 

sharing of resources to educate, train, and empower the next generation of ecologists.   708 

https://ecoviz-ai.github.io/
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Glossary 1218 

Artificial Intelligence (AI): In this paper and in the context of Ecology, AI refers to a broad 1219 

range of computational techniques, including machine learning and deep learning, 1220 

used to process data, make inferences, and support decision-making. AI 1221 

encompasses systems that can perform tasks that typically require human 1222 

intelligence, such as recognizing patterns, making predictions, and generating new 1223 

hypotheses. See also Figure 1 for a spectrum of models that fit within and outside of 1224 

our workshop participants’ definition of AI. 1225 

AI model: A model in AI refers to a mathematical representation or algorithm designed to 1226 

learn patterns from data and make predictions or decisions based on that learning. 1227 

In ecology, AI models can range from simple statistical models to complex deep 1228 

learning architectures, each tailored to specific research questions and data types. 1229 

AI risk: AI risk refers to the potential negative consequences or uncertainties associated 1230 

with the application of AI in ecological research. These AI risks can stem from model 1231 

errors, biases, ethical concerns, and the amplification of inaccuracies through 1232 

downstream applications. Managing these AI risks is crucial to ensure reliable and 1233 

ethical AI implementations. 1234 

AI interpretability: AI interpretability is the ability to understand and explain how an AI 1235 

model makes its predictions. This involves illustrating the internal workings and 1236 

prediction-making processes of the model, often through visualizations, diagnostics, 1237 

and transparent methodologies. High interpretability is essential for building trust 1238 

and ensuring that AI models are used appropriately in ecological studies while 1239 

increasing reproducibility. 1240 

AI tool: A tool in the context of AI and ecology is any software application, platform, or 1241 

framework that facilitates the implementation, interpretation, or dissemination of 1242 

AI models. AI tools can include libraries for data processing, visualization software, 1243 

interactive platforms for model deployment, and frameworks for collaborative 1244 

research and reproducibility. 1245 

Black-box deep learning models: AI models, often based on deep neural networks, whose 1246 

internal decision-making processes are opaque or not easily interpretable. 1247 

Human-in-the-loop: A methodology in AI that integrates human input at various stages of 1248 

the model development or application process. In ecology, human-in-the-loop 1249 



 

approaches can involve tasks like labelling or annotating data, validating model 1250 

outputs, or guiding decision-making, ensuring that AI outputs are aligned with 1251 

expert knowledge and practical needs. 1252 

EcoViz+AI Workshop Description 1253 

Our week-long EcoViz+AI: Visualization and AI for Ecology workshop (ecoviz-1254 

ai.github.io) focused on five examples of AI’s use cases in Ecology in active areas of 1255 

research by workshop attendees. Each example involved data processing, highlighting that 1256 

this is an area where ecologists are particularly interested in leveraging AI, due to the high 1257 

potential to speed up tedious manual labor and leverage large datasets with relatively little 1258 

consequence for model errors, especially when human review is involved. The five use 1259 

cases were: (1) adapting the BioCLIP (Stevens et al., 2023) model for annotating citizen 1260 

science photos on Flickr, (2) refining OpenSoundscape (Lapp et al., 2023) to classify 1261 

Southern California blue whale vocalizations, (3) applying TagLab (Pavoni et al., 2021) 1262 

image segmentation software to annotate coral reef imagery, (4) adapting Scikit-learn 1263 

(Pedregosa et al., 2011) and LightGBM (Microsoft, 2024) classifiers to label sleep states in 1264 

wild animals, and (5) applying TensorFlow (TensorFlow Developers, 2024) to classify 1265 

Great Lakes fish using sound. We have collated these examples, along with science 1266 

communication videos explaining each, into a repository specific to our case studies (“Case 1267 

Studies” tab on ecoviz-ai.github.io) alongside a more comprehensive model zoo for other 1268 

ecological models (“Model Zoo” tab on website). We invite others to contribute additional 1269 

models or communities of practice via Github (github.com/ecoviz-ai/ecoviz-ai.github.io).  1270 

To cultivate an inclusive community of practice, we hired a science facilitator as well 1271 

as a workshop organizer to guide a collective discussion on community agreements, 1272 

continuously seek feedback to iterate with attendees, and structure the workshop agenda 1273 

with a mix of seminars, collaborative work sessions, and intentional social engagement. We 1274 

also hired a technical facilitator to create interactive coding sessions and shared 1275 

computational resources for code, data, and computing (Github, FigShare, Nautilus).  1276 

During the workshop, we observed first-hand the benefits of education, 1277 

communities of practice, visualization, and computational resources for adopting AI for 1278 

ecology. Collaboration and peer-to-peer learning significantly reduced the time required to 1279 

select, implement, and evaluate ecologically-relevant models. Visualization, whether by 1280 

hand-drawn diagrams or interactive dashboards, critically facilitated peer learning by 1281 

allowing team members to communicate key features of datasets, model functions, and 1282 

performance. Even at a well-resourced institution and among participants who were 1283 

mostly familiar with Python, considerable effort had to be allocated to ensure each person 1284 

could access the computational resources for collaboration. A team of technical synthesis 1285 

facilitators created repository templates and helped participants leverage new 1286 

cyberinfrastructure initiatives through Nautilus and the National Data Platform. This 1287 

enabled participants to create accessible computational ecosystems complete with data 1288 

downloaded from Figshare, code from Github, and specific Python libraries via 1289 

containerized Docker images. Beyond the technical aspects of the workshop, participants 1290 

remarked that the value of this type of community of practice is not only in learning tools, 1291 

but also in learning to critically assess the use of AI in our field. 1292 

https://ecoviz-ai.github.io/
https://ecoviz-ai.github.io/
https://ecoviz-ai.github.io/
https://github.com/ecoviz-ai/ecoviz-ai.github.io


 

Explainable AI: Extended description for Figure 3 1293 

Ecologists interested in implementing AI must also become familiar with using 1294 

exploratory visualizations to explain model behavior (Fig 3A3), either locally (i.e., a specific 1295 

prediction by the model) or globally (i.e., the behavior of the model as a whole). 1296 

Visualizations are often the most straightforward way to interpret the outputs of 1297 

“Explainable AI” methods, which allow humans to understand how AI systems make 1298 

decisions (Alicioglu & Sun, 2022). While global explanations such as permutation 1299 

importance and partial dependence help explain what features are important to model 1300 

behavior overall (Fig. 3A3a), local explanations can be particularly helpful for 1301 

understanding spatially-explicit species distribution models. Bar plots often represent the 1302 

output of feature-ranking tools such as LIME (Local Interpretable Model-Agnostic 1303 

Explanations) to detail, for a single location the extent to which each feature contributes to 1304 

a vote for absence or presence in such a suitability model (Fig. 3A3b). In Figure 3B, we 1305 

adapt a figure from a study that used LIME to provide local explanations for an SDM for 1306 

African elephants (Ryo et al., 2021). In this case, LIME demonstrated that the feature that 1307 

was most important globally (precipitation of the wettest quarter) was different from those 1308 

that drove predictions at individual sites (Ryo et al., 2021). Bar plots can also represent 1309 

outputs from SHAP (SHapley Additive exPlanations) a tool that uses concepts borrowed 1310 

from game theory to assign marginal contributions (i.e., Shapley values) for each feature 1311 

for a specific model prediction (Molnar, 2024). SHAP has been used to identify important 1312 

environmental variables for predicting fishing grounds of albacore in the Atlantic Ocean 1313 

(Zhang et al., 2025). For time series data, time series forests can efficiently generate 1314 

temporal importance curves that can be used to show the most important feature at a given 1315 

time (Fig. 5 adapted from (Deng et al., 2013)). For images, a variety of methods in addition 1316 

to SHAP and LIME including Grad-CAM (Gradient-weighted Class Activation Mapping) can 1317 

be used to identify sources for misclassification by CNN deep learning models, such as a 1318 

new leaf improperly identified as an animal in camera trap imagery (Selvaraju et al., 2017; 1319 

Velasco-Montero et al., 2023). 1320 
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Considerations for tool developers to facilitate adoption of AI in Ecology 1366 

Here we present several practical recommendations for ecologists or engineers seeking to 1367 

design AI tools for Ecology, from the perspective of enhancing accessibility and usability of 1368 

these tools. We recognize that tools developed by ecologists and engineers are often 1369 

shaped by funding and time constraints, which drive tradeoffs that affect how effectively 1370 

they can tailor tools to different audiences or end goals (Fig. S2). Some aspects of this guide 1371 

are more technical than others; our hope is that ecologists can find value in the different 1372 

sections in accordance with their goals, experience, and values (e.g., sharing adapted 1373 

models, building custom models, or standalone software, assessing the use of a tool for 1374 

decision-making). These recommendations apply regardless of whether ecologists and 1375 

their collaborators are developing new models and tools or refining existing ones. We 1376 

summarize our key recommendations in Figure S1. 1377 

 1378 



 

1. Project planning - Usability: When planning a new tool, researchers should 1379 

consider their audience's goals and competencies to provide appropriate technical 1380 

and theoretical documentation for both users and developers (Fig. S2). The 1381 

extensiveness of documentation will depend on the tool type that the researchers 1382 

decide to create.   1383 

a. Theory documentation: Beyond software usability, does the tool provide 1384 

ecological and AI context to understand the tools’ scientific implications?  1385 

b. User documentation: Are the instructions adequate for reproducibility by 1386 

an ecologist with minimal software development expertise? 1387 

c. Developer documentation: Are the instructions adequate for modifiability 1388 

or extensibility by software developers?  1389 

 1390 

To assess usability, we should consider a tool’s key audience and its users’ 1391 

presumed competencies, as the depth and standardization will vary greatly 1392 

based on the tool type (Fig. S2).  To document the ecological and AI theory 1393 

behind the tool, a vignette with a short video can be used to succinctly 1394 

describe the model’s relevance and function. Theory documentation can also 1395 

point users to open-access educational materials and lectures on the model 1396 

in question. Visualizations should be included throughout the documentation 1397 

to help illustrate the function of the model including model performance 1398 

metrics as well as diagnostic visualizations. Tools developed for ecologists 1399 

who are often not formally trained in software engineering should contain 1400 

adequate instructions to deploy the model and run the tool based on the 1401 

documentation provided (Rule et al., 2019). Step-by-step instructions should 1402 

be provided to run the model with a small dataset as well as to modify the 1403 

existing code base to accommodate differences in dataset format or model 1404 

objective. For developers, documentation should outline desirable feature 1405 

contributions and the preferred methods for implementing them. 1406 

 1407 

2. Model selection - Ecological value: The ecological value of a tool can be assessed 1408 

by its relative timeliness in addressing the needs of its community, its relevance to 1409 

ecological questions, and its ability to minimize consequences associated with its 1410 

errors or misapplication.  1411 

a. Timeliness: Does this tool address the community’s current and anticipated, 1412 

future needs?  1413 

b. Relevance: Is the tool relevant to answer the proposed ecological question? 1414 

c. Risk mitigation: How does the tool manage risks associated with its errors 1415 

or misapplication? 1416 

 1417 

Ecological value of an AI tool could be evidenced by the number of recent 1418 

perspectives, reviews, or synthesis papers calling for features of the tool or 1419 

the tool itself. After the tool has been released, its relevance and timeliness 1420 

can be reflected through paper citations, the number of downloads, or 1421 

attendance for related workshops, courses, and seminars. The extensive use 1422 

of tools like eBird, Merlin, and HappyWhale indicates the value of these tools 1423 

to ecologists and community members alike (Cheeseman et al., 2017; 1424 



 

Sullivan et al., 2014). It is important to note that these metrics may not fully 1425 

capture the value of AI applications that attract fewer users, whether that be 1426 

due to smaller scientific communities, a lack of funding or perceived value, or 1427 

the difficulty or risks associated with AI implementation. Therefore, it is 1428 

important to critically assess our biases when considering the value of 1429 

method development for less charismatic species, lesser-known ecosystems, 1430 

and understudied areas of the world. In terms of risk mitigation, the 1431 

consequences of a model error must either be low impact or able to be 1432 

mitigated by human review at each stage (model selection, implementation, 1433 

and dissemination). If the tool influences local conservation policy, the tool 1434 

should implement plans for equitable handling of sensitive information, 1435 

ensuring diverse datasets and perspectives, reviewing model outputs, and 1436 

communicating the research back to the local community, using their 1437 

feedback as a tool for risk mitigation. 1438 

 1439 

3. Model implementation - Modifiability: A tool’s modifiability refers to its 1440 

compartmentalization into modular components that can be built upon 1441 

(extensibility) and repurposed (depends on licensing). 1442 

a. Modularity: How modular is the tool? 1443 

b. Extensibility: How easily can one build on the tool? 1444 

c. Licensing: How can the tool be used? 1445 

 1446 

To enhance AI tool modifiability, developers should consider how and 1447 

whether certain audiences should be able to access, modify, and add to their 1448 

tools. Licenses like GPL (GNU Public license) or MIT allow complete 1449 

modification and reuse, promoting the development of open-source software 1450 

(German & González-Barahona, 2009; Saltzer, 2020). Open-sourcing datasets 1451 

or models for large language models like ChatGPT presents serious ethical 1452 

concerns, which are beyond the scope of this manuscript (Liesenfeld et al., 1453 

2023). Within the scope of environmental science, data management plans 1454 

co-designed with Indigenous and local knowledge holders should promote 1455 

data sovereignty through frameworks like FAIR and CARE to provide local 1456 

context (Carroll et al., 2021). For example, local context labels include 1457 

Traditional Knowledge labels to indicate provenance, protocols, or 1458 

permission tied to disseminated materials that could contain culturally 1459 

sensitive or sacred information (Anderson & Christen, 2013). Tools should be 1460 

organized modularly with self-sufficient modules or functions to facilitate the 1461 

reuse and modification of individual components. Extensibility can be 1462 

facilitated with test frameworks for adding new features (e.g. pytest and 1463 

continuous integration) and documentation for how to integrate changes and 1464 

additions to software.  1465 

 1466 

4. Model interpretation - Transparency:  1467 

a. Visualization: Does the tool provide effective visualizations that help 1468 

interpret the AI model’s function? Are those the same that can be used to 1469 

communicate with different audiences with different baseline expertise? 1470 



 

b. Diagnostics: Does the tool provide useful and informative model 1471 

diagnostics? 1472 

c. Complexity: How complex is the tool? Does this impact its explainability? 1473 

 1474 

Visualizations and statistics are critical to build trust in an AI model by 1475 

understanding its function and performance. This includes visualizing data 1476 

alongside model outputs, including raw and processed datastreams as well as 1477 

manual labels, model performance metrics, and model diagnostics. 1478 

Interactive visualizations that allow the user to adjust model 1479 

hyperparameters can help explain the impact of these choices on model 1480 

performance. Additionally, iterative visual interfaces can facilitate human-in-1481 

the-loop workflows where experts review data, images, or sound associated 1482 

with model predictions. Model diagnostic visualizations should go beyond 1483 

the performance of the model to allow the viewer to review the function of 1484 

the model, using tools like attention scores and Shapley values. Visualizations 1485 

should include a mix of modalities accessible to domain experts, AI model 1486 

developers, and non-experts. Especially when using more complex AI models 1487 

and in decision-making contexts, these visualizations and model diagnostics 1488 

will increase explainability and trust (Ryo et al., 2021). 1489 

 1490 

5. Model dissemination - Reproducibility:  1491 

a. Installation: Can the tool be installed easily? 1492 

b. Reproducibility: Can the tool be used to replicate a computational 1493 

experiment? 1494 

c. Product sustainability: Will the tool be maintained reliably in the future? 1495 

 1496 

Methods for ensuring a tool's availability and functionality over long periods 1497 

may vary depending on the tool type and project funding structure. Besides 1498 

research compendia, all other tool types require significant ongoing 1499 

investment to ensure they are accessible and functioning as technology 1500 

changes. While practical challenges sometimes arise, a research compendium 1501 

theoretically allows flawless reproducibility at any time in the future by 1502 

pointing to previous software versions and explicitly specifying the 1503 

configuration of computational environments. Many tools rely on the user to 1504 

have a base knowledge of Python, which is less commonly taught to 1505 

ecologists than R. Python package managers can help facilitate 1506 

reproducibility by managing dependencies, but can present steeper learning 1507 

curves for ecologists who are more familiar with R than Python. At a 1508 

minimum, each Python tool should include a list of dependencies and could 1509 

further facilitate reproducibility by including YAML configuration files for 1510 

virtual containerization via Docker. Step-by-step tutorials could be helpful 1511 

additions to help newcomers install or run Python and Docker. Other 1512 

technical best practices for reproducibility include minimizing the number of 1513 

dependencies, absolute file paths, the length of individual scripts, and the 1514 

overall complexity of the analytical pipeline. While most software and web 1515 

applications are supported by teams of full-time developers, many packages 1516 



 

and libraries for ecology are maintained by small teams of volunteers. To 1517 

create sustainable support for these community-led efforts, a cultural shift is 1518 

needed to honor and fund long-term work that curates and maintains 1519 

analytical tools to better train and equip the next generation of ecological 1520 

researchers. 1521 

 1522 

 1523 
Figure S1. Recommendations and best practices for ecologists creating AI tools that are: (1) 1524 

usable (have documentation for users, developers, and theory), (2) ecologically valuable 1525 

(timely, relevant, and risk-mitigating), (3) modifiable (modular, extensible, and openly 1526 

licensed), (4) transparent (manage complexity through model diagnostics and visualization), 1527 

and (5) reproducible (reproducibility through coding best practices, easy installation, and 1528 

long-term software sustainability). *The quality and continuity of technical support and tool 1529 

improvement will depend directly on funding and an accompanying culture that rewards the 1530 

long-term maintenance of community-led tools.  1531 



 

 1532 

Figure S2. Schematic diagram of the spectrum of AI tool types and their corresponding 1533 

audiences. Less technical users, such as decision-makers or community members, may prefer 1534 

interactive tools like web applications or standalone software that require minimal coding. 1535 

Moderately technical users, such as ecologists with some coding background, may engage 1536 

with research compendiums that combine data, code, and documentation into reproducible 1537 

repositories. Highly technical users, including computational ecologists and developers, may 1538 

favor customizable packages, libraries, or APIs for data sharing and model deployment. This 1539 

framework emphasizes user-centered design to align tool development with audience 1540 

competencies, goals, and shared values like equity, reproducibility, and open science.  1541 
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Ecology+AI Model Zoo Starter Pack 1580 

1. Model Name: yasa 1581 
Description: YASA (Yet Another Spindle Algorithm) is a command-line sleep analysis 1582 
toolbox in Python with automatic sleep staging and signal processing functions. 1583 
Broad task: Timeseries segmentation 1584 
Specific task: Sleep Scoring 1585 
Language(s): Python 1586 
Tool URL (Github or Link): https://github.com/raphaelvallat/yasa 1587 
Ecology specific: No 1588 
Related publication (with DOI): https://doi.org/10.7554/eLife.70092 1589 
Model type: Gradient Boosted Decision Tree 1590 
Contact email: raphaelvallat9@gmail.com  1591 
Contact name: Raphael Vallat 1592 
Key package dependencies: antropy, ipywidgets, joblib, lightgbm, lspopt, matplotlib, mne, 1593 
numba, pandas, pyRiemann, scikit-learn, scipy, seaborn, sleepecg, tensorpac 1594 
Last Update (time since): Last updated within the month 1595 
License: BSD-3-Clause 1596 
Task specific: Yes 1597 
Tool Type: Package or Library 1598 

2. Model Name: somnotate 1599 
Description: Probabilistic sleep scoring software to combine linear discriminant analysis 1600 
(LDA) and hidden Markov models (HMM). 1601 
Broad task: Timeseries segmentation 1602 
Specific task: Sleep Scoring 1603 
Language(s): Python 1604 
Tool URL (Github or Link): https://github.com/paulbrodersen/somnotate/tree/master 1605 
Ecology specific: No 1606 
Related publication (with DOI): https://doi.org/10.1371/journal.pcbi.1011793 1607 
Model type: Hidden Markov Model 1608 
Contact email: paulbrodersen+github@gmail.com 1609 
Contact name: Paul Brodersen 1610 
Key package dependencies: matplotlib, numpy, pomegranate, scikit-learn 1611 
HuggingFace URL: 1612 
Last Update (time since): Last updated within 6 months 1613 
License: GNU General Public License 1614 
Reproducibility methods: 1615 
Task specific: Yes 1616 
Tool Type: Package or Library 1617 

3. Model Name: silbido profundo 1618 
Description: An open source package for the use of deep learning to detect odontocete 1619 
whistles. 1620 
Broad task: Acoustics processing 1621 
Specific task: Tonal Call Detection 1622 
Language(s): C, C++, Java, MATLAB 1623 
Tool URL (Github or Link): https://github.com/MarineBioAcousticsRC/silbido 1624 
Ecology specific: Yes 1625 
Related publication (with DOI): https://doi.org/10.1121/10.0016631 1626 
Model type: Convolutional Neural Network, Graph Search Algorithms 1627 
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Contact email: marie.roch@sdsu.edu 1628 
Contact name: Marie Roch 1629 
Last Update (time since): Last updated within 6 months 1630 
Reproducibility methods: makefile 1631 
Task specific: Yes 1632 
Tool Type: Package or Library 1633 

6. Model Name: BioLingual 1634 
Description: Text prompt to search through audio by species, call type, or verbal 1635 
description. Also receives audio input. 1636 
Broad task: Acoustics processing 1637 
Specific task: Call Identification 1638 
Language(s): Python 1639 
Tool URL (Github or Link): https://github.com/david-rx/BioLingual 1640 
Ecology specific: Yes 1641 
Related publication (with DOI): https://doi.org/10.48550/arXiv.2308.04978 1642 
Model type: Transformer 1643 
Contact name: David Robinson 1644 
Key package dependencies: pytorch, torchvision, transformers, etc. 1645 
HuggingFace URL: https://huggingface.co/davidrrobinson/BioLingual 1646 
Last Update (time since): Last updated within a year 1647 
License: Apache-2.0 1648 
Reproducibility methods: 1649 
Task specific: Yes 1650 
Tool Type: Model API 1651 

7. Model Name: noisereduce 1652 
Description: noisereduce is a domain-general noise reduction tool for bioacoustics and 1653 
other time domain signals. 1654 
Broad task: Acoustics processing 1655 
Specific task: Signal Processing 1656 
Language(s): Python 1657 
Tool URL (Github or Link): https://github.com/timsainb/noisereduce 1658 
Ecology specific: No 1659 
Related publication (with DOI): https://doi.org/10.1371/journal.pcbi.1008228 1660 
Model type: Neural Network, Preprocessing, Spectral Gating 1661 
Contact email: timsainb@gmail.com 1662 
Contact name: Tim Sainburg 1663 
Key package dependencies: numpy, pytorch, scipy 1664 
Last Update (time since): Last updated within 6 months 1665 
License: MIT 1666 
Task specific: Yes 1667 
Tool Type: Package or Library 1668 

8. Model Name: OpenSoundscape 1669 
Description: Python package for analyzing bioacoustic data. 1670 
Broad task: Acoustic classification 1671 
Specific task: Call Identification, Signal Processing 1672 
Language(s): Python 1673 
Tool URL (Github or Link): https://github.com/kitzeslab/opensoundscape 1674 
Ecology specific: Yes 1675 
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Related publication (with DOI): 1676 
https://besjournals.onlinelibrary.wiley.com/doi/10.1111/2041-210X.14196 1677 
Model type: Convolutional Neural Network 1678 
Contact email: sam.lapp@pitt.edu 1679 
Contact name: Sam Lapp  1680 
Key package dependencies: docopt, ipykernel, librosa, pandas, pytorch, torchvision 1681 
Last Update (time since): Last updated within the month 1682 
License: MIT 1683 
Task specific: Yes 1684 
Tool Type: Package or Library 1685 

9. Model Name: xPLNet 1686 
Description: AI classification of leaf pictures into different environmental 1687 
stresses/diseases. Explainable model.  1688 
Broad task: Image classification 1689 
Specific task: Plant stress phenotyping 1690 
Language(s): Python 1691 
Tool URL (Github or Link): https://github.com/SCSLabISU/xPLNet 1692 
Ecology specific: Yes 1693 
Related publication (with DOI): https://www.pnas.org/doi/10.1073/pnas.1716999115 1694 
Model type: Convolutional Neural Network 1695 
Contact email: soumiks@iastate.edu; arti@iastate.edu 1696 
Contact name: Soumik Sarkar; Arti Singh 1697 
Key package dependencies: keras, numpy, theano 1698 
Last Update (time since): Last updated more than a year ago 1699 
License: BSD-3-Clause 1700 
Task specific: Yes 1701 
Tool Type: Research Compendium 1702 

10. Model Name: HappyWhale 1703 
Description: AI-assisted individual ID of humpback whale flukes and multi-species dorsal 1704 
fin ID. 1705 
Broad task: Image classification 1706 
Specific task: Marine mammal photo identification 1707 
Language(s): Java, Python, Typescript 1708 
Tool URL (Github or Link): https://happywhale.com/home 1709 
Ecology specific: Yes 1710 
Related publication (with DOI): https://rdcu.be/cCOtw 1711 
Model type: Computer vision 1712 
Contact email: ted@happywhale.com 1713 
Contact name: Ted Cheeseman 1714 
Last Update (time since): Last updated within the month 1715 
Task specific: Yes 1716 
Tool Type: Web GUI 1717 

11. Model Name: BioCLIP 1718 
Description: BioCLIP is a computer vision model, fine-tuned for species identification. 1719 
Broad task: Image classification 1720 
Specific task: Species Identification 1721 
Language(s): Python 1722 
Tool URL (Github or Link): https://github.com/Imageomics/bioclip 1723 
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Ecology specific: Yes 1724 
Related publication (with DOI): https://arxiv.org/abs/2311.18803 1725 
Model type: Convolutional Neural Network, Transformer 1726 
Contact email: stevens.994@buckeyemail.osu.edu 1727 
Contact name: Samuel Stevens 1728 
Key package dependencies: open_clip 1729 
HuggingFace URL: https://huggingface.co/imageomics/bioclip 1730 
Last Update (time since): Last updated within the month 1731 
License: Custom License 1732 
Task specific: Yes 1733 
Tool Type: Package or Library 1734 

12. Model Name: SatBird 1735 
Description: SatBird is a dataset and benchmark model for the task of predicting bird 1736 
species encounter rates jointly at a specific location using remote sensing data. 1737 
Broad task: Species distribution model 1738 
Specific task: Habitat suitability 1739 
Language(s): Python 1740 
Tool URL (Github or Link): https://github.com/RolnickLab/SatBird/ 1741 
Ecology specific: Yes 1742 
Related publication (with DOI): https://doi.org/10.48550/arXiv.2311.00936 1743 
Model type: Convolutional Neural Network, ResNet, SATLAS, SatMAE 1744 
Contact email: tengmeli@mila.quebec 1745 
Contact name: Melisande Teng 1746 
Key package dependencies: pytorch, torchaudio, torchvision, etc.  1747 
Last Update (time since): Last updated within 6 months 1748 
License: GPL-3.0 1749 
Reproducibility methods: makefile 1750 
Task specific: Yes 1751 
Tool Type: Benchmarked Dataset 1752 

13. Model Name: Voxaboxen 1753 
Description: Voxaboxen is a deep learning framework designed to find the start and stop 1754 
times of (possibly overlapping) sound events in a recording. 1755 
Broad task: Acoustic classification 1756 
Specific task: Call Identification 1757 
Language(s): Python 1758 
Tool URL (Github or Link): https://github.com/earthspecies/voxaboxen 1759 
Ecology specific: Yes 1760 
Related publication (with DOI): https://doi.org/10.5281/zenodo.8381019 1761 
Model type: AVES, Transformer 1762 
Contact email: benjamin@earthspecies.org 1763 
Contact name: Benjamin Hoffman 1764 
Key package dependencies: PyYAML, einops, intervaltree, librosa, matplotlib, mir_eval, 1765 
numpy, pandas, plumbum, pytorch, scipy, seaborn, soundfile, torchaudio, tqdm 1766 
Last Update (time since): Last updated within 6 months 1767 
License: AGPL-3.0 1768 
Task specific: Yes 1769 
Tool Type: Package or Library 1770 
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14. Model Name: Ecological Niche Modelling With R 1771 
Description: A workflow to simplify the process of estimating spatial probability 1772 
distributions (species presence/absence) given a set of environmental parameters. 1773 
Broad task: Species distribution model 1774 
Specific task: Ecological Niche Modeling 1775 
Language(s): R 1776 
Tool URL (Github or Link): 1777 
https://github.com/cybprojects65/EcologicalNicheModellingWithR 1778 
Ecology specific: Yes 1779 
Related publication (with DOI): https://doi.org/10.1007/s41060-024-00517-w 1780 
Model type: MaxEnt, Neural Network 1781 
Contact email: gianpaolo.coro@isti.cnr.it 1782 
Contact name: Gianpaolo Coro 1783 
Last Update (time since): Last updated within 6 months 1784 
Task specific: Yes 1785 
Tool Type: Research Compendium 1786 

15. Model Name: Merlin Sound ID Bird App 1787 
Description: An app for identifying birds to species level worldwide. 1788 
Broad task: Acoustic classification 1789 
Specific task: Species Identification 1790 
Language(s): Python 1791 
Tool URL (Github or Link): https://merlin.allaboutbirds.org/ 1792 
Ecology specific: Yes 1793 
Related publication (with DOI): https://doi.org/10.1371/journal.pcbi.1001220 1794 
Model type: Convolutional Neural Network, MobileNet 1795 
Last Update (time since): Last updated within 6 months 1796 
Task specific: Yes 1797 
Tool Type: Mobile App 1798 

16. Model Name: FrogID App 1799 
Description: An app for identifying frogs to species level worldwide. 1800 
Broad task: Acoustic classification 1801 
Specific task: Species Identification 1802 
Language(s): Python 1803 
Tool URL (Github or Link): https://www.frogid.net.au/ 1804 
Ecology specific: Yes 1805 
Related publication (with DOI): https://doi.org/10.1093/biosci/biad012 1806 
Model type: Convolutional Neural Network 1807 
Contact email: jodi.rowley@unsw.edu.au 1808 
Contact name: Jodi Rowley  1809 
Task specific: Yes 1810 
Tool Type: Mobile App  1811 
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Ecology+AI Communities of Practice Starter Pack 1812 

1. Community Name: ABC AI and Biodiversity Change 1813 
Description: A global center to develop and implement a variety of AI-based methods and 1814 
tools for integration and analysis of biodiversity data from remote sensing imagery from 1815 
satellites and low-flying aircrafts, ground-based visual and audio sensors, DNA sequences, 1816 
and citizen science efforts, enabling the global monitoring, analysis, and assessment of 1817 
biodiversity changes. 1818 
Website: https://abcclimate.org  1819 
LinkedIn: https://www.linkedin.com/company/abc-global-center/ 1820 
Organizations: MIT, McGill University, Ohio State University, University of British 1821 
Columbia, University of Guelph, University of Pittsburgh 1822 
Funding Organizations: NSF, NSF NSERC, NSF OISE 1823 
Tags: AI, biodiversity, climate 1824 

2. Community Name: EcoViz+AI 1825 
Description: An international community of practice to discuss and democratize AI and 1826 
visualization for use cases in ecology. 1827 
Website: https://ecoviz-ai.github.io  1828 
Organizations: Cornell University, Ohio State University, Oxford University, San Diego 1829 
Supercomputer Center, Scripps Institution of Oceanography, UC San Diego, UC Santa Cruz, 1830 
University of Michigan, University of Moncton, University of Toronto 1831 
Funding Organizations: Schmidt Sciences 1832 
Tags: AI, biodiversity, climate change, conservation, cyberinfrastructure, ecology, 1833 
education, visualization 1834 

3. Community Name: OceanVisionAI 1835 
Description: An initiative for annotating video and imagery data from deep sea expeditions 1836 
with citizen science - associated initiatives: https://fathomnet.org/ (database), 1837 
https://www.fathomverse.game/ (game). 1838 
Website: https://www.oceanvisionai.org/ 1839 
LinkedIn: https://www.linkedin.com/company/ocean-vision-ai/ 1840 
Organizations: MBARI 1841 
Funding Organizations: Dalio Foundation, NOAA, NSF, Nat Geo, Packard Foundation 1842 
Tags: AI, citizen science, deep sea, visualization 1843 

4. Community Name: eLife Community 1844 
Description: eLife works with researchers across the globe to promote a research culture 1845 
that values openness, integrity, equity, diversity, and inclusion. 1846 
Website: https://elifesciences.org/community/ 1847 
LinkedIn: https://www.linkedin.com/company/elife-sciences-publications-ltd 1848 
Funding Organizations: HHMI, Knut and Alice Wallenberg Foundation, Max Planck 1849 
Institute, Wellcome 1850 
Tags: ecology 1851 

5. Community Name: DSE Data Science & Environment 1852 
Description: The Eric and Wendy Schmidt Center for Data Science & Environment (DSE) 1853 
combines the power of computing and environmental science with open science principles 1854 
and a commitment to inclusivity—all towards the purpose of building tangible, replicable, 1855 
and accessible solutions to problems compromising the health of our environment. 1856 
Website: https://dse.berkeley.edu/ 1857 
LinkedIn: https://www.linkedin.com/company/schmidtdse/ 1858 
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Organizations: Schmidt Sciences, UC Berkeley 1859 
Funding Organizations: Schmidt Sciences, UC Berkeley 1860 
Tags: AI, biodiversity, climate, ecology 1861 

6. Community Name: Imageomics Institute 1862 
Description: The Imageomics Institute GitHub organization hosts the development and 1863 
distribution of a collection of open-source ML tools used to study the biological information 1864 
encoded in images and videos integrated with structured biological knowledge. 1865 
Website: https://github.com/Imageomics/ 1866 
LinkedIn: https://www.linkedin.com/company/imageomics-institute 1867 
Organizations: Ohio State University 1868 
Funding Organizations: NSF 1869 
Tags: AI, ecology 1870 

7. Community Name: EcoViz 1871 
Description: A collaborative initiative to co-design climate data visualizations that leverage 1872 
computational advances to display model outputs, communicate science, and inform policy 1873 
and practice. 1874 
Website: ecoviz.org 1875 
LinkedIn: https://www.linkedin.com/company/ecoviz-collaborative-initiative-for-climate-1876 
visualization/ 1877 
Organizations: Center for Coastal Climate Resilience, San Diego Supercomputer Center, 1878 
Scripps Institution of Oceanography, UC San Diego, UC Santa Cruz 1879 
Funding Organizations: AXA Research Fund, Army Corps of Engineers, CalOES, 1880 
Department of Homeland Security, Intervalien, NSF, SDG&E, Schmidt Sciences, State of 1881 
California, The Nature Conservancy, The World Bank 1882 
Tags: AI, climate, climate change, cyberinfrastructure, visualization 1883 

8. Community Name: AI4Life 1884 
Description: Research services and infrastructure to support life scientists in the adoption 1885 
of machine learning solutions that improve the utility and interpretability of image data – 1886 
the key to future biological and biomedical research. 1887 
Website: https://ai4life.eurobioimaging.eu/ 1888 
LinkedIn: https://www.linkedin.com/company/ai4life-eu-project 1889 
Organizations: BioImage, European Marine Biological Resource Centre, KTH, Universidad 1890 
Carlos III de Madrid 1891 
Funding Organizations: European Union 1892 
Tags: AI, cyberinfrastructure, ecology 1893 

9. Community Name: ClimateChangeAI 1894 
Description: Climate Change AI is a global non-profit that catalyzes impactful work at the 1895 
intersection of climate change and machine learning. 1896 
Website: https://www.climatechange.ai/ 1897 
LinkedIn: https://www.linkedin.com/company/climatechangeai/ 1898 
Organizations: Google DeepMind, Centre for AI & Climate, Carbon Re, Schmidt Futures, 1899 
Cornell Tech, etc. 1900 
Funding Organizations: Google DeepMind, Centre for AI & Climate, Carbon Re, Schmidt 1901 
Futures, Cornell Tech, etc. 1902 
Tags: AI, climate, climate change 1903 
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