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Bridging data silos to holistically
model plant macrophenology

Summary

Phenological response to global climate change can impact

ecosystem functions. There are various data sources from which

spatiotemporal and taxonomic phenological data may be obtained:

mobilized herbaria, community science initiatives, observatory

networks, and remote sensing. However, analyses conducted to

date have generally relied on single sources of these data. Siloed

treatment of data in analyses may be due to the lack of

harmonization across different data sources that offer partially

nonoverlapping information and are often complementary. Such

treatment precludes a deeper understanding of phenological

responses at varying macroecological scales. Here, we describe a

detailed vision for theharmonizationof phenological data, including

thedirect integrationofdisparate sourcesofphenological datausing

a common schema. Specifically, we highlight existing methods for

data harmonization that can be applied to phenological data: data

design patterns, metadata standards, and ontologies. We describe

how harmonized data from multiple sources can be integrated into

analyses using existing methods and discuss the use of automated

extraction techniques. Data harmonization is not a new concept in

ecology, but the harmonization of phenological data is overdue.We

aim to highlight the need for better data harmonization, providing a

roadmap for how harmonized phenological datamay fill gaps while

simultaneously being integrated into analyses.

Introduction

Many biological interactions depend on phenological patterns that
reflect ecological and evolutionary responses to climatic conditions
(e.g. Chmura et al., 2019). For example, plant phenology – the
recurring seasonal timing of leaf out, flowering, fruiting, and leaf
senescence – is a key set of genetically and environmentally
controlled traits that are central to plant reproduction, plant–
pollinator interactions, and availability of resources to herbivores.
Plant phenology is also linked directly to ecosystem processes and
services relevant to human society, such as carbon sequestration,
seasonal allergies, and food security (e.g. Fatima et al., 2020; Gray
&Ewers, 2021; Cope et al., 2022). Because plant phenology is very
sensitive to ongoing rapid environmental change, there is an urgent
need to better quantify and predict plant phenological dynamics
(e.g. Gallinat et al., 2021; D. S. Park et al., 2021), including how

they pertain to species range changes (Peng et al., 2024;
Ramirez-Parada et al., 2025a).

A major challenge to quantifying and predicting phenology lies
in its scale dependence (D. S. Park et al., 2021). Like many other
ecological phenomena, inferences made about phenology depend
on how data are combined across space, time, or taxa (Levin, 1992;
D. S. Park et al., 2021). Furthermore, environmental drivers of
phenology (e.g. temperature, precipitation, and insolation) can
vary and interact differently across space and time (e.g. Peters
et al., 2007; Chamberlain & Wolkovich, 2023), and plastic
organismal responses to these drivers can differ among individuals,
populations, species, and communities (Inouye et al., 2019;
Ramirez-Parada et al., 2024). Studying the effects of phenology on
ecological processes at global scales requires data that span scales of
time, taxonomy, and levels of biological organization. Under-
standing and analyzing scale dependencies of phenological
responses is a growing field known as macrophenology, which
can inform processes at larger spatial extents (Doi et al., 2017;
Gallinat et al., 2021).

Data sources across scales of space, time, taxonomy, and levels of
biological organization do exist, although they have rarely been
analyzed simultaneously. For plant phenological data, these
include herbarium specimens, community science initiatives,
observatory networks, and remote sensing platforms (e.g. Richard-
son et al., 2018; Gray & Ewers, 2021; Reyes-Gonz�alez et al., 2021;
Davis et al., 2022).Different data types capture disparate ecological
levels and spatiotemporal scales as a result of their sampling design
and effort. For instance, remote sensing may provide continuous
landscape-level monitoring over a long period of time, whereas
observatory networks may provide periodic sampling with field
surveys of individuals and populations that vary in their temporal
extent (Fig. 1). These scale mismatches often hinder data
harmonization – the direct integration of disparate data types
under a common schema.

The lack of harmonization across datasets limits our ability to
assess phenological responses to climate at various scales. All
phenological data sources have blind spots on the ecological levels,
generating observed variation across these levels. For example,
remotely sensed data cannot resolve species; population-level
metrics (e.g. peak flowering dates) do not resolve individuals, and
data from herbarium specimens and community science platforms
(e.g. iNaturalist) are rarely repeated within individuals and
populations. Integration of different phenological data sources
can capture greater variation across scales. For instance, Iwanycki
Ahlstrand et al. (2022) found that observatory network, herbarium,
and remotely sensed data detected different temporal and spatial
variation in phenology, such that combining these datasets
captured greater variation. In some instances, data integration that
captures greater variation across space leads to discoveries about
regional differences in phenological responses. Everingham
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et al. (2023) used historic field data, herbarium records, and
contemporary field data across New South Wales, Australia, and
detected a delay in flowering phenology through time in the
Southern Hemisphere compared with the advancement of flower-
ing phenology in the Northern Hemisphere. Furthermore,
single-source analyses cannot directly assess how variability at one
ecological level scales to determine patterns at the next level,
making them less ecologically informative. For example, detecting
a longer flowering season within a community is not enough to
assert that the seasonal availability of flowering species is increasing:
such lengthening could occur either because populations are
flowering longer or due to a greater spread of flowering onsets
among populations thatmay in fact decrease the average diversity of
flowering species available throughout the season (Ramirez-Parada
et al., 2025b). Finally, although we emphasize here the value of
cross-scale analyses with data integration, it is also important to
note that local extent studies provide invaluable data for local
management and conservation.

In this viewpoint, we assert that data harmonization is critical for
improving our understanding of the impacts of climate change on
macrophenology (Melaas et al., 2016; Taylor et al., 2019; Gallinat
et al., 2021; Iwanycki Ahlstrand et al., 2022; Everingham
et al., 2023; Ramirez-Parada et al., 2025a). We focus on plant
phenological datasets collected predominantly in theUnited States,
although similar data have been collected at sites world-wide

(Tsuchida et al., 2005, Nagai et al., 2010, Cook et al., 2012,
Mariani et al., 2013, Davis et al., 2022, Domingo-Marimon
et al., 2022, Iwanycki Ahlstrand et al., 2022,D. S. Park et al., 2023;
Supporting Information Table S1). We explore the characteristics
of these data and reveal the unintentional data silos that limit our
ability to answer a range of important ecological and evolutionary
questions about phenology. Additionally, we identify howbringing
together multiple data sources will enable us to answer new
questions. To move toward a common goal of phenological data
harmonization, we provide a road map describing methods for
harmonization, how harmonization can help to fill gaps in
phenological data across space and time, and methods for
integrating harmonized data into analyses. We end with a call
for harmonization of phenological data to rapidly advance
phenological research.

A multiplicity of data sources with different strengths
and weaknesses

Phenological data have provided invaluable insights into the
varying effects of changing climate on plants (Li et al., 2019;
Zohner et al., 2023), and recent papers highlight potential new
insights to be made from each independent data type (Davis
et al., 2022; Dronova & Taddeo, 2022; Binley & Bennett, 2023;
Zhu & Song, 2023). We cannot get a complete picture of

Fig. 1 Data aspects across phenological data types with example datasets. Each data type offers a distinct level of biological, taxonomic, spatial, temporal,
and phenophase information. Each level contains example-specific information comparing the similarities and differences across data types. Differences
between data types (across columns) highlight gaps where data harmonization would benefit and maximize coverage within each level. We use a bell
curve to exemplify the sampling frequency within the duration of a phenophase. The bell curve in the remote sensing column exemplifies both satellite
(bright red) and PhenoCam (grey). The color of their text also distinguishes the spatial resolution for satellites (dark grey) and PhenoCam (light grey). The
young leaves symbol also includes fully opened green leaves for remote sensing and Phenocam, and no. plant functional type (PFT) per region of interest
(ROI) varies for Phenocams as the cameras capture different fields of view depending on landscape characteristics (e.g. topography; Liu et al., 2024). Note
that there is overlap between the National Ecological Observatory Network (NEON), community science, and remote sensing because NEON uses the data
collection protocols of the National Phenology Network and the USA Phenocam Network, and the NEON Airborne Observation Platform collects remotely
sensed hyperspectral and red-green-blue imagery.
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phenology without integrating across data types due to gaps within
any single data type. In this section, we draw attention to the
strengths, weaknesses, and gaps of each data type with respect to
space, time, taxonomy, life history, and levels of biological
organization.

Herbarium specimens

Each herbarium specimen provides phenological information
observed at a specific historical point in time and at a specific
location, and therefore reflects an individual plant’s phenological
response to recent or to long-term climatic conditions.Collectively,
herbarium specimens have been mobilized to study many species’
and communities’ phenological sensitivity to local climatic
conditions and to climatic change (e.g. Davis, 2023) at broad
spatial scales (e.g. Willis et al., 2017; Park et al., 2018; I. W. Park
et al., 2021; Zhu & Song, 2023; Ramirez-Parada et al., 2025b).
Many of the large herbarium collections in the United States have
increased the accessibility of phenological data contained in these
specimens through massive efforts to digitize millions of physical
specimens and the information contained in their labels with the
centralization of data into repositories (e.g. the Global Biodiversity
Information Facility (GBIF), n.d.; Southwestern Environmental
Information Network (SEINet); GBIF; SEINet Portal Net-
work, 2023) (Hedrick et al., 2020; Phang et al., 2022). However,
specimens in countries with less digital infrastructure in place are
less accessible or less frequently digitized, leading to biogeographi-
cal biases in spatial coverage (Daru et al., 2018; Davis et al., 2022).
Despite the large taxonomic coverage at the species level, herbarium
specimens provide relatively coarse phenophase information,
represent single ‘snapshots’ of phenology in space and time, and
may exhibit sampling biases that make it unclear whether a
specimen represents an early, median, or late observation relative to
its source population (Ramirez-Parada et al., 2022; Park
et al., 2024; Schmidt et al., 2025; Fig. 1). Moreover, as specimens
represent single observations of individuals distributed widely in
space and time, variation in phenology among specimens
represents both within- and among-population differences. Thus,
identifying the level of ecological organization associated with
relationships between phenology and environmental variables –
and the mechanisms underlying such relationships – requires
careful statistical design and interpretation of results (Davis
et al., 2015; Pearse et al., 2017; Ramirez-Parada et al., 2024).
Another limitation of herbarium-derived data for use in phenolo-
gical studies is the difficulty in identifying dates of occurrence for
phenological phases other than flowering and fruiting for most
species. Additionally, their patchy temporal and spatial coverage
can generate sampling biases that may limit their use at global or
local scales (Daru et al., 2018; Schmidt et al., 2025).

Community science initiatives

Community science initiatives harness the power of volunteers to
record phenological data across broad spatial extents while
providing high-resolution phenophase information from a variety
of taxa (Reyes-Gonz�alez et al., 2021; Domingo-Marimon

et al., 2022). Such initiatives vary in the degree of standardization
used in data collection. For instance, image contributors for
community-sourced app-based records (e.g. iNaturalist) do not
follow specific protocols for capturing phenophases. By contrast,
the USANational Phenology Network (USA-NPN) is an example
of a community science initiative with volunteer engagement across
the country through their Nature’s Notebook platform (Crimmins
et al., 2017; https://www.usanpn.org/). It has a standardized
protocol to facilitate repeated observations of specific individuals
(or patches) at a chosen site (Crimmins et al., 2017; Fig. 1). These
data provide estimates of date of onset, termination, and duration
of multiple phenophases at high temporal resolution and national
coverage (Fig. 1). However, while these data encompass observa-
tions for thousands of species, most correspond to a narrow set of
indicator species for which specific observational protocols have
been developed. Furthermore, investment by volunteers leads to
large variations in taxonomic coverage and duration of observations
(e.g. a single vs multiple years). These data often contain
observation bias and inconsistencies in protocol implementation
that can limit their application (Reyes-Gonz�alez et al., 2021;
Domingo-Marimon et al., 2022). In some cases, participantsmight
record the phenological status of only one individual at one site
many times per year (sometimes less), but they might not sample
multiple individuals at a given site, thus greatly limiting
population-level inferences.

Observatory networks

Observatory networks provide systematic, long-term field data that
follow individuals throughout their phenological cycle (Gallinat
et al., 2021), thus providing opportunities to quantify inter- and
intraspecific variation in phenology across ecoregions. The US
National Science Foundation’s National Ecological Observatory
Network (NEON) is one such long-term, ecological monitoring
network designed to collect data through 2049 (Elmendorf
et al., 2016; https://www.neonscience.org/). NEON works closely
with the USA-NPN and USA Phenocam networks to collect data
and has adopted their standards and protocols (Richardson
et al., 2007; https://phenocam.nau.edu/webcam/). This offers an
exciting example of howdifferent phenologicalmonitoring systems
can coordinate efforts for standardized observations and facilitate
data harmonization (Richardson et al., 2007). Similar to NPN,
NEON provides high-resolution phenological information
through repeated measures in their field sampling design (Fig. 1).
NEON also records co-located information on a suite of other
biological and physical variables relevant to phenology (e.g. beetle
pollinator abundance, climatic variables, and carbon dioxide flux;
Nagy et al., 2021). Despite the continental scale and projected
30-yr lifespan scale of NEON, their NPN-style field observations
are limited in (1) taxonomic coverage due to resource constraints;
(2) spatial coverage as data are collected only at the several dozen
established NEON sites; and (3) current temporal range due to the
relatively recent establishment of the network in 2019 (Fig. 1). The
Long-term Ecological ResearchNetwork has some sites that collect
phenological information, but these data are not collected with a
standardized protocol, and synthesizing them is challenging
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(Mulder et al., 2021; Schulze, 2023; but see Keenan et al., 2014).
Moving forward,NEONpromises to be an irreplaceable long-term
reference for fine-resolution phenological data compatible with all
data amassed by the USA-NPN through their active partnership
and delivering NEON data through the USA-NPN portal.

Remote sensing

Remotely sensed data are capable of capturing continental and
interannual changes in phenology, yet the spatial resolution of the
data is often too coarse to discern phenological changes at
the species level (Gallinat et al., 2021; Reyes-Gonz�alez
et al., 2021). Satellites, near-Earth imagery, and PhenoCams have
allowed for spatially continuous observations with increasing
temporal resolution (Zarnetske et al., 2019; Lechner et al., 2020;
Dronova & Taddeo, 2022; Latifi et al., 2023). Remote sensing
techniques related to phenology have been applied successfully to
detect the start and end of the growing season (i.e. leaf out and leaf
off) for either dominant tree taxa or functional types, and primarily
in temperate deciduous and tropical dry forests (Dronova &
Taddeo, 2022). Recent applications of deep learning algorithms to
high-resolution hyperspectral and red-green-blue images (1 and
0.25 m, respectively) from near-Earth (i.e. airborne) remote
sensing of NEON sites enable the segmentation and identification
of individual tree crowns (Weinstein et al., 2024), paving the way
for the detection of individual tree-crown phenology from frequent
near-Earth image acquisition (e.g. by drones). Furthermore, the
National Aeronautics and Space Administration’s Surface Biology
and Geology High Frequency Time Series (SHIFT) near-Earth
remote sensing campaign in 2023 enabled the detection of
superblooms in the grasslands of coastal California from weekly
flyovers (Angel et al., 2025). Although hyperspectral sensors have
broadened the possibilities of remotely sensed phenological
monitoring, such efforts remain limited to specific sites (e.g.
NEON sites) or campaigns with high spatial and temporal
resolution. Another limitation is that the earliest remote sensing
data are limited to the 1970’s (i.e. Landsat 1 products) and do not
provide substantial preglobal warming information comparable to
point-based herbarium data.

Moving forward: bridging data silos in
macrophenology

Data harmonization

Data harmonization is not a new concept in ecology. For decades,
there has been tremendous interest across the scientific community
in pooling and harmonizing plant trait data (Keune et al., 1991;
Tarboton et al., 2008; Reichman et al., 2011; Wieczorek
et al., 2012; Boyle et al., 2013; Pollet et al., 2015; Stucky
et al., 2018; Record et al., 2021; Flantua et al., 2023). For instance,
the TRY database has excelled in aggregating trait data and
supported extensive advances in trait-based plant ecology, but lacks
a common format that limits compatibility between data sets
(Kattge et al., 2011, 2020). More recently, ecologists have
recognized the importance of considering intraspecific trait

variation, emphasizing the coordination of open science efforts
around individual-level trait information (Violle et al., 2012; Cope
et al., 2022). Except by remote sensing networks, phenological data
are collected from individual organisms and allow for exploration
of intraspecific trait variation. This makes phenological data an
excellent test bed for developing and testing approaches for data
harmonization of individual-level traits. Various approaches exist
for harmonizing ecological data that could be applied to
phenological data.Many of these approaches incorporate common
terminology and structures (i.e. design patterns) representing
relational tables tracking organismal information (e.g. taxonomy
and measurement; i.e. trait, number of individuals) and other
important metadata (e.g. geographic locations and differences in
sampling methodologies; O’Brien et al., 2021; Keller et al., 2023;
Fig. 2).

Using common terminology and notation is a key aspect of
harmonizing phenological data to make it easier for researchers
(and algorithms) to discover and use data. Ontologies provide a
structured, formal language for the standardization of terminology
and concepts related to data management (see Stucky et al., 2018;
Schneider et al., 2019; Lenters et al., 2021; O’Brien et al., 2021;
Dumschott et al., 2023; Keller et al., 2023). To our knowledge, the
most well-developed ontology of phenology terms is the Plant
PhenologyOntology (PPO; Stucky et al., 2018),which assembled a
robust aggregated vocabulary from global phenological records.
Contributions toward such efforts are crucial for dispelling
uncertainties in naming conventions for phenophases. For
example, intensity-based vocabulary may require a minimum
percentage of reproductive organs to be displayed as ‘open flowers’
for an individual’s phenophase to be identified as ‘flowering’,
whereas qualitative assessments of flowering status may simply
require the presence of a single open flower. PPO uses a framework
that allows integration with vocabularies that capture other
ecological traits and important information (e.g. the location of
observation). The Ecological Trait Data Standard (ETS; Schneider
et al., 2019) is a common vocabulary to facilitate trait data
harmonization and is implemented into some trait data integration
networks (Open Traits Network; Gallagher et al., 2020). Notably,

Automatic trait
extraction

Harmonized phenology
data

Macroecology models

Species
distribution

models

AI/ML
algorithms

OntologiesData design
patterns

Metadata
documentation

Fig. 2 Cyclical connections between phenological data harmonization and
artificial intelligence (AI)/machine learning (ML) trait extraction can
produce data to feed into models, further supporting improved predictions
of plant phenology.
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ETS incorporates terms used by theDarwinCore Standard (DwC),
a glossary of terms to facilitate sharing information about
biodiversity maintained by the Biodiversity Information Standards
Taxonomic Databases Working Group. Common vocabularies
propagate a shared understanding of phenological phenomena that
lay the groundwork for the harmonization of data into a common
structure. Robust multilingual vocabularies already exist; ENVO
(Buttigieg et al., 2016) and EnvThes (FAIRsharing.org, 2025),
both describe ecosystem-level concepts that dovetail with phenol-
ogy and could be integrated at some level. PPO, ENVO, and
EnvThes are all capable of handling languages coded by ISO 639-3
(which includes Indigenous languages), although for themost part,
translations are limited to major European languages and English.
Work to reconcile subtle differences in meaning and cultural
context is complex (VanDerbilt et al., 2010), and use of Indigenous
languages will require additional extensive work in areas of
governance and data sovereignty (Jennings et al., 2025).

Common terminology may also make it easier to consistently
document differences in protocols for observing the phenophase
across data types, which is important for contextualizing inferences
from the data. For instance, when combining community science
and observatory network data in analyses, it is incumbent to know
the difference between observation methods because each has
different levels of observation uncertainty (Binley & Ben-
nett, 2023). Accessible information about sampling design would
help compare levels of uncertainty between data types and assess
their degree of interoperability for specific research objectives
(Fig. 3). Sharing reproducible methods in open platforms, such as
protocol.io (https://protocols.io; Accessed 3 June 2024) will
contribute toward the development of standard disciplinary
formats that are useful in metadata curation. Shared protocols
between NEON and NPN are a notable example, but even their
metadata are found only on site-specific publications or
their websites. Furthermore, any protocols used in the collection
or curation of herbarium specimens (including their digital
records) that are relevant to plant phenology should be included
in the metadata or the specimen label. This fits perfectly with the
concept of the GlobalMetaherbarium and the Extended Specimen
concept (Davis, 2023). Protocol standardswith accessiblemetadata
information and sampling disclosures will be key in supporting
data integration and harmonization among data sources while
highlighting commonalities and differences in observations
(Schneider et al., 2019;Dumschott et al., 2023; Keller et al., 2023).

Along with common terminology and well-documented proto-
cols for phenological data collection, a robust data design pattern
(i.e. relational structure) will empower the increased integration of
harmonized data into derived data products that maymake it easier
to account for differences in sampling effort or biases in
downstream analyses. Although there are various data design
patterns for plant traits (e.g. structural traits of palms incorporating
the ETS; Lenters et al., 2021), there is not a well-adopted data
design pattern for plant phenological traits. We propose a
phenological trait extension of the Ecological Community Data
Design Pattern (ecocomDP), which was developed for harmoniz-
ing community ecology biodiversity data (O’Brien et al., 2021).
The original ecocomDP model is extended with two features: (1)

reconfiguring the table for mapping variables to external
dictionaries to allow any variable attribute (e.g. a trait) to be
recorded and linked to an external dictionary of concepts, such as
the ontologies mentioned above, and (2) adding additional
descriptive fields to the dataset summary table (Fig. 4, red boxes).
Because ecocomDP already accommodates community-level
analyses, this extension would enable researchers to ask questions
across levels of biological organization (e.g. from individuals to
populations to communities). Another advantage of incorporating
trait data into ecocomDP is that existing NEON and Long Term
Ecological Research (LTER) Network data from various taxa are
already harmonized with ecocomDP, making it a good candidate
for the future incorporation of phenological traits and additional
individual-level traits. ecocomDP also employs concepts used by
ETS and DwC, making data harmonized into its structure easily
convertible to the DwC-Archive. Finally, ecocomDP strongly
emphasizes metadata, which is essential to ensure that downstream
users can determine the relevance of the data for their study
objectives through filtering.

Although ecocomDP is designed to harmonize in situ
phenological observations, this initial step toward standardization
across observations has the potential to increase the compatibility of
in situ and remotely sensed phenological data. When harmonizing
in situ and satellite phenological data, one must consider the spatial
resolutions at which they are recorded (Angel et al., 2025).Many in
situ phenological data are point observations or recorded on a
designated plot. Remotely sensed phenological satellite data are
gridded or rasterized information and may be recorded at different
spatial, temporal, and spectral resolutions. Robust data design
patterns like ecocomDP ensure that spatial metadata (e.g.
latitude/longitude and geographic coordinate systems) for in situ

Temporal (interannual) changes in landscape
phenology onset

Scales of influence on population and
community responses in landscape

phenology

Phenological differences and
sensitivity among functional groups

and native status

Intra- and interspecific
synchrony of phenology across

population, communities

Plastic responses of
individuals to local climate

change

Fig. 3 Hierarchy of general objectives in plant macrophenology, from
broad to specific. The phenophase event of interest may determine the
data types appropriate for achieving the objective.
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observations are included in an intermediate format that is readily
interoperable and can be further derived into gridded information
for alignment with rasterized satellite images (O’Brien et al., 2021).
The ecocomDP model is based on when-where-taxon-
what_was_measured. The location table is based on a point, which
works for small plot data. For satellite data, a pixel is best
represented with its center point as the locus, and its size, extent,
and dimensions recorded in the location_ancillary table. Taxa are
often inexact, and this is particularly true for satellite data. Exact
identification is not required by the model. Indiscernible taxa can
be listed as ‘Taxon 1’, ‘Taxon 2’, etc., with finer identification
and taxonomic reference added later. A key value table accom-
modates any measurement. For satellite data, the simplest
measurementmight be color intensity, or some othermeasurement
obtained via an RS algorithm, linked to an identifier with more
information.

For instance, formatting phenological data from different in situ
sources (e.g. herbaria, phenocams, and field observations) into a
common intermediate format complete with spatial metadata (e.g.
spatial point or bounding box coordinates with geographic
coordinate system information) facilitates the integration of in situ
phenological observations and satellite-derived phenological data
that may be recorded at different spatial resolutions. Phenological

estimates derived from USA-NPN or herbarium point observa-
tions can be summarizedwithin the grid cells of a raster that is of the
same resolution and extent as the rasterized image of phenological
satellite data. For example, USA-NPN creates spring indices to
map the onset of spring based on observations submitted by
community observers (Crimmins et al., 2017). Furthermore,
climate data can be used to create anomaly indices of events or
near-term forecasts, such as the date of the first appearance of leaves
or flowers, similar to the start of season and end of season satellite-
derived products (Schwartz&Hanes, 2010;Crimmins et al., 2017;
Wheeler et al., 2024). Derived products from data design patterns,
such as ecocomDP, can streamline reformatting tasks between
point and rasterized phenological data, facilitating compatibility
between the two data sources.

Methods for integrating harmonized phenological data into
analyses

When modeling phenology, we need to expand our perspective on
where we can apply observations beyond classic phenological
models (i.e. location-specific growing degree day models; Cham-
berlain&Wolkovich, 2023).With the integration of different data
types into analyses, models must account for underlying biases

Fig. 4 Schema of the updated ecocomDP data
design pattern with the extension to
accommodate traits (O’Brien et al., 2021).
Added fields in the dataset summary table
(boxed in red) allow users to include the level of
biological organization, level of observation, and
the number of variables associated with the trait.
The variable attribute (previously
variable_mappling) now includes variable type to
indicate the type of trait measured (e.g. start and
end dates).
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from different data containing information on phenology and its
drivers across spatial and temporal scales. Here, we discuss
macroecological approaches to solving two challenges: (1)
differences in how phenophases are recorded and (2) spatial
and temporal mismatches between phenological, geographic,
and climatic data. These hurdles greatly impede efforts of
macroscale phenology studies as they limit the geographic scope
and questions that may be explored (Gallinat et al., 2021).

To address the first challenge of differences in how phenophases
are recorded, there are many methods phenologists could adapt
from species distribution modeling (SDM). Instead of modeling a
response of species occurrence or abundance, we can model the
probability of occurrence of a phenophase throughout the year. For
instance, such amodel could be used to create rasterized forecasts of
species-level phenological point observations from herbarium,
community science, or observatory network data into a spatially
gridded dataset that is compatible with remote sensing data (Peng

et al., 2024). For example, Yoder et al. (2024) used herbarium and
community science data to create gridded predictions of whether
Joshua trees are expected to have masted or flowered for each year
and location. These rasterized predictions of mast events can then
be compared with remotely sensed gridded data on leaf phenology
(i.e. peak greenness). Notably, most airborne or satellite remotely
sensed phenological data cannot discern information below the
community level (e.g. plant functional types), but combining such
remotely sensed data with harmonized in situ phenological
observations (e.g. point data for dominant genera or species from
site visits or PhenoCams) can enable inference of higher taxonomic
resolutions (see Browning et al., 2017; Chandra et al., 2022;
Domingo-Marimon et al., 2022; Shao et al., 2023; Angel
et al., 2025).

Another approach to account for differences in how phenophases
are recorded is occupancy modeling (OM), which is widely used in
the field ofmacroecology tomodel species distributions and provides

Box 1. Integrated Species Distribtuion Model (ISDM) roadmap for harmonized models

To illustrate how ISDMs could be used to simultaneously model different types of phenological data, we present a roadmap to constructing a harmonized
model using open flowers of red maples (Acer rubrum) using open-source data types that differ in detection of flowering (herbarium (PO) and field
observations from National Ecological Observatory Network (NEON) and USA National Phenology Network (USA-NPN) (PA)). To better understand the
heterogeneity across data types, it is important to first understand where observations occur in space in time to guide model parameterization (panel i, ii).
Visualizations of observations for each data source depict disparities in sampling effort across time. The main assumption for an ISDM is that the data
observedaremodeling the sameecological statewhere the truedistribution is unknown(i.e. latent state;panel iii). Thecommonparameters sharedbetween
eachmodel address the assumption of observations pertaining to the same ecological state (panel iv). The ISDM incorporates shared spatial biases and any
known samplingbiases into the species-specificmodels to predict theprobability of floweringoccurringacross space at a point in time (panel iv) to producea
probabilistic map of flowering across space at that time. Examples of available software for running ISDMs include the pointedSDMor intSDMR packages
(Mostert & O’Hara, 2025; Mostert et al., 2025).
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a rich methodology by addressing imperfect detection and
incorporating geographic location error from specimens for analyses
of harmonized phenological data with differences in sampling effort
(Erickson & Smith, 2021). One difference in sampling
effort presented by phenological data is that some data types only
record presence-only (PO) information on phenophases (e.g.
herbarium records; iNaturalist), whereas others record both
presences and absences (PA) of phenophases (e.g. NPN and
NEON). With an OM framework, differences in sampling effort
can be accounted for by treating each data type as a designated survey
or method to account for differences in detection. Recent advances
with integrated SDMs that model PO and PA responses provide a
powerful approach for combining data types with differences in
sampling effort (Miller et al., 2019; Isaac et al., 2020; M€akinen
et al., 2024). Integrated SDMs could be a powerful way to combine
disparatephenological data types (Box1) andovercome the challenge
of accounting for differences in how phenophases are recorded.

A second challenge is that phenological data and drivers of
phenological responses are often measured at different temporal
and spatial scales (and therefore, levels of biological organization;
Fig. 1). Automated integration and synthesis tools have begun to be
developed to facilitate cross-scale phenological studies. For
instance, the Pheno-Synthesis Software Suite (PS3) summarizes
ground-based phenological observations into gridded climate and
phenological indices (Morisette et al., 2021). One consideration in
using such software is understanding what spatial and temporal
resolutions and extents have the greatest influence on phenology: to
explore the optimal spatial scale between phenological data and its
drivers (e.g. climate and land use topography), different grains (e.g.
varying radii around a central phenological observation point or
pixel) and extents (e.g. continental, ecoregion, and site for NPN
or NEON) that are then compared in analyses (Zarnetske
et al., 2019; Read et al., 2020; Li, 2022).

A promising approach for exploring scales of space and time
simultaneously is through interpretable machine learning (ML; see
Box 2). Interpretable ML aims to understand what input data
characteristics are most important in driving predictions of output
data. Local interpretation with ML – wherein the prediction of a
model for a single observation in space and time is considered, as
opposed to trying to understand the overall predictive behavior of
the model across the entire dataset – is especially relevant for
exploring spatiotemporal drivers of geo-referenced phenological
data. This allows for the visualization and estimation of interactions
between location features (i.e. spatial coordinates of phenological
data points or grid cells) and othermodel features (e.g. temperature
data represented by different spatial resolutions or temporal lags;
Li, 2022). An example of a local interpretationmethod comes from
an extension of the Shapley value in game theory (Shapley, 1953),
which evaluates how contributions of different players collectively
result in a contest’s outcome. SHapley Additive exPlanations
(SHAP), a recent ML offshoot of Shapley values, quantifies how
much each feature collectively contributes to averaged model
predictions (�Strumbelj & Kononenko, 2014). Historical pheno-
logical data could be used as features in such a model to predict
contemporary or future phenological responses. The Shapley value
and other local interpretability methods (e.g. Local Interpretable

Model-agnostic Explanation; Ribeiro et al., 2016) offer an exciting
new opportunity to simultaneously explore spatiotemporal effects
of drivers of harmonized phenological data. Overall, existing
modeling approaches from macrosystems ecology and data
informatics pose unique solutions to challenges by the integration
of phenological data simultaneously into analyses.

Concluding remarks

Predicting plant phenological responses to global change is important
given its close ties to ecosystemprocesses andhumanhealth.However,
given the scale dependence of plant phenology, it is difficult to make
informed predictions in the absence of data that spans space, time,
taxa, and levels of biological organization. Fortunately, suchdata are at
our fingertips through various efforts in recording plant phenology
at different scales and with different methods of observation, but the
distinct types of phenological data need to be harmonized to unlock
their full potential. Efforts to bridgephenological data silos canbenefit
from successful examples from other subdisciplines in ecology.
Approaches to harmonize data can be adopted from existing
ecological data design patterns, metadata standards, and ontologies.
Biogeographic and macroecological studies offer many solutions for
integrating disparate data with unique sampling biases into models.
They provide a richmethodology for tackling imperfect detection and
incorporating geographic location error from specimens (Erickson&
Smith, 2021). Data informatics approaches are another promising

Box 2. Glossary

Data design pattern: A blueprint that captures the essential data
characteristics so that a centralized workflow can access, reformat, and
structure data (O’Brien et al., 2021).

Data harmonization:Direct integrationof different plant phenological
data categories (e.g. community science, herbarium, and remote
sensing) under a common schema.

Data integration (or data interoperability): Disparate data sources that
may be used in tandem and are readily applicable in modeling or
management frameworks (Wilkinson et al., 2016; Stucky et al., 2018;
Brenskelle et al., 2019).

Data management: The organization and handling of data that
supports its continuous discovery, evaluation, and reuse (Wilkinson
et al., 2016).

Machine learning (ML): A subset of methodologies that use
algorithms to automate learning predictions about data (e.g. Deep
Learning, random forest; ‘Artificial Intelligence (AI) vs Machine
Learning’, n.d.; Pearson et al., 2020).

Occupancy model (OM): A spatially explicit model that determines
the occupation of an organism using presence and absence information.

Ontology: Standardized vocabulary and a language framework using
formal logic that relates terms to concepts and allows for the integration
of different data (Madin et al., 2008; Stucky et al., 2018).

Plant phenology: The timing of recurring life stages (reproductive or
growth) of a plant; with a focus on angiosperms.

Phenophase: The phenological stage of a plant or animal that details a
particular life cycle stage (e.g. leaf emergence, migration, and breeding).

Species distribution modeling (SDM): A form of occupancy modeling
that predicts species distributions over space based on the attributes of
the locations where they are currently known to occur.
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tool to automate data extraction and harmonization while improving
predictions of plant phenology through pattern detection. Data
interoperability is not a new concept in ecology, and phenological
data harmonization is long overdue.
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