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Summary 23 

Conventional species distribution models (SDMs) typically consider only abiotic factors, 24 

thus overlooking critical biotic dimensions, including functional traits that play an 25 

important role determining species’ distributions in changing environments. Process-26 

based models explicitly incorporate functional traits and have been applied to SDMs. 27 

However, their parameterization can be complex and require data that are unavailable for 28 

most species. Recently developed hierarchical trait-based models use widely available data 29 

and facilitate the incorporation of traits into SDMs at broad temporal, spatial, and 30 

taxonomic scales. Despite their promise, however, existing hierarchical trait-based models 31 

fail to accommodate changing trait spaces under different climate conditions. Here, we 32 

provide a new, simplified framework for hierarchical trait-based SDMs that integrate 33 

individuals’ trait responses into forecasts of species range shifts in response to ongoing 34 

climate changes. We further discuss the utility of phylogenetic information for building 35 

trait-based SDMs and holistically enhancing our understanding of species responses to 36 

global changes. This work will contribute to an improved understanding of how traits 37 

affect species distributions along environmental and temporal gradients and facilitate the 38 

application of trait-based SDMs across large temporal, spatial and taxonomic scales.  39 

 40 
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1. Introduction 51 

The impacts of climatic changes and human activities on species ranges have greatly 52 

increased the need to better forecast biodiversity change (Urban, 2015; Pecl et al., 2017). 53 

Species distribution models (SDMs) represent arguably the most important and 54 

widespread tool for evaluating the consequences of global change on species distributions 55 

and biodiversity (e.g., Urban, 2015; Peng et al., 2022; Daru & Rock, 2023; Mi et al., 2023). 56 

However, despite more than two decades of using SDMs, it remains unclear whether they 57 

can accurately predict the impacts of global change on species distributions and 58 

biodiversity (Zurell et al., 2009; Kissling et al., 2012; Santini et al., 2021). In particular, 59 

most conventional implementations of SDMs use only abiotic (environmental) factors as 60 

predictors (i.e., “conventional” SDMs). Thus, they do not account for the vast number of 61 

processes through which organisms interact with one another and the broader biota (e.g., 62 

biotic interactions, reviewed by Kissling et al., 2012; species dispersal, reviewed by 63 

Bateman et al., 2013; evolution, reviewed by Diamond, 2018; trait-based feedback, 64 

reviewed by Benito Garzón et al., 2019).     65 

Theoretical and empirical studies have demonstrated that functional traits play an 66 

important role in determining the current and future distributions of species and 67 

communities in the face of changing environments (e.g., Grime et al., 2000; Grime, 2006; 68 

Gallagher et al., 2013; Lopez-Iglesias et al., 2014; Pacifici et al., 2017; Maharjan et al., 69 

2021). Functional traits are characteristics of organisms that affect individual demography 70 

by influencing their growth, survival, and reproduction (Reich et al., 2003; Grime, 2006; 71 

Violle et al., 2007). Functional traits have been categorized as morphological (e.g., leaf size, 72 

plant height), phenological (e.g., timing of flowering), or physiological (e.g., photosynthesis 73 

rate, plant hydrology), all of which reflect adaptation to certain environments and are 74 

related to the fitness (i.e., reproduction, survival; Laughlin et al., 2020). Therefore, the 75 

limited inclusion or, as in most cases, the complete lack of functional traits in conventional 76 

SDMs may hinder their ability to accurately predict the impacts of global change on species 77 

distributions (Kearney & Porter, 2009; Pollock et al., 2012; Zurell et al., 2016).  78 
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The concept of integrating both functional traits and environmental factors in SDMs was 79 

proposed nearly two decades ago (Westoby & Wright, 2006, Benito Garzón et al., 2019). 80 

However, the use of such “trait-based” SDMs is uncommon relative to “conventional” SDMs 81 

that include only climatic and other environmental variables in defining habitat suitability. 82 

The dearth of SDMs that incorporate traits is likely related to the difficulty in selecting and 83 

measuring appropriate traits at broad spatiotemporal scales (Pollock et al., 2012).  84 

To bridge this impasse, some recent investigations have developed process-based models 85 

that explicitly incorporate links between functional traits of organisms and their 86 

environments in trait-based SDMs (Chuine & Beaubien, 2001; Kearney & Porter, 2009; 87 

Briscoe et al., 2023). These process-based models improve predictions under novel 88 

conditions, but they require detailed mechanistic information about the relationships 89 

between traits, environments, and fitness that are unknown or unquantified for most 90 

species (Chuine & Beaubien, 2001; Vesk et al., 2021; Peng et al., 2024). Since such process-91 

based models are difficult to parameterize, they have been applied to only a few species 92 

and provide limited insight into forecasts of biodiversity change across large spatial, 93 

temporal, and taxonomic scales. 94 

Hierarchical trait-based models that incorporate species’ functional traits into 95 

conventional SDMs can use much more widely available data and provide a general 96 

ecological reference for how traits affect species distributions (Pollock et al., 2012; Carboni 97 

et al., 2018; Vesk et al., 2021). Although such models are still based on correlative 98 

relationships between species occurrences and local environments, they appear to 99 

improve predictive accuracy by adding additional trait information and facilitate the 100 

application of a trait-based framework across broad scales (Pollock et al., 2018). However, 101 

among trait-based SDMs, hierarchical models are used less frequently than process-based 102 

models. Importantly, existing hierarchical SDMs generally ignore intraspecific variations 103 

and fail to accommodate climate-driven intraspecific changes in trait expression, both of 104 

which may confer resilience and increase individuals’ fitness under different climate 105 

conditions.       106 

In this review, we first summarize the development of trait-based SDMs and describe how 107 
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to better integrate functional traits into SDMs using hierarchical trait-based models. We 108 

then provide new insights into how to integrate trait-climate relationships into existing 109 

hierarchical trait-based models to incorporate intraspecific changes in the expression of 110 

functional traits resulting from spatial and temporal shifts in abiotic conditions (Fig. 1). We 111 

also briefly discuss how phylogenetic information that accounts for evolutionary 112 

relatedness can be integrated into hierarchical trait-based frameworks. The motivation for 113 

our review builds on a recent effort to integrate plant phenological responses to climate 114 

into hierarchical SDMs and better forecast biodiversity change at large spatial, temporal, 115 

and taxonomic extents (Peng et al., 2024). We made comparisons between predictions 116 

from our newly developed hierarchical framework and those from the more traditional 117 

hierarchical models proposed by Pollock et al. (2012). Unlike the recent review by Benito 118 

Garzón et al. (2019), who aimed to separate local adaptation from phenotypic plasticity 119 

using data from an extensive common-garden network, our review provides a more 120 

general direction for ecological inference into how functional traits affect species 121 

distributions, and for forecasting them in target regions as a function of changing 122 

environmental conditions. 123 

2. An historical account of SDMs: inferring the ecological niche and 124 

forecasting biodiversity 125 

The theoretical underpinning of SDMs is rooted in the concept of the “ecological niche.” 126 

The ecological niche has been defined in many ways; in the context of SDMs, it is described 127 

as a hypervolume in multivariate environmental space (sensu Grinnell, 1917; Hutchinson, 128 

1957; Grime, 2006). Indeed, SDMs are also called ecological niche models. The 129 

implementation of conventional SDMs can be divided into two sequential processes: first, 130 

model habitat suitability (based on sparse species occurrence data) that is assumed to 131 

reflect a species’ environmental niche; second, estimate species’ current distribution and 132 

forecast their future geographic occurrence of suitable habitats as a function of climate-133 

change (or land-cover change) scenarios, which are then presumed to be occupied by the 134 

species in the future (Kearney & Porter, 2009). Thus, what we herein call “conventional” 135 



6 

 

SDMs use only a species’ multi-dimensional environmental (usually climatic, i.e., abiotic) 136 

niche. 137 

Conventional SDMs assume that species distributions are in equilibrium with 138 

environmental conditions (Guisan & Thuiller, 2005) and that a species will occur whenever 139 

and wherever its environmental niche exists at a specific location. In fact, many species 140 

distributions are out of equilibrium with environmental conditions, and limited dispersal 141 

ability of species or competitive exclusion among species may exacerbate this 142 

disequilibrium under future global changes (Loarie et al., 2009; Pagel & Schurr, 2012). 143 

Therefore, biotic niche axes (e.g., axes related to competitive interactions or prey size) also 144 

may affect species’ responses to changing environments and thus contribute to this 145 

observed disequilibrium when using abiotic factors alone (e.g., Fordham et al., 2018).  146 

Another simplifying assumption of conventional SDMs is that all individuals and 147 

populations within a species are identical and will respond equivalently to changing 148 

environmental conditions. In fact, species’ functional traits are neither static nor 149 

homogenous in space or time (Bolnick et al., 2011; Violle et al., 2014). It is well 150 

documented that all species exhibit important phenotypic differences in phenological, 151 

anatomical, morphological, and physiological functional traits among individuals along 152 

environmental gradients (i.e., structured variation; Hulshof et al., 2013; Anderegg, 2015), 153 

and even within sex, size and age (i.e., unstructured variation). Globally, intraspecific 154 

variation accounts for about 25% of the total trait variation within communities and 32% 155 

of the total trait variation among communities (Siefert et al., 2015). Intraspecific variation 156 

may be the result of heritable differences between individuals (i.e., local adaptation) or 157 

phenotypic plasticity in trait values (Donohue et al., 2005; Willis et al., 2008; Valladares et 158 

al., 2014; Pritzkow et al., 2020; Cope et al., 2021). Phenotypic plasticity represents the 159 

ability of a single genotype to express different phenotypes under different environmental 160 

conditions (Nicotra et al., 2010; Gianoli & Valladares, 2012), whereas local adaptation 161 

refers to the processes by which a population has heritable traits that lead to a 162 

predominance of individuals with high fitness within their local environment (Savolainen 163 

et al., 2013). Phenotypic plasticity and local adaptation are ubiquitous and may enable 164 
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persistence (i.e., avoid migration and local extinction) of individuals in the face of climate 165 

change (Valladares et al., 2014; reviewed by Benito Garzón et al., 2019). Thus, the 166 

responses of populations to climate change are likely to vary across the geographic and 167 

temporal range of a species (Sultan & Spencer, 2002; Benito Garzón et al., 2013; Park et al., 168 

2019; Ramirez-Parada et al., 2024). However, conventional SDMs do not include the 169 

potential for evolution of fitness-related traits or plasticity that may accompany strong 170 

local environmental variation. 171 

Many recent studies have attempted to integrate intraspecific trait variation into SDMs 172 

(Table 1; Chardon et al., 2020). For example, O’Neill et al. (2008) suggested that the 173 

differential growth responses of Pinus contorta associated with genetic differences among 174 

populations would redistribute the species’ forecasted habitats. Similarly, Benito Garzón et 175 

al. (2013) integrated intraspecific variation into tree mortality into SDMs, and Oney et al. 176 

(2013) demonstrated that intraspecific variation could buffer against adverse effects of 177 

climatic change. Finally, Chuine & Beaubien (2001) included phenological response to 178 

climate in their PHENOFIT model and concluded that phenology is a major determinant of 179 

plant species ranges and should be used to assess the consequences of global change on 180 

plant distributions.   181 

The trait-based SDMs outlined above are more biologically realistic than conventional 182 

ones, and we assert that the former are likely to provide more realistic estimates of species 183 

responses to novel climates. However, these trait-based SDMs have two key limitations. 184 

First, they still rely only on intraspecific distribution data (e.g., model each of subspecies 185 

independently; Oney et al., 2013), not data on phenotypic traits or plasticity itself 186 

(Valladares et al., 2014). Second, SDMs that explicitly incorporate functional traits such as 187 

climate-dependent phenology (Chuine & Beaubien, 2001; Morin et al., 2009), physiology, 188 

or biophysics (Kearney &Warren, 2009; Higgins et al., 2012) are limited in their generality 189 

across taxa, space, and a range of traits (Peng et al., 2024). Specifically, parameterizing such 190 

trait-based SDMs requires detailed experimental data to calibrate, validate, and 191 

understand the underlying casual process among fitness, traits, and environments, and 192 
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such data are generally not available for most species (Kearney & Warren, 2009; Vesk et al., 193 

2021). 194 

Hierarchical trait-based SDMs could statistically integrate environmental conditions and 195 

traits that shape species distributions. Hierarchical trait-based SDMs still include 196 

simplified and poorly understood assumptions, but they can use much more widely 197 

available data and provide a stronger framework, facilitating the application of trait-based 198 

SDMs across broad spatial and taxonomic scales, and deepening our understanding of 199 

mechanisms of how traits modulate species’ distributions along environmental gradients 200 

(Pollock et al., 2012; Vesk et al., 2021). Moreover, hierarchical SDMs overcome the 201 

limitations of process-based models that require accurate estimation of plasticity (or 202 

adaptation) and well-designed and time-consuming experiments to parameterize them 203 

(Kellermann et al., 2012). Although there continues to be a tremendous need for better 204 

experimentally-derived estimates of adaptation and plasticity, the species-by-species 205 

approach required for such carefully planned experimentation makes scalability a 206 

challenge. Thus, better heuristic methods are warranted for more rapid and biologically 207 

meaningful forecasts of future species distributions. 208 

3. Hierarchical trait-based framework: expanding conventional SDMs to 209 

include functional traits 210 

Hierarchical trait-based SDMs incorporate parameters that account for the responses of 211 

multiple species to their environments by sharing statistical strength between species and 212 

allowing functional traits to modulate species responses to different environments 213 

(Gelfand et al., 2005; Dorrough & Scroggie, 2008). Unlike conventional SDMs that model 214 

species separately, hierarchical trait-based models use a single predictive model for 215 

species-specific data of many species across communities. For example, generalized linear 216 

mixed models (GLMMs; Jamil et al., 2013) can include a hierarchical structure that defines 217 

interactions between traits and the environments. Pollock et al. (2012) proposed a single 218 

coherent framework for trait-based SDMs that integrates a hierarchical structure into a 219 
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GLMM to better accomplish the goal of integrating environmental factors and biotically 220 

relevant traits.  221 

In general, the single-step hierarchical trait-based model proposed by Pollock et al. (2012) 222 

(i.e., herein we call “traditional hierarchical SDMs”) can be split into two sections. The first 223 

is the relationship between species distribution and climate variables. The second links the 224 

parameters of species distribution-climate relationships to relevant functional traits 225 

(details in Box 1). In this model, trait × environment interactions are treated as fixed 226 

effects while species identity is included as a random component to explore species-227 

specific responses. Hierarchical trait-based SDMs typically do not include traits as main-228 

level effects because the hierarchical framework does not expect traits to influence the 229 

overall probability of occurrence of species. Rather, the assumption is that traits can 230 

modulate species occurrence along different environmental gradients (Fig. 2). 231 

Most studies that used traditional hierarchical SDMs have explored how functional traits 232 

influence species distributions along environmental gradients (e.g., Jamil et al., 2013; 233 

Brown et al., 2014; Pollock et al., 2018; Miller et al., 2019). Pollock et al. (2012), for 234 

example, found that species with low specific leaf area (SLA) were more likely to occur in 235 

sandy areas with high rock cover, whereas heavier seeded species have a higher 236 

probability of occurrence in sandy soils. Similarly, Carboni et al. (2018) built a 237 

multispecies hierarchical model including the distribution of 10 non-native species in 238 

French grasslands and identified that tall non-native species with high SLA were more 239 

efficient in resource-rich environments and better at avoiding competition from native 240 

species. Such models contain biologically relevant information on links between species 241 

and modeled environments and help to establish the role of traits and improve the 242 

predictive accuracy of SDMs (Vesk et al., 2021). 243 

Nevertheless, hierarchical trait-based SDMs are rarely used to forecast future species 244 

distributions. Moreover, direct comparisons between forecasts from hierarchical trait-245 

based models and those from conventional SDMs under current and future climate 246 

scenarios remain scarce (but see Peng et al., 2024). This may be attributed to the fact that 247 
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the trait values of individuals under future conditions are difficult to determine. A major 248 

challenge in hierarchical trait-based framework is how to apply SDMs that incorporate 249 

traits whose adaptive or plastic responses can be modeled directly as a function of future 250 

projected climate change and account for how traits may change through time in a given 251 

geographic and environmental context.  252 

Existing SDMs that have incorporated functional traits always assume that individual traits 253 

are constant through time (e.g., Gallagher et al., 2013). However, functional traits of 254 

individuals should not be considered fixed. Many common fitness-related functional traits, 255 

such as plant phenology (Chunie & Beaubien, 2001), seed size (Stanton, 1984), and 256 

photosynthetic rates (Athanasiou et al., 2010), are sensitive to environmental fluctuations 257 

and can acclimate rapidly or evolve in response to climate change (Benito Garzón et al., 258 

2019; Catullo et al., 2019). Changes in trait space in response to climate change are likely to 259 

have significant effects on expected (or modeled) future species distributions. Therefore, 260 

the problem of species distributional limits is not only an ecological issue but may also be 261 

an evolutionary one, particularly in the context of novel climates (Hoffmann & Blows, 262 

1994; Kearney & Porter, 2009; Colautti & Barrett, 2013). Some mechanistic trait-based 263 

SDMs (e.g., Valladares et al., 2014) allow trait values to change as a function of a changing 264 

climate based on independently evaluated reaction norms (i.e., the patterns of phenotypic 265 

expression of a single genotype across a range of environmental conditions) and 266 

geographical variation (i.e., a space for time substitution). The former needs to be better 267 

parameterized to encompass the range of variation in populations across a species’ range 268 

and to disentangle different sources of trait variation (e.g., adaptative and plastic effects; 269 

Benito Garzón et al., 2019). In contrast, it is difficult to split the phenotypic variation of 270 

functional traits in the latter model type into the components of phenotypic plasticity and 271 

local adaptation. Nevertheless, space-for-time substitutions could implicitly include 272 

geographical (i.e., population-level) variations in functional traits and theoretically can 273 

include any biological traits associated with species distributions while maintaining the 274 

statistical simplicity of hierarchical trait-based SDMs under the premise of not aiming to 275 

differentiate trait variation sources. 276 
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4. Functional traits in a changing world: the application of next-277 

generation hierarchical trait-based SDMs that integrate trait-climate 278 

relationships  279 

As climate changes, populations can i.) persist in situ via phenotypic plasticity and local 280 

adaptation, ii.) track climate by migrating, or iii.) become locally extinct (Brito-Morales et 281 

al., 2018). Plasticity and adaptation allow species to persist in situ because this may allow 282 

them to expand their climatic tolerance beyond their present realized niches (Valladares et 283 

al., 2014; Des Roches et al., 2018), although phenotypic plasticity also can delay 284 

evolutionary adaptation to new environments in the long term (Wund, 2012). Because of 285 

plasticity and adaptation, trait values observed under current conditions may not be fully 286 

representative of those that will occur in the future. Ignoring continuous trait variation in 287 

models may lead to incorrect assessments of species’ responses to climate. A better 288 

understanding of the extent to which traits vary within species and across environmental 289 

gradients will improve our ability to anticipate how these processes will affect species 290 

performances as a function of future climatic change. 291 

4.1  Modeling trait-climate relationships under different climate space 292 

Geographic patterns in plant functional traits and their relationships with the environment 293 

is a central topic in plant ecology (Reich et al., 2003; Grime, 2006; Bruelheide et al., 2018). 294 

It is abundantly clear that environmental factors are essential in determining the 295 

distribution of individuals’ functional traits and provide essential information necessary to 296 

infer trait values in regions with no available data. Numerous observational studies have 297 

documented quantitative relationships between functional traits and climate (Werger & 298 

Ellenbroek, 1978; Wright et al., 2004; Cornwell & Ackerly, 2009). For example, Wright et al. 299 

(2017) characterized global patterns in leaf size and supported the well-known natural-300 

history lore that large-leaved species dominate sunny, wet, and hot environments, whereas 301 

small-leaved species dominate in arid areas. Li et al. (2016) mapped the patterns of leaf-302 

margin traits in China and suggested that the relationships between the percentage of 303 
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various leaf-margin types and temperature were significantly enhanced with increasing 304 

precipitation. 305 

Many algorithms based on the geographic variation of traits can be used to quantify trait-306 

climate relationships. These algorithms include community abundance-weighted means 307 

(CWMs), linear models (LMs), generalized linear models (GLMs) and generalized additive 308 

models (GAMs), linear/generalized linear mixed effect models (LMMs/GLMMs), and 309 

machine-learning approaches. CWMs are only applicable at the community level, but 310 

others also can be applied at the individual level. LMs and GLMs are the simplest ones, but 311 

GLMs allow for non-normal distribution of model errors. GAMs are more flexible and allow 312 

for non-linear relationships using smoothing functions. Machine-learning approaches are 313 

more flexible and offer powerful tools for modeling complex and non-linear relationships 314 

between traits and climate variables (Cutler et al., 2007; Sandel et al., 2021). They can 315 

incorporate large datasets and many predictors. However, machine-learning models have 316 

not been used as widely as other familiar statistical models. Generalized linear mixed-317 

effect models (GLMMs) are the most widely used because of their flexibility and ability to 318 

account for both fixed and random effects (i.e., parameters associated with specific groups 319 

such as species). The general form of a GLMM describing the relationship between traits 320 

and environmental drivers is: 321 

𝑇1 =  𝑎0 +  𝑏1𝑥1 +  𝑏2𝑥2 + 𝑏3𝑥3 + ⋯ + 𝑏𝑛𝑥𝑛 + 𝛽 +  𝛿 + 𝜀                    (1)  322 

where 𝑇1 is the individual’s value for a certain functional trait, 𝑎0 represents the 323 

intercept, 𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑛 are coefficients of the regression, 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 represent the 324 

fixed variables (and their interactions) that may affect trait variations (e.g., climatic 325 

variables, life forms), 𝛽 refers to a matrix of covariates that should be included if needed, 326 

𝛿 is the (matrix of) random effect(s), and 𝜀 is the model error. Equation 1 allows us to 327 

incorporate many species simultaneously and to quantify trait variation across time and 328 

space.  329 

Trait-climate relationships can be then used to generate spatial projections of trait 330 

variation under current and future climate scenarios. Many studies have suggested that the 331 
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functional compositions of plants would change considerably under rapid climate change 332 

(e.g., Post et al., 2009). For example, long-term monitoring has demonstrated an increase in 333 

plant height in response to climate warming in the tundra over a 30-year period (Bjorkman 334 

et al., 2018). Climate warming also may lead to an increase in leaf size if sufficient moisture 335 

and nutrients are available (Bjorkman et al., 2018). However, projections based on 336 

microclimate may differ from those based on coarse-resolution macroclimatic and soil 337 

data. For instance, soil moisture can decrease the variability of local temperatures (Aalto et 338 

al., 2018), which may be one of the mechanisms by which soil moisture affects the 339 

direction and strength of trait-temperature relationships. Because the resolution of 340 

existing databases (e.g., WorldClim) used for future climate projections is relatively coarse 341 

(e.g., at least 1 km), studies using macroclimatic data are likely to project only a relatively 342 

small proportion of the variation in functional traits. As more trait data become available 343 

through global databases (e.g., TRY; Kattge et al., 2011), there is an urgent need to better 344 

quantify and model microclimate to greatly improve assessments of trait-climate 345 

relationships and enable more accurate projections of individuals’ traits across different 346 

biomes (Lembrechts et al., 2019).  347 

4.2 Constructing hierarchical trait-based SDMs using predicted trait 348 

values to predict current species distributions and forecast them into 349 

the future 350 

Trait values estimated under different climate spaces are substituted into the hierarchical 351 

SDMs (Equations A1-A4 in Box1) to predict and forecast the probability of occurrence of 352 

individuals under current and future environmental conditions. Incorporating trait-climate 353 

relationships into traditional hierarchical trait-based model may improve model 354 

predictions and forecasts. However, it is normally not possible to assess model forecasts 355 

because the scenarios being projected have not yet occurred (Arau´jo & Guisan, 2006). 356 

Alternatives such as backward projections (i.e., hind-casting) can be used for model 357 

validation. This approach encourages us to predict trait values and resulting species 358 
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distributions under past climate scenarios and compare them with historical records and 359 

fossil occurrences (Peng et al., 2024). 360 

Traditional hierarchical SDMs also assume linearity and may ignore niche concepts that 361 

assume unimodality (Hutchinson, 1957). Adding polynomial terms to a hierarchical model 362 

would allow for curvilinear responses and better reflect real ecological phenomena, yet 363 

such models are less general and require more data (Austin & Meyers, 1996). GLMMs 364 

remain useful and are applicable to various types of datasets. Moreover, since statistical 365 

models of trait-climate relationships based solely on geographical variation in functional 366 

traits cannot differentiate between phenotypic plasticity and local adaptation, 367 

disentangling the contributions of different sources of trait variation to species 368 

distributions using hierarchical framework is still challenging. Large common-garden and 369 

reciprocal-transplant experiments established along broad environmental gradients are 370 

needed to provide new insights into assessing changes in the distributional range of 371 

individuals due to climate change (Rehfeldt et al., 1999; Robson et al., 2018; Benito Garzo n 372 

et al., 2019).             373 

5. A comparison between newly developed and traditional hierarchical 374 

trait-based SDMs: A case study of plant reproductive phenology 375 

Using over 120,000 herbarium specimens, Peng et al. (2024) developed a novel framework 376 

that considers both intraspecific variability in a functional trait and its dynamic responses 377 

under different climate space. They compared the predictions and forecasts of traditional 378 

hierarchical trait-based SDMs proposed by Pollock et al. (2012) with those of the 379 

hierarchical trait-based framework that integrates trait-climate relationships as a function 380 

of current and future climate scenarios (Shared Socio-economic Pathway 5-8.5 [SSP 5-8.5]) 381 

for 360 species in the eastern United States. Plant phenology was adopted as an example of 382 

a climate-sensitive trait that is also an important component of fitness (Reekie & Bazzaz, 383 

1987; Kozlowski, 1992) and may contribute to changes in species distribution and 384 

abundance (Primack, 1980; O’Neil, 1997; Chuine & Beaubien, 2001; Willis et al., 2008). 385 
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Peng et al. (2024) explored how plant phenology (e.g., the day of year of peak flowering 386 

time) mediates observed species geographic distributions along environmental gradients 387 

and affects regional biodiversity patterns under future climatic change scenarios. The 388 

results demonstrated that traditional and newer hierarchical trait-based SDMs yielded 389 

similar estimates of current ranges but significantly different estimates of future ones. 390 

Specifically, hierarchical trait-based SDMs that consider trait evolution under changing 391 

climates forecast a higher probability of occurrence in areas within the current range and a 392 

lower probability of occurrence in areas located outside their current range than did 393 

traditional hierarchical SDMs (Fig. 3). The differences between forecasts of traditional 394 

versus newly developed hierarchical trait-based SDMs can be interpreted either as 395 

resulting from strong phenotypic plasticity or local adaptation (Richardson et al., 2017; 396 

Ramirez-Parada et al., 2024), both of which could enable species to adjust their climatic 397 

niche and to persist in situ. Importantly, this example illustrates that trait-based SDMs, 398 

which accommodate changing trait spaces under different climate conditions, may provide 399 

more conservative predictions and less alarming results about the influences of future 400 

climate change on species range loss. 401 

6. Phylogenetic species distribution models 402 

Three ecological factors determine which species can occur within communities: the 403 

dispersal ability of species to enter the community, their environmental tolerance, and 404 

their biological interactions with other species. These three factors depend on functional 405 

traits that reflect evolutionary history and biogeographic processes (Warren et al., 2014; 406 

Gerhold et al., 2018). Phylogenetic niche conservatism refers to the tendency of closely 407 

related species to be more similar to one another in terms of their ecological niches 408 

(Prinzing, 2001; Wiens & Donoghue, 2004; Wiens & Graham, 2005), and phylogenetically 409 

related species normally have similar trait values (e.g., see Davis et al., 2010a; Davis et al., 410 

2010b; Li et al., 2016; Li et al., 2020). Therefore, incorporating phylogeny into SDMs should 411 

be fully considered, for both biological and statistical reasons. 412 

Biologically, owing to the varying phylogenetic history of different clades, some groups 413 
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may be able to easily shift out of their niche space in the face of anthropogenetic climate 414 

change whereas others may not (Davis et al., 2010a; Davis et al., 2010b). If losses are not 415 

randomly distributed across the Tree of Life, climate change may lead to a 416 

disproportionate loss of evolutionary history (Nee & May, 1997; Heard & Mooers, 2000; 417 

Ceballos & Ehrlich, 2023); examples include the loss of species in various flowering plant 418 

clades in New England, USA (Willis et al., 2008), the reduction of Rhododendron from the 419 

Himalaya-Hengduan Mountain (Kumar, 2012), and the loss of Dipterocarpaceae from 420 

southeastern Asian forests (Shukla et al., 2013). Accordingly, any SDM, but especially trait-421 

based SDMs, should fully incorporate phylogenetic information to examine whether 422 

responses to climate change or probabilities of occurrence as a function of climate change 423 

differ among clades. For example, if functional traits are shared by species within a specific 424 

clade that also inhabits a particular habitat or climatic space (e.g., shifts in staggered 425 

pollination among Dipterocarpaceae in Southeast Asian wet forests [Ashton et al., 1988]), 426 

climate change could affect the entire clade similarly.  427 

Statistically, if multiple functional traits affect species occurrence (or abundance), the 428 

unmeasured traits with significant phylogenetical signals (Harvey & Pagel, 1991; Blomberg 429 

et al., 2003) would result in covariance of unexplained residual variations, leading to 430 

inaccurate estimation and inflated Type-I errors when testing the significance of 431 

regression coefficients (Garland et al., 2005; Revell, 2010). Existing trait-based SDMs 432 

(including both process-based SDMs and hierarchical SDMs) generally ignore the 433 

evolutionary history of species and we should seek to better specify independent variables 434 

in hierarchical models to improve the predictions of species distributions while reducing 435 

the amount of unexplained variance in the model. 436 

Despite the well-known importance of incorporating phylogeny into SDMs, analyses 437 

applying phylogenetic generalized linear mixed models (PGLMMs) only use a phylogenetic 438 

“correction” (Ives & Helmus, 2011; Gallinat & Pearse, 2021). Compared to common linear 439 

model, PGLMMs also include a phylogenetic matrix as a random component (details in Box 440 

2). Although PGLMMs reduce overfitting and bring the Type-I error rate to an acceptable 441 

level, they do not help us identify which clade(s) may respond similarly to climate and 442 
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climatic change. How to do this effectively within the PGLMM framework remains an open 443 

question for future research.    444 

7. Summary 445 

Functional traits in large part determine species distributions. Compared to conventional 446 

SDMs, trait-based SDMs can better reveal how functional traits mediate geographic 447 

distributions of species along environmental gradients and how the resulting regional 448 

biodiversity patterns will change as the climate continues to change. Hierarchical trait-449 

based SDMs overcome limitations of process-based models that require fine-scale, species-450 

by-species parameterization of plasticity or adaptation determined empirically and 451 

experimentally. Hierarchical trait-based SDMs also can extend the use of trait-based SDMs 452 

across very large spatial, temporal, and taxonomic extents.  453 

There are two critical points that need to be accounted for when using hierarchical trait-454 

based SDMs, and that motivated this review. First, individual traits are not fixed 455 

parameters. Rather, they change through time and space as populations acclimate and 456 

adapt to changing environmental conditions. Therefore, trait variation must be modelled 457 

explicitly for different climatic spaces using trait-environment regressions whose 458 

parameters are then incorporated in trait-based SDMs. Second, functional traits are likely 459 

to be shared among related species, but these traits may not have been measured for all 460 

related taxa. Such unmeasured traits strongly affect the covariation of residuals, which may 461 

in turn affect the estimation and tests of the significance of regression coefficients. 462 

Therefore, hierarchical trait-based SDMs must, at a minimum, explicitly incorporate 463 

phylogenetic relationships among species as a random component, minimally to avoid 464 

overfitting and inflated Type-I error rates. Phylogenetic generalized linear mixed models 465 

are useful for assessing whether the results are affected by phylogeny, but they do not yet 466 

allow us to identify clade-specific patterns. Future models should be developed to better 467 

identify specific clades, and ultimately the biomes that harbor them, at particular risk of 468 

being imperiled. 469 

Finally, whether process-based or hierarchical, trait-based SDMs so far have used only a 470 
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small number of functional traits. More fitness-related traits should be measured and 471 

incorporated in future SDMs. International efforts to establish and promote interoperable 472 

trait databases will, if successful, enable us to examine long-term changes by multiple 473 

species traits and the resulting changes in biodiversity pattern at large spatial and 474 

taxonomic scales. 475 
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Box1 Description of traditional hierarchical trait-based framework (Pollock et al.,2012) 
 

The traditional hierarchical models can be described using the following four formulas: 

Pr(𝑌𝑖𝑗 = 1) = 𝑙𝑜𝑔𝑖𝑡−1 (𝑎[𝑖] +  𝑆𝑘[𝑖] ×  𝐸)                 (𝐴1) 

The response data 𝑌𝑖𝑗  are observed presences or absences of species 𝑖 in location 𝑗. In this 

base model (Equation A1), the logit probability that species i occurs at the jth location is equal to 

an intercept term 𝑎[𝑖] plus the product of a matrix of environmental variables (𝐸), which has 

rows 𝑗 representing the number of locations and columns k representing the number of 

environmental variables, and a vector of coefficients, one for each of the environmental variables 

(𝑆𝑘[𝑖]) (see Equation A3). The parameters 𝑎[𝑖] and 𝑆𝑘[𝑖] are modeled parameters that vary by 

species. 

𝑎[𝑖]~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇,𝜎)                                                                                         (𝐴2) 

The submodel for 𝑎[𝑖] includes the parameter 𝜇 , which represents the average probability of 

occurrence (on a logit scale) among species, and the parameter 𝜎, which is the degree to which a 

given species departs from its average probability of occurrence. 𝑆𝑘[𝑖] are the partial regression 

slopes that indicate the response of a given species to the relevant environmental variables. The 

sub-model for the 𝑆𝑘[𝑖] is as follows: 

𝑆𝑘[𝑖] =  𝐵𝑘[𝑖] +  𝐶𝑘𝑛 × 𝑇𝑟𝑎𝑖𝑡𝑠𝑛[𝑖]                                                               (𝐴3) 

The estimate of 𝑆𝑘[𝑖] is calculated as the intercept 𝐵𝑘[𝑖] plus the coefficient matrix 𝐶𝑘𝑛 and trait 

value matrix for the n = 1, 2 …, n traits (𝑇𝑟𝑎𝑖𝑡𝑠𝑛[𝑖]). The elements 𝐶𝑘𝑛 are partial trait 

contributions to species partial responses to each environmental variable, which describes how 

the trait matrix  𝐶𝑘𝑛 of n traits in k environments modulate responses to environmental 

conditions across species. The intercept 𝐵𝑘[𝑖] is modeled as: 

    𝐵𝑘[𝑖]~𝑁𝑜𝑟𝑚𝑎𝑙(𝑈[𝑘], 𝜏[𝑘])                                                                           (𝐴4) 

where 𝑈[𝑘] indicates the average response of species to environmental variables and 

𝜏[𝑘] reflects the degree of variation degree in species departures. The term 𝐵𝑘[𝑖] indicates how 

species depart from expected responses to each environmental variable given the species’ set of 

traits. The output of hierarchical SDMs involve dimensionless estimates of habitat suitability or 

probability of occurrence. 

Taking plant phenology as a simple example, the basic R code of a hierarchical model is as 

follows: 

#library(lme4) 

#Full model <- lmer (occurrence ~ temperature + precipitation + climate seasonality 

                  # Climatic factors that affect  

                  + temperature*phenology + precipitation*phenology + climate seasonality*phenology # 

Connection to phenology 

                  + (1+ temperature + precipitation + climate seasonality | species), 

                  # Responses to climatic factors vary among species  

                  data = data, family = binomial) 
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Box 2 Description of phylogenetic trait-based species distribution models 

Phylogenetic trait-based species distribution models (PGLMMs) provide a unique framework to 

include the evolutionary history of species (i.e., phylogeny) into analyses of species occurrences 

to explore how the shared biogeographic history of related species shape their distribution 

patterns. Some readily available tools, including the R packages “pez” and “phyr” can be used for 

phylogenetic correction. The basic form of PGLMMs is:  

Pr (𝑌𝑖𝑗 = 1) = 𝑎[𝑖] + (𝛼[𝑖]
𝑝

+ 𝛼𝑖) + (𝛽1+𝐶[𝑖] + 𝐶[𝑖]
𝑝

)𝑒𝑛𝑣𝑗 +  𝛽2𝑡𝑟𝑎𝑖𝑡𝑖𝑗 + 𝛽3𝑒𝑛𝑣𝑗 × 𝑡𝑟𝑎𝑖𝑡𝑖𝑗 +  𝑒𝑖𝑗 

where Pr (𝑌𝑖𝑗 = 1) represents the logit probability that species 𝑖 occurs at the jth site, which is 

equal to the intercept term 𝑎[𝑖] plus the fixed effects of environmental conditions at site j 

(𝑒𝑛𝑣𝑗;  𝛽1 ≠ 0), trait values of species 𝑖 at the jth site (𝑡𝑟𝑎𝑖𝑡𝑖𝑗;  𝛽2 ≠ 0), and their interactions 

(𝑒𝑛𝑣𝑗 × 𝑡𝑟𝑎𝑖𝑡𝑖𝑗;  𝛽3 ≠ 0); and random effects  𝛼𝑖 , 𝛼𝑖
𝑝
, 𝐶𝑖 , and 𝐶𝑖

𝑝
. Random effect 𝛼𝑖 allows 

different species to have different overall probabilities of occurrence, and 𝛼𝑖
𝑝
 models how 

closely related species have similar overall probabilities of occurrence. Random effect 𝐶𝑖  allows 

different species to have different responses to environments, and 𝐶𝑖
𝑝
 models how closely 

related species have similar responses to environments to capture the interactive effects of traits 

and environment for traits that have significant association with phylogeny.  

For exploring species distributions, the dependent variable is a binary (Bernoulli) which takes 

values of 0 or 1. However, PGLMMs could use other data distributions such as Gaussian, binomial 

or Poisson. For example, PGLMM can be used in models of trait-environment relationships, in 

which the dependent variable is the trait value, and the independent variables are different 

environmental variables. Species enter the model as random effect term and the phylogenetic 

covariance matrix accounts for known phylogenetic relationships. 
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Table 1 Summary of representative plant studies using trait-based framework. 

Model type Trait Spatial extent Conclusions Reference 

 

 

 

 

 

 

 

 

 

Process-based  

 

 

 

Phenology 

 

 

North America 

Phenology is a major 

determinant of plant species 

range and can be used to 

assess the impacts of global 

warming on plant 

distributions.  

 

Chuine & 

Beaubien, 2001 

 

 

 

Phenology 

 

 

North America 

Loss of species’ habitat would 

be mitigated since predictions 

take into account the local 

adaptation and trait plasticity 

to climate of a species. 

Morin et al., 

2008 

 

Phenology 

 

North America 

Climate limits species 

distributions mainly through 

their impact on phenological 

processes. 

Morin et al., 

2007 

 

Physiological 

characteristics 

 

Europe 

Physiological models can be 

used to derive physiological 

niche dimensions from species 

distribution data. 

Higgins et al., 

2012  

 

 

 

 

 

 

 

 

 

 

 

Correlative 

 

 

 

 

 

 

 

Specific leaf area 

(thickness) 

Root C, N content 

Specific root length 

Leaf C: N 

Leaf dry matter content 

Leaf area 

Seed mass 

 

 

 

Russia 

Plant functional traits could be 

used as predictors for 

forecasting changes in plant 

communities, and their 

associated ecosystem services, 

in response to global change. 

 

 

Soudzilovskaia et 

al., 2013  

Biomass 

Plant height 

Leaf width 

 

Central United States 

The assumption that species 

always respond 

homogenously to climate 

change is untenable  

Smith et al., 2017  

 

Specific leaf area 

Seed mass 

Plant height 

 

 

Australia 

SLA strongly modulates 

species response to rocky 

areas. Tall plants are 

competitive in high light and 

high rainfall conditions. Seed 

mass modulates species 

responses to soil texture. 

 

 

Pollock et al., 

2012 
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Specific leaf area 

Seed mass 

Plant height 

 

 

France 

Nonnative plants with 

exploitative traits are less 

dependent on human 

pressure, more efficient in 

resource rich environments 

and better at avoiding 

competition from natives. 

 

 

Carboni et al., 

2018 

 



 

Fig. 1 Conceptual diagram of newly developed hierarchical trait-based species 

distribution models (SDMs) that integrate trait-climate relationships. Both 

individual-specific functional traits and local environmental data are key initial inputs for 

hierarchical trait-based SDMs. Trait-climate relationships are also modeled to generate 

predicted trait values in a changing environment. These trait values are then substituted 

into the hierarchical SDMs to predict and forecast the probability of occurrence of 

individuals under the current and future environmental conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
Fig. 2 Conceptual diagram illustrating how functional traits mediate species 

distributions along environmental gradients. We illustrate examples for both positive 

(a–c) and negative (d–f) trait-environment interactions driving species occurrences. We 

assumed: 1) the trait value linearly increases along the environment gradient (a, d); 2) 

species’ probability of occurrence monotonically increases along the environment 

gradient. Environmental factors affecting trait variation and species distribution are 

different. We defined environment A as environmental factors that affect trait variations 

and environment B as environmental factors that affect species occurrences. In the case of 

a positive interaction between a trait and an environmental gradient, high trait values 

make the relationship between species occurrence and an environmental variable more 

positive (b, c). Alternatively, a negative interaction between a trait and an environmental 

gradient indicates the opposite: high trait value is beneficial at the low end of 

environmental gradient, and low trait value is beneficial at the high end of environmental 

gradient (e, f). 



  

Fig. 3 Changes in species ranges forecasted by conventional (a, c) and hierarchical 

trait-based SDMs (b, d). The maps compare the current and future distributions 

(probability of occurrence) of Trientalis borealis (Raf.) U.Manns & Anderb. We classified 

future species distribution ranges into three categories. Orange areas represent regions 

currently occupied by T. borealis that are projected to remain suitable in the future (i.e., 

range persistence); blue areas represent regions currently occupied by T. borealis that are 

projected to have low suitability in the future (i.e., range retreat); yellow areas represent 

regions currently unoccupied by T. borealis that are projected to have high suitability in the 

future (i.e., migration; range expansion). Future forecasts are based on Shared 

Socioeconomic Pathways 5-8.5 (SSP5-8.5) scenario from average estimate of six General 

Circulation Models (GCMs) in 2070. 
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