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Summary 29 

● Phenological response to global climate change can impact ecosystem functions. There 30 

are various data sources from which spatiotemporal, and taxonomic phenological data 31 

may be obtained: mobilized herbaria, community-science initiatives, observatory 32 

networks, and remote-sensing. However, analyses conducted to date have generally relied 33 

on single sources of these data.  34 

● Siloed treatment of data in analyses may be due to the lack of harmonization across 35 

different data sources that offer partially non-overlapping information and often 36 

complementary. Such treatment precludes a deeper understanding of phenological 37 

responses at varying macroecological scales. Here, we describe a detailed vision for the 38 

harmonization of phenological data, including the direct integration of disparate sources 39 

of phenological data using a common schema.  40 

● Specifically, we highlight existing methods for data harmonization that can be applied to 41 

phenological data: data-design patterns, metadata standards, and ontologies. We describe 42 

how harmonized data from multiple sources can be integrated into analyses using existing 43 

methods and discuss the use of automated extraction techniques. 44 

● Data harmonization is not a new concept in ecology but the harmonization of 45 

phenological data is overdue. We aim to highlight the need for better data harmonization 46 

providing a roadmap for how harmonized phenological data may fill gaps while 47 

simultaneously integrated into analyses.   48 

 49 

Keywords: Data harmonization, Data management, Ontologies, Scales, SDMs 50 

Introduction  51 

 Many biological interactions depend on phenological patterns that reflect ecological and 52 

evolutionary responses to climatic conditions (e.g., Chmura et al., 2019). For example, plant 53 

phenology—the recurring seasonal timing of leaf-out, flowering, fruiting, and leaf senescence—54 

is a key set of genetically- and environmentally-controlled traits that are central to plant 55 

reproduction, plant-pollinator interactions, and availability of resources to herbivores. Plant 56 

phenology is also linked directly to ecosystem processes and services relevant to human society, 57 
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such as carbon sequestration, seasonal allergies, and food security (e.g., Fatima et al., 2020; Gray 58 

& Ewers, 2021; Cope et al., 2022). Because plant phenology is very sensitive to ongoing rapid 59 

environmental change, there is an urgent need to better quantify and predict plant phenological 60 

dynamics (e.g., Gallinat et al., 2021; Park et al., 2021), including how they pertain to species 61 

range changes (Peng et al., 2024; Ramirez-Parada et al., 2025a).  62 

A major challenge to quantifying and predicting phenology lies in its scale-dependence 63 

(D. S. Park et al., 2021). Like many other ecological phenomena, inferences made about 64 

phenology depend on how data are combined across space, time, or taxa (Levin, 1992; D. S. Park 65 

et al., 2021). Furthermore, environmental drivers of phenology (e.g., temperature, precipitation, 66 

insolation) can vary and interact differently across space and time (e.g., Peters et al., 2007; 67 

Chamberlain & Wolkovich, 2023), and plastic organismal responses to these drivers can differ 68 

among individuals, populations, species, and communities (Inouye et al., 2019; Ramirez-Parada 69 

et al., 2024). Studying the effects of phenology on ecological processes at global scales requires 70 

data that span scales of time, taxonomy, and levels of biological organization. Understanding and 71 

analyzing scale-dependencies of phenological responses is a growing field known as 72 

macrophenology, which can inform processes at larger spatial extents (Doi et al., 2017; Gallinat 73 

et al., 2021).  74 

 Data sources across scales of space, time, taxonomy, and levels of biological organization 75 

do exist, although they have rarely been analyzed simultaneously. For plant phenological data, 76 

these include herbarium specimens, community science initiatives, observatory networks, and 77 

remote-sensing platforms (e.g., Gray & Ewers, 2021; Reyes-González et al., 2021; Davis et al., 78 

2022; Richardson et al., 2018). Different data types capture disparate ecological levels and 79 

spatiotemporal scales as a result of their sampling design and effort. For instance, remote sensing 80 

may provide continuous landscape-level monitoring over a long period of time, whereas 81 

observatory networks may provide periodic sampling with field surveys of individuals and 82 

populations that vary in their temporal extent (Fig. 1). These scale mismatches often hinder data 83 

harmonization—the direct integration of disparate data types under a common schema.  84 

The lack of harmonization across datasets limits our ability to assess phenological 85 

responses to climate at various scales. All phenological data sources have blind spots on the 86 

ecological levels, generating observed variation across these levels. For example, remotely 87 
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sensed data cannot resolve species; population-level metrics (e.g., peak flowering dates) do not 88 

resolve individuals, and data from herbarium specimens and community-science platforms (e.g., 89 

iNaturalist) are rarely repeated within individuals and populations. Integration of different 90 

phenological data sources can capture greater variation across scales. For instance, Iwanycki 91 

Ahlstrand et al. (2022) found that observatory network, herbarium, and remotely sensed data 92 

detected different temporal and spatial variation in phenology, such that combining these 93 

datasets captured greater variation. In some instances, data integration that captures greater 94 

variation across space leads to discoveries about regional differences in phenological responses. 95 

Everingham et al. (2023) used historic field data, herbarium records, and contemporary field data 96 

across New South Wales, Australia, and detected a delay in flowering phenology through time in 97 

the Southern Hemisphere compared to the advancement of flowering phenology in the Northern 98 

Hemisphere. Furthermore, single-source analyses cannot directly assess how variability at one 99 

ecological level scales to determine patterns at the next level, making them less ecologically 100 

informative. For example, detecting a longer flowering season within a community is not enough 101 

to assert that the seasonal availability of flowering species is increasing: such lengthening could 102 

occur either because populations are flowering longer, or due to a greater spread of flowering 103 

onsets among populations that may in fact decrease the average diversity of flowering species 104 

available throughout the season (Ramirez-Parada et al., 2025b). Finally, although we emphasize 105 

here the value of cross-scale analyses with data integration, it is also important to note that local 106 

extent studies provide invaluable data for local management and conservation.  107 
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 108 

Figure 1. Data aspects across phenological data types with example datasets. Each data type 109 

offers a distinct level of biological, taxonomic, spatial, temporal, and phenophase information. 110 

Each level contains example-specific information comparing the similarities and differences 111 

across data types. Differences between data types (across columns) highlight gaps where data 112 

harmonization would benefit and maximize coverage within each level. We use a bell-curve to 113 

exemplify the sampling frequency within the duration of a phenophase. The bell-curve in the 114 

remote sensing column exemplifies both satellite (bright red) and PhenoCam (grey). The color 115 

of their text also distinguishes the spatial resolution for satellites (dark grey) and PhenoCam 116 

(light grey). The young leaves symbol also include fully opened green leaves for remote 117 

sensing and Phenocam, and # PFT per Region of Interest (ROI) varies for Phenocams as the 118 

cameras capture different fields of view depending on landscape characteristics (e.g., 119 

topography; Liu et al., 2024). Note that there is overlap between the National Ecological 120 

Observatory Network (NEON), community science, and remote sensing because NEON uses 121 

the data collection protocols of the National Phenology Network and the USA Phenocam 122 

Network, and the NEON Airborne Observation Platform collects remotely sensed 123 

hyperspectral and red-green-blue imagery.   124 
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 125 

In this viewpoint, we assert that data harmonization is critical for improving our 126 

understanding of the impacts of climate change on macrophenology (Gallinat et al., 2021; see 127 

Melaas et al., 2016; Taylor et al., 2019; Ramirez-Parada et al., 2025a; Everingham et al., 2023; 128 

Iwanycki Ahlstrand et al., 2022). We focus on plant phenological datasets collected 129 

predominantly in the United States, although similar data have been collected at sites worldwide 130 

(see Nagai et al., 2010, Tsuchida et al., 2005; Domingo-Marimon et al., 2022; Iwanycki 131 

Ahlstrand et al., 2022; Mariani et al., 2013; Cook et al., 2012; Davis et al., 2022; D.S. Park et 132 

al., 2023; Appendix Table S1). We explore the characteristics of these data and reveal the 133 

unintentional data silos that limit our ability to answer a range of important ecological and 134 

evolutionary questions about phenology. Additionally, we identify how bringing together 135 

multiple data sources will enable us to answer new questions. To move toward a common goal of 136 

phenological data harmonization, we provide a road map describing methods for harmonization, 137 

how harmonization can help to fill gaps in phenological data across space and time, and methods 138 

for integrating harmonized data into analyses. We end with a call for harmonization of 139 

phenological data to rapidly advance phenological research.   140 

A multiplicity of data sources with different strengths and weaknesses 141 

 Phenological data have provided invaluable insights into the varying effects of changing 142 

climate on plants (D. Li et al., 2019; Zohner et al., 2023), and recent papers highlight potential 143 

new insights to be made from each independent data type (Davis et al., 2022; Dronova & 144 

Taddeo, 2022; Binley & Bennett, 2023; Zhu & Song, 2023). We cannot get a complete picture of 145 

phenology without integrating across data types due to gaps within any single data type. In this 146 

section, we draw attention to the strengths, weaknesses, and gaps of each data type with respect 147 

to space, time, taxonomy, life history, and levels of biological organization.   148 

Herbarium Specimens  149 

 Each herbarium specimen provides phenological information observed at a specific 150 

historical point in time and at a specific location, and therefore reflects an individual plant’s 151 

phenological response to recent or to long-term climatic conditions. Collectively, herbarium 152 
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specimens have been mobilized to study many species’ and communities’ phenological 153 

sensitivity to local climatic conditions and to climatic change (e.g., Davis, 2023) at broad spatial 154 

scales (e.g., D. S. Park et al., 2018; I. W. Park et al., 2021; Willis et al., 2017; Zhu & Song, 155 

2023; Ramirez-Parada et al., 2025b). Many of the large herbarium collections in the U.S. have 156 

increased the accessibility of phenological data contained in these specimens through massive 157 

efforts to digitize millions of physical specimens and the information contained in their labels 158 

with the centralization of data into repositories (e.g., the Global Biodiversity Information Facility 159 

[GBIF], Southwestern Environmental Information Network [SEINet]) (GBIF; SEINet Portal 160 

Network, 2023; Hedrick et al., 2020; also see Phang et al., 2022). However, specimens in 161 

countries with less digital infrastructure in place are less accessible or less frequently digitized, 162 

leading to biogeographical biases in spatial coverage (Daru et al., 2018; Davis et al., 2022). 163 

Despite the large taxonomic coverage at the species level, herbarium specimens provide 164 

relatively coarse phenophase information, represent single “snapshots” of phenology in space 165 

and time, and may exhibit sampling biases that make it unclear whether a specimen represents an 166 

early, median, or late observation relative to its source population ( Ramirez-Parada et al., 2022; 167 

I. W. Park et al., 2024; Schmidt et al., 2025; Fig. 1). Moreover, as specimens represent single 168 

observations of individuals distributed widely in space and time, variation in phenology among 169 

specimens represents both within- and among-population differences. Thus, identifying the level 170 

of ecological organization associated with relationships between phenology and environmental 171 

variables–and the mechanisms underlying such relationships–requires careful statistical design 172 

and interpretation of results (Davis et al., 2015; Ramirez-Parada et al., 2024; Pearse et al., 2017). 173 

Another limitation of herbarium-derived data for use in phenological studies is the difficulty in 174 

identifying dates of occurrence for phenological phases other than flowering and fruiting for 175 

most species. Additionally, their patchy temporal and spatial coverage can generate sampling 176 

biases that may limit their use at global or local scales (Daru et al., 2018; Schmidt et al., 2025).  177 

Community-science initiatives  178 

Community-science initiatives harness the power of volunteers to record phenological 179 

data across broad spatial extents while providing high-resolution phenophase information from a 180 

variety of taxa (Reyes-González et al., 2021; Domingo-Marimon et al., 2022). Such initiatives 181 

vary in the degree of standardization used in data collection. For instance, image contributors for 182 
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community-sourced app-based records (e.g., iNaturalist) do not follow specific protocols for 183 

capturing phenophases. In contrast, the USA National Phenology Network (USA-NPN) is an 184 

example of a community-science initiative with volunteer engagement across the country 185 

through their Nature’s Notebook platform (Crimmins et al., 2017; https://www.usanpn.org/). It 186 

has a standardized protocol to facilitate repeated observations of specific individuals (or patches) 187 

at a chosen site (Crimmins et al., 2017; Fig. 1). These data provide estimates of date of onset, 188 

termination, and duration of multiple phenophases at high temporal resolution and national 189 

coverage (Fig. 1). However, while these data encompass observations for thousands of species, 190 

most correspond to a narrow set of indicator species for which specific observational protocols 191 

have been developed. Furthermore, investment by volunteers leads to large variations in 192 

taxonomic coverage and duration of observations (e.g., a single versus multiple years). These 193 

data often contain observation bias and inconsistencies in protocol implementation that can limit 194 

their application (Reyes-González et al., 2021; Domingo-Marimon et al., 2022). In some cases, 195 

participants might record the phenological status of only one individual at one site many times 196 

per year (sometimes less), but they might not sample multiple individuals at a given site, thus 197 

greatly limiting population-level inferences.     198 

Observatory Networks  199 

Observatory networks provide systematic, long-term field data that follow individuals 200 

throughout their phenological cycle (Gallinat et al., 2021), thus providing opportunities to 201 

quantify inter- and intraspecific variation in phenology across ecoregions. The U.S. National 202 

Science Foundation’s National Ecological Observatory Network (NEON) is one such long-term, 203 

ecological monitoring network designed to collect data through 2049 (Elmendorf et al., 2016; 204 

https://www.neonscience.org/). NEON works closely with the USA-NPN and USA Phenocam 205 

networks to collect data and has adopted their standards and protocols (Richardson et al., 2007; 206 

https://phenocam.nau.edu/webcam/). This offers an exciting example of how different 207 

phenological monitoring systems can coordinate efforts for standardized observations and 208 

facilitate data harmonization (Richardson et al., 2007). Similar to NPN, NEON provides high-209 

resolution phenological information through repeated measures in their field sampling design 210 

(Fig. 1). NEON also records co-located information on a suite of other biological and physical 211 

variables relevant to phenology (e.g., beetle pollinator abundance, climatic variables, carbon 212 
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dioxide flux) (Nagy et al., 2021). Despite the continental scale and projected 30-year lifespan 213 

scale of NEON, their NPN-style field observations are limited in i.) taxonomic coverage due to 214 

resource constraints; ii.) spatial coverage as data are collected only at the several dozen 215 

established NEON sites; and iii.) current temporal range due to the relatively recent 216 

establishment of the network in 2019 (Fig. 1). The Long-term Ecological Research Network has 217 

some sites that collect phenological information, but these data are not collected with a 218 

standardized protocol and synthesis of them is challenging (Mulder et al., 2021; Schulze, 2023; 219 

but see Keenan et al., 2014). Moving forward, NEON promises to be an irreplaceable long-term 220 

reference for fine-resolution phenological data compatible with all data amassed by the USA-221 

NPN through their active partnership and delivering NEON data through the USA-NPN portal.    222 

Remote Sensing  223 

Remotely-sensed data are capable of capturing continental and interannual changes in 224 

phenology, yet the spatial resolution of the data is often too coarse to discern phenological 225 

changes at the species level (Gallinat et al., 2021; Reyes-González et al., 2021). Satellites, near-226 

Earth imagery, and PhenoCams have allowed for spatially continuous observations with 227 

increasing temporal resolution (Zarnetske et al., 2019; Lechner et al., 2020; Latifi et al., 2023; 228 

Dranova and Taddeo, 2022). Remote-sensing techniques related to phenology have been applied 229 

successfully to detect the start and end of the growing season (i.e., leaf out and leaf off) for either 230 

dominant tree taxa or functional types, and primarily in temperate deciduous and tropical dry 231 

forests (Dronova & Taddeo, 2022). Recent applications of deep-learning algorithms to high-232 

resolution hyperspectral and red-green-blue images (1-m and 0.25-m, respectively) from near-233 

Earth (i.e., airborne) remote sensing of NEON sites enable the segmentation and identification of 234 

individual tree crowns (Weinstein et al., 2024), paving the way for the detection of individual 235 

tree-crown phenology from frequent near-Earth image acquisition (e.g., by drones). Furthermore, 236 

the National Aeronautics and Space Administration’s Surface Biology and Geology High 237 

Frequency Time Series (SHIFT) near-Earth remote-sensing campaign in 2023 enabled the 238 

detection of superblooms in the grasslands of coastal California from weekly flyovers (Angel et 239 

al., 2025). Although hyperspectral sensors have broadened the possibilities of remotely-sensed 240 

phenological monitoring, such efforts remain limited to specific sites (e.g., NEON sites) or 241 

campaigns with high spatial and temporal resolution. Another limitation is that the earliest 242 
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remote sensing data are limited to the 1970’s (i.e. Landsat 1 products) and do not provide 243 

substantial pre-global warming information comparable to point-based herbarium data.  244 

Moving forward: bridging data silos in macrophenology 245 

Data Harmonization 246 

Data harmonization is not a new concept in ecology. For decades there has been 247 

tremendous interest across the scientific community in pooling and harmonizing plant trait data 248 

(Keune et al., 1991; Tarboton et al., 2008; Reichman et al., 2011; Wieczorek et al., 2012; Boyle 249 

et al., 2013; Pollet et al., 2015; Stucky et al., 2018; Record et al., 2021; Flantua et al., 2023). For 250 

instance, the TRY database has excelled in aggregating trait data and supported extensive 251 

advances in trait-based plant ecology, but lacks a common format that limits compatibility 252 

between data sets (Kattge et al., 2011, 2020). More recently, ecologists have recognized the 253 

importance of considering intraspecific trait variation, emphasizing the coordination of open 254 

science efforts around individual-level trait information (Violle et al., 2012; Cope et al., 2022). 255 

Except by remote-sensing networks, phenological data are collected from individual organisms 256 

and allow for exploration of intraspecific trait variation. This makes phenological data an 257 

excellent test-bed for developing and testing approaches for data harmonization of individual-258 

level traits. Various approaches exist for harmonizing ecological data that could be applied to 259 

phenological data. Many of these approaches incorporate common terminology and structures 260 

(i.e., design patterns) representing relational tables tracking organismal information (e.g., 261 

taxonomy, measurement [i.e., trait, number of individuals]) and other important metadata (e.g, 262 

geographic locations and differences in sampling methodologies (O’Brien et al., 2021; Keller et 263 

al., 2023)(Fig. 2).   264 
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 265 
Figure 2.  Cyclical connections between phenological data harmonization and artificial 266 

intelligence (AI) / machine learning (ML) trait extraction can produce data to feed into 267 

models, further supporting improved predictions of plant phenology.   268 

 269 

Using common terminology and notation is a key aspect of harmonizing phenological 270 

data to make it easier for researchers (and algorithms) to discover and use data. Ontologies 271 

provide a structured, formal language for the standardization of terminology and concepts related 272 

to data management (see Stucky et al., 2018; Schneider et al., 2019; O’Brien et al., 2021; 273 

Lenters et al., 2021; Dumschott et al., 2023; Keller et al., 2023). To our knowledge, the most 274 

well-developed ontology of phenology terms is the Plant Phenology Ontology (PPO, Stucky et 275 

al.,2018), which assembled a robust aggregated vocabulary from global phenological records. 276 

Contributions towards such efforts are crucial for dispelling uncertainties in naming conventions 277 

for phenophases. For example, intensity-based vocabulary may require a minimum percentage of 278 

reproductive organs to be displayed as “open flowers” for an individual’s phenophase to be 279 

identified as “flowering”, whereas qualitative assessments of flowering status may simply 280 

require the presence of a single open flower. PPO uses a framework that allows integration with 281 

vocabularies that capture other ecological traits and important information (e.g., the location of 282 

observation). The Ecological Trait Data Standard (ETS; Schneider et al., 2019) is a common 283 
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vocabulary to facilitate trait data harmonization and is implemented into some trait data 284 

integration networks (Open Traits Network; Gallagher et al., 2020). Notably, ETS incorporates 285 

terms used by the Darwin Core Standard (DwC), a glossary of terms to facilitate sharing 286 

information about biodiversity maintained by the Biodiversity Information Standards Taxonomic 287 

Databases Working Group. Common vocabularies propagate a shared understanding of 288 

phenological phenomena that lay the groundwork for the harmonization of data into a common 289 

structure. Robust multilingual vocabularies already exist; ENVO (Buttigieg et al., 2016) and 290 

EnvThes (FAIRsharing.org, 2025) both describe ecosystem-level concepts that dovetail with 291 

phenology and could be integrated at some level. PPO, ENVO, and EnvThes are all capable of 292 

handling languages coded by ISO 639-3 (which includes Indigenous languages), although for the 293 

most part, translations are limited to major European languages and English. Work to reconcile 294 

subtle differences in meaning and cultural context is complex (Vanderbilt et al., 2010), and use 295 

of Indigenous languages will require additional extensive work in areas of governance and data 296 

sovereignty (Jennings et al., 2025). 297 

Common terminology may also make it easier to consistently document differences in 298 

protocols for observing the phenophase across data types, which is important for contextualizing 299 

inferences from the data. For instance, when combining community-science and observatory-300 

network data in analyses, it is incumbent to know the difference between observation methods 301 

because each has different levels of observation uncertainty (Binley & Bennett, 2023). 302 

Accessible information about sampling design would help compare levels of uncertainty between 303 

data types and assess their degree of interoperability for specific research objectives (Fig. 3). 304 

Sharing reproducible methods in open platforms such as protocol.io (https://protocols.io; 305 

Accessed June 3, 2024) will contribute towards the development of standard disciplinary formats 306 

that are useful in metadata curation. Shared protocols between NEON and NPN are a notable 307 

example, but even their metadata is found only on site-specific publications or their websites. 308 

Furthermore, any protocols used in the collection or curation of herbarium specimens (including 309 

their digital records) that are relevant to plant phenology should be included in the metadata or 310 

the specimen label. This fits perfectly with the concept of the Global Metaherbarium and the 311 

Extended Specimen concept (Davis, 2023). Protocol standards with accessible metadata 312 

information and sampling disclosures will be key in supporting data integration and 313 
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harmonization among data sources while highlighting commonalities and differences in 314 

observations (Schneider et al., 2019; Dumschott et al., 2023; Keller et al., 2023). 315 

 316 

Figure 3. Hierarchy of general objectives in plant macrophenology, from broad to specific. 317 

The phenophase event of interest may determine the data types appropriate for achieving the 318 

objective. 319 

 320 

Along with common terminology and well-documented protocols for phenological data 321 

collection, a robust data design pattern (i.e., relational structure) will empower the increased 322 

integration of harmonized data into derived data products that may make it easier to account for 323 
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differences in sampling effort or biases in downstream analyses. Although there are various data 324 

design patterns for plant traits (e.g., structural traits of palms incorporating the ETS [Lenters et 325 

al., 2021]), there is not a well-adopted data design pattern for plant phenological traits. We 326 

propose a phenological trait extension of the Ecological Community Data Design Pattern 327 

(ecocomDP), which was developed for harmonizing community ecology biodiversity data 328 

(O’Brien et al., 2021). The original ecocomDP model is extended with two features: 1) 329 

reconfiguring the table for mapping variables to external dictionaries to allow any variable 330 

attribute (e.g., a trait) to be recorded and linked to an external dictionary of concepts, such as the 331 

ontologies mentioned above, and 2) adding additional descriptive fields to the dataset summary 332 

table (Fig. 4, red boxes). Because ecocomDP already accommodates community-level analyses, 333 

this extension would enable researchers to ask questions across levels of biological organization 334 

(e.g., from individuals to populations to communities). Another advantage of incorporating trait 335 

data into ecocomDP is that existing NEON and Long Term Ecological Research (LTER) 336 

Network data from various taxa are already harmonized with ecocomDP, making it a good 337 

candidate for the future incorporation of phenological traits as well as additional individual-level 338 

traits. ecocomDP also employs concepts used by ETS and DwC, making data harmonized into its 339 

structure easily convertible to the DwC-Archive. Finally, ecocomDP strongly emphasizes 340 

metadata, which is essential to ensure that downstream users can determine the relevance of the 341 

data for their study objectives through filtering.  342 

  Although ecocomDP is designed to harmonize in-situ phenological observations, this 343 

initial step towards standardization across observations has the potential to increase the 344 

compatibility of in-situ and remotely sensed phenological data. When harmonizing in-situ and 345 

satellite phenological data, one must consider the spatial resolutions at which they are recorded 346 

(Angel et al., 2025). Many in-situ phenological data are point observations or recorded on a 347 

designated plot. Remotely sensed phenological satellite data are gridded or rasterized 348 

information and may be recorded at different spatial, temporal, and spectral resolutions. Robust 349 

data design patterns like ecocomDP ensure that spatial metadata (e.g. latitude/longitude and 350 

geographic coordinate systems) for in-situ observations are included in an intermediate format 351 

that is readily interoperable and can be further derived into gridded information for alignment 352 

with rasterized satellite images (O’Brien et al., 2021). The ecocomDP model is based on when-353 

where-taxon-what_was_measured. The location table is based on a point, which works for small 354 
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plot data. For satellite data, a pixel is best represented with its center point as the locus, and its 355 

size, extent and dimensions recorded in the location_ancillary table. Taxa are often inexact, and 356 

this is particularly true for satellite data. Exact identification is not required by the model. 357 

Indiscernible taxa can be listed as “taxon 1”, taxon 2”, etc., with finer identification and 358 

taxonomic reference added later. A key-value table accommodates any measurement. For 359 

satellite data the simplest measurement might be color intensity, or some other measurement 360 

obtained via an RS algorithm, linked to an identifier with more information. 361 
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 362 

 363 

Figure 4. Schema of the updated ecocomDP data design pattern with the extension to 364 

accommodate traits (O’Brien et al., 2021). Added fields in the dataset summary table (boxed 365 

in red) allow users to include the level of biological organization, level of observation, and the 366 

number of variables associated with the trait. The variable attribute (previously 367 

variable_mappling) now includes variable type to indicate the type of trait measured (e.g. start 368 
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and end dates).  369 

  370 

For instance, formatting phenological data from different in-situ sources (e.g., herbaria, 371 

phenocams, field observations) into a common intermediate format complete with spatial 372 

metadata (e.g., spatial point or bounding box coordinates with geographic coordinate system 373 

information) facilitates the integration of in-situ phenological observations and satellite-374 

derived phenological data that may be recorded at different spatial resolutions. Phenological 375 

estimates derived from USA-NPN or herbarium point observations can be summarized within 376 

the grid cells of a raster that is of the same resolution and extent as the rasterized image of 377 

phenological satellite data. For example, USA-NPN creates spring indices to map the onset of 378 

spring based on observations submitted by community observers (Crimmins et al., 2017). 379 

Furthermore, climate data can be used to create anomaly indices of events or near-term 380 

forecasts such as the date of the first appearance of leaves or flowers, similar to the Start of 381 

Season (SOS) and End of Season (EOS) satellite-derived products (Crimmins et al., 2017; 382 

Schwartz & Hanes, 2010; Wheeler et al., 2024). Derived products from data design patterns 383 

such as ecocomDP can streamline reformatting tasks between point and rasterized 384 

phenological data, facilitating compatibility between the two data sources. 385 

Methods for integrating harmonized phenological data into analyses 386 

When modeling phenology we need to expand our perspective on where we can apply 387 

observations beyond classic phenological models (i.e., location-specific growing degree day 388 

models; Chamberlain & Wolkovich, 2023). With the integration of different data types into 389 

analyses, models must account for underlying biases from different data containing information 390 

on phenology and its drivers across spatial and temporal scales. Here we discuss macroecological 391 

approaches to solving two challenges: 1) differences in how phenophases are recorded and 2) 392 

spatial and temporal mismatches between phenological, geographic, and climatic data. These 393 

hurdles greatly impede efforts of macroscale phenology studies as they limit the geographic 394 

scope and questions that may be explored (Gallinat et al., 2021).  395 

To address the first challenge of differences in how phenophases are recorded, there are 396 

many methods phenologists could adapt from species distribution modeling (SDM). Instead of 397 
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modeling a response of species occurrence or abundance, we can model the probability of 398 

occurrence of a phenophase throughout the year. For instance, such a model could be used to 399 

create rasterized forecasts of species-level phenological point observations from herbarium, 400 

community science, or observatory network data into a spatially gridded dataset that is 401 

compatible with remote sensing data (Peng et al., 2024). For example, Yoder et al. (2024) used 402 

herbarium and community-science data to create gridded predictions of whether Joshua trees are 403 

expected to have masted or flowered for each year and location. These rasterized predictions of 404 

mast events can then be compared to remotely-sensed gridded data on leaf phenology (i.e., peak 405 

greenness). Notably, most airborne or satellite remotely sensed phenological data cannot discern 406 

information below the community level (e.g., plant functional types), but combining such 407 

remotely sensed data with harmonized in-situ phenological observations (e.g., point data for 408 

dominant genera or species from site visits or PhenoCams) can enable inference of higher 409 

taxonomic resolutions (see Domingo-Marimon et al., 2022; Angel et al., 2025; Browning et al., 410 

2017; Chandra et al., 2022; Shao et al., 2023).  411 

Another approach to account for differences in how phenophases are recorded is 412 

occupancy modeling (OM), which is widely used in the field of macroecology to model species 413 

distributions and provides a rich methodology by addressing imperfect detection and 414 

incorporating geographic location error from specimens for analyses of harmonized phenological 415 

data with differences in sampling effort (Erickson & Smith, 2021). One difference in sampling 416 

effort presented by phenological data is that some data types only record presence-only (PO) 417 

information on phenophases (e.g., herbarium records; iNaturalist), whereas others record both 418 

presences and absences (PA) of phenophases (e.g., NPN, NEON). With an OM framework, 419 

differences in sampling effort can be accounted for by treating each data type as a designated 420 

survey or method to account for differences in detection. Recent advances with integrated SDMs 421 

that model PO and PA responses provide a powerful approach for combining data types with 422 

differences in sampling effort (Miller et al., 2019; Isaac et al., 2020; Mäkinen et al., 2024). 423 

Integrated SDMs could be a powerful way to combine disparate phenological data types (Box 1) 424 

and overcome the challenge of accounting for differences in how phenophases are recorded. 425 
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 428 

A second challenge is that phenological data and drivers of phenological responses are 429 

often measured at different temporal scales and spatial scales (and therefore, levels of biological 430 

organization) (Fig. 1). Automated integration and synthesis tools have begun to be developed to 431 

facilitate cross-scale phenological studies. For instance, the Pheno-Synthesis Software Suite 432 

(PS3) summarizes ground-based phenological observations into gridded climate and 433 

phenological indices (Morisette et al., 2021). One consideration in using such software is 434 

understanding what spatial and temporal resolutions and extents have the greatest influence on 435 

phenology; to explore the optimal spatial scale between phenological data and its drivers (e.g., 436 

climate, land use topography), different grains (e.g., varying radii around a central phenological 437 

observation point or pixel) and extents (e.g., continental, ecoregion, site for NPN or NEON) that 438 

are then compared in analyses (Zarnetske et al., 2019; Read et al., 2020; Z. Li, 2022).  439 

A promising approach for exploring scales of space and time simultaneously is through 440 

interpretable machine learning (ML). Interpretable ML aims to understand what input data 441 

characteristics are most important in driving predictions of output data. Local interpretation with 442 

ML—wherein the prediction of a model for a single observation in space and time is considered, 443 

as opposed to trying to understand the overall predictive behavior of the model across the entire 444 

dataset—is especially relevant for exploring spatio-temporal drivers of geo-referenced 445 

phenological data. This allows for the visualization and estimation of interactions between 446 

location features (i.e., spatial coordinates of phenological data points or grid cells) and other 447 

model features (e.g., temperature data represented by different spatial resolutions or temporal 448 

lags; Z. Li, 2022). An example of a local interpretation method comes from an extension of the 449 

Shapley value in game theory (Shapley 1953), which evaluates how contributions of different 450 

players collectively result in a contest’s outcome. SHapley Additive exPlanations (SHAP), a 451 

recent ML offshoot of Shapley values, quantifies how much each feature collectively contributes 452 

to averaged model predictions (Štrumbelj & Kononenko, 2014). Historical phenological data 453 

could be used as features in such a model to predict contemporary or future phenological 454 

responses. The Shapley value and other local interpretability methods (e.g., Local Interpretable 455 

Model-agnostic Explanation or LIME; Ribeiro et al., 2016) offer an exciting new opportunity to 456 

simultaneously explore spatiotemporal effects of drivers of harmonized phenological data. 457 

Overall, existing modeling approaches from macrosystems ecology and data informatics pose 458 
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unique solutions to challenges by the integration of phenological data simultaneously into 459 

analyses.    460 

Concluding remarks 461 

Predicting plant phenological responses to global change is important given its close ties 462 

to ecosystem processes and human health. However, given the scale-dependence of plant 463 

phenology, it is difficult to make informed predictions in the absence of data that spans space, 464 

time, taxa, and levels of biological organization. Fortunately, such data are at our fingertips 465 

through various efforts in recording plant phenology at different scales and with different 466 

methods of observation, but the distinct types of phenological data need to be harmonized to 467 

unlock their full potential. Efforts to bridge phenological data silos can benefit from successful 468 

examples from other subdisciplines in ecology. Approaches to harmonize data can be adopted 469 

from existing ecological data design patterns, metadata standards, and ontologies. Biogeographic 470 

and macroecological studies offer many solutions for integrating disparate data with unique 471 

sampling biases into models. They provide a rich methodology for tackling imperfect detection 472 

and incorporating geographic location error from specimens (Erickson & Smith, 2021). Data 473 

informatics approaches are another promising tool to automate data extraction and harmonization 474 

while improving predictions of plant phenology through pattern detection. Data interoperability 475 

is not a new concept in ecology, and phenological data harmonization is long overdue.  476 

Glossary 477 

Data design pattern: A blueprint that captures the essential data characteristics so that a 478 

centralized workflow can access, reformat, and structure data (O’Brien et al., 2021). 479 

Data harmonization: Direct integration of different plant phenological data categories (e.g., 480 

community science, herbarium, remote sensing) under a common schema  481 

Data integration (or data interoperability):  Disparate data sources that may be used in tandem 482 

and are readably applicable in modeling or management frameworks (Brenskelle et al., 2019; 483 

Stucky et al., 2018; Wilkinson et al., 2016).  484 
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Data management: The organization and handling of data that supports its continuous discovery, 485 

evaluation, and reuse (Wilkinson et al., 2016).  486 

Machine learning (ML): A subset of methodologies that use algorithms to automate learning 487 

predictions about data (e.g., Deep Learning, random forest; “Artificial Intelligence (AI) vs. 488 

Machine Learning,” n.d.; Pearson et al., 2020).  489 

Occupancy model (OM): A spatially explicit model that determines the occupation of an 490 

organism using presence and absence information. 491 

Ontology: Standardized vocabulary and a language framework using formal logic that relates 492 

terms to concepts and allows for the integration of different data (Madin et al., 2008; Stucky et 493 

al., 2018). 494 

Plant phenology: The timing of recurring life stages (reproductive or growth) of a plant; with a 495 

focus on angiosperms.  496 

Phenophase: The phenological stage of a plant or animal, that details a particular life cycle stage 497 

(e.g., leaf emergence, migration, breeding). 498 

Species Distribution Model (SDM): A form of occupancy modeling that predicts species 499 

distributions over space based on the attributes of the locations where they are currently known 500 

to occur.  501 
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