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29 Summary

30 ● Phenological shifts to global climate change impact ecosystem functions. There are 

31 various data sources from which spatiotemporal, and taxonomic phenological data may 

32 be obtained: mobilized herbaria, community-science initiatives, observatory networks, 

33 and remote-sensing. However, analyses conducted to date have generally relied on single 

34 sources of data, thus treating alternative data sources as isolated silos. 

35 ● Siloed treatment of data in analyses may be due to the lack of harmonization across 

36 different data sources, that offer partially non-overlapping information and are often 

37 complementary. Such treatment precludes a deeper understanding of phenological 

38 responses at macroecological scales. Here, we describe data harmonization as the direct 

39 integration of disparate sources of phenological data using a common schema. 

40 ● We highlight existing methods for data harmonization that can be applied to phenological 

41 data: data-design patterns, metadata standards, and ontologies. We describe how 

42 harmonized data from multiple sources can be integrated into analyses using existing 

43 methods and discuss the use of automated extraction techniques.

44 ● Data harmonization is not a new concept in ecology but the harmonization of 

45 phenological data is long overdue. We aim to highlight the need for better data 

46 harmonization providing a roadmap for how harmonized phenological data may fill data 

47 gaps while simultaneously integrated into analyses.  

48

49 Keywords: Data harmonization, Data management, Ontologies, Scales, SDMs

50 Introduction 

51 Many biological interactions depend on phenological patterns that reflect ecological and 

52 evolutionary responses to climatic conditions (e.g., Chmura et al., 2019). For example, plant 

53 phenology — the recurring seasonal timing of leaf-out, flowering, fruiting, and leaf senescence 

54 — is a key set of genetically- and environmentally-controlled traits that are central to plant 

55 reproduction, plant-pollinator interactions, and availability of resources to herbivores. Plant 

56 phenology is also linked directly to ecosystem processes and services relevant to human society, 

57 such as carbon sequestration, seasonal allergies, and food security (e.g., Fatima et al., 2020; Gray 
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58 & Ewers, 2021; Cope et al., 2022). Because plant phenology is very sensitive to ongoing rapid 

59 environmental change, there is an urgent need to better quantify and predict plant phenological 

60 dynamics (e.g., Gallinat et al., 2021; Park et al., 2021). 

61 A major challenge to quantifying and predicting phenology lies in its scale-dependence 

62 (D. S. Park et al., 2021). Like many other ecological phenomena, inferences made about 

63 phenology depend on how data are combined across space, time, or taxa (Levin, 1992; D. S. Park 

64 et al., 2021). Furthermore, environmental drivers of phenology (e.g., temperature, precipitation, 

65 solar insolation) can vary across space and time (e.g., Chamberlain & Wolkovich, 2023), and 

66 plastic organismal responses to these drivers can differ among individuals, populations, species, 

67 and communities (Ramirez-Parada et al., 2024). Studying the effects of phenology on ecological 

68 processes at global scales is the objective of a growing field known as macrophenology; such 

69 inferences differ qualitatively from studies focused on more local scales (Doi et al. 2017; 

70 Gallinat et al. 2021). Understanding and analyzing this scale-dependence requires 

71 macrophenological data that span scales of space, time, taxonomy, and levels of biological 

72 organization. 

73 Data sources at each of these scales do exist although they rarely have been analyzed 

74 simultaneously. For plant phenological data, these include herbarium specimens, community 

75 science initiatives, observatory networks, and remote-sensing platforms (e.g., Gray & Ewers, 

76 2021; Reyes-González et al., 2021; Davis et al., 2022). Different data types capture disparate 

77 scales as a result of their sampling design and effort. For instance, remote sensing may provide 

78 continuous monitoring over a long period of time, whereas observatory networks may provide 

79 periodic sampling with field surveys that vary in their temporal extent (Fig. 1).  These scale 

80 mismatches often hinder data harmonization—the direct integration of disparate data types under 

81 a common schema. The Lack of harmonization across datasets limits our ability to assess 

82 phenological responses to climate at various scales. 
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83

84 Figure 1. Data aspects across phenological data types with example datasets. Each data type 

85 offers a distinct level of biological, taxonomic, spatial, temporal, and phenophase information. 

86 Each level contains example-specific information comparing the similarities and differences 

87 across data types. Differences between data types (across columns) highlight gaps where data 

88 harmonization would benefit and maximize coverage within each level. We use a bell-curve to 

89 exemplify the sampling frequency within the duration of a phenophase. Young leaves also 

90 include fully opened green leaves.  

91

92 We assert that data harmonization is critical for improving our understanding of the 

93 impacts of climatic change on macrophenology (Gallinat et al., 2021). In this Viewpoint, we 

94 focus on plant phenological datasets collected predominantly in the United States, although 

95 similar data have been collected at sites worldwide. We explore the characteristics of these data 

96 and reveal the unintentional data silos that limit our ability to answer a range of important 

97 ecological and evolutionary questions about phenology. Additionally, we identify how bringing 

98 together multiple data sources will enable us to answer new questions. To move toward a 

99 common goal of phenological data harmonization, we provide a road map describing methods 
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100 for harmonization, how harmonization can help to fill gaps in phenological data across space and 

101 time, and methods for integrating harmonized data into analyses. We end with a call for 

102 harmonization of phenological data to rapidly advance phenological research.  

103 A multiplicity of data sources with different strengths and weaknesses

104 Phenological data have provided invaluable insights into the varying effects of changing 

105 climate on the timing of phenology (D. Li et al., 2019; Zohner et al., 2023), and recent papers 

106 highlight potential new insights to be made from each independent data type (Davis et al., 2022; 

107 Dronova & Taddeo, 2022; Binley & Bennett, 2023; Zhu & Song, 2023). Because of gaps within 

108 any single data type, we cannot get a complete picture of phenology without integrating across 

109 data types. In this section, we draw attention to the strengths, weaknesses, and gaps of each data 

110 type with respect to space, time, taxonomy, life history, and levels of biological organization.  

111 Herbarium Specimens 

112 Herbarium specimens provide irreplaceable historical climate baselines and they have 

113 been mobilized to study phenological sensitivity to local climatic conditions and climatic change 

114 (e.g., Chmura et al., 2019; Lenters et al., 2021; Davis, 2023) at broad spatial scales (e.g., Davis 

115 et al., 2015; Willis et al., 2017; Zhu & Song, 2023). Many of the large herbarium collections in 

116 the U.S. have increased the accessibility of phenology data contained in these specimens through 

117 massive efforts to digitize millions of physical specimens and the information contained in their 

118 labels with the centralization of data into repositories (e.g., the Global Biodiversity Information 

119 Facility [GBIF], Southwestern Environmental Information Network [SEINet]) (GBIF; SEINet 

120 Portal Network, 2023; Hedrick et al., 2020). However, smaller collections or those from 

121 countries with less digital infrastructure in place are less accessible or less frequently digitized, 

122 leading to biogeographical biases in spatial coverage (Daru et al. 2018; Davis et al. 2022). 

123 Despite the large taxonomic coverage at the species level, herbarium specimens provide 

124 relatively coarse phenophase information, represent single “snapshots” of phenology in space 

125 and time, and may exhibit sampling biases that make it unclear whether a specimen represents an 

126 early, median, or late observation relative to its source population (Daru et al., 2018;  Ramirez-

127 Parada et al., 2022; I. W. Park et al., 2024; Fig. 1). Moreover, as specimens represent single 
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128 observations of individuals distributed widely in space and time, variation in phenology among 

129 specimens represents both within- and among-population differences. Thus, identifying the level 

130 of ecological organization associated with relationships between phenology and environmental 

131 variables–and the mechanisms underlying such relationships–requires careful statistical design 

132 and interpretation of results (Ramirez-Parada et al. 2024). Another limitation of herbarium-

133 derived data for use in phenological studies is the difficulty in identifying dates of occurrence for 

134 phenological phases other than flowering and fruiting for most species. Additionally, the patchy 

135 temporal and spatial coverage limits their use at global or local scales and depends on the 

136 sampling biases (Daru et al. 2018). 

137 Community-science initiatives 

138 Community-science initiatives harness the power of volunteers to record phenological 

139 data across broad spatial extents while providing high-resolution phenophase information from a 

140 variety of taxa (Reyes-González et al., 2021; Domingo-Marimon et al., 2022). Such initiatives 

141 vary in the degree of standardization used in data collection. For instance, image contributors for 

142 community-sourced app-based records (e.g., iNaturalist) do not follow specific protocols for 

143 capturing phenophases. In contrast, the USA National Phenology Network (USA-NPN) is an 

144 example of a community-science initiative with volunteer engagement across the country 

145 through their Nature’s Notebook platform (Crimmins et al., 2017; https://www.usanpn.org/). It 

146 has a standardized protocol to facilitate repeated observations of specific individuals (or patches) 

147 at a chosen site (Crimmins et al., 2017; Fig. 1). These data provide estimates of date onset, 

148 termination, and duration of multiple phenophases at high temporal resolution and national 

149 coverage (Fig. 1). However, while these data encompass observations for thousands of species, 

150 most correspond to a narrow set of indicator species for which specific observational protocols 

151 have been developed. Furthermore, investment by volunteers leads to large variations in 

152 taxonomic coverage and duration of observations (e.g., a single versus multiple years). These 

153 data often contain observation bias and inconsistencies in protocol implementation that can limit 

154 their application (Reyes-González et al., 2021; Domingo-Marimon et al., 2022). In some cases, 

155 participants might record the phenological status of only one individual at one site many times 

156 per year (sometimes less), but they might not sample multiple individuals at a given site, thus 

157 greatly limiting population-level inferences.    
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158 Observatory Networks 

159 Observatory networks provide systematic, long-term field data that follow individuals 

160 throughout their phenological cycle (Gallinat et al., 2021), thus providing opportunities to 

161 quantify inter- and intraspecific variation in phenology across ecoregions. The U.S. National 

162 Science Foundation’s National Ecological Observatory Network (NEON) is one such long-term, 

163 ecological monitoring network designed to collect data through 2049 (Elmendorf et al., 2016). 

164 NEON works closely with the USA-NPN and Phenocam networks to collect data and has 

165 adopted their standards and protocols (Richardson et al., 2007). This offers an exciting example 

166 of how different phenological monitoring systems can coordinate efforts for standardized 

167 observations (Richardson et al., 2007). Similar to NPN, NEON provides high-resolution 

168 phenological information through repeated measures in their field sampling design (Fig. 1). 

169 NEON also records co-located information on a suite of other biological and physical variables 

170 relevant to phenology (e.g., beetle pollinator abundance, climatic variables, carbon dioxide flux) 

171 (Nagy et al., 2021). Despite the continental scale and projected 30-year lifespan scale of NEON, 

172 their NPN-style field observations are limited in i.) taxonomic coverage due to resource 

173 constraints; ii.) spatial coverage as data are collected only at the several dozen established NEON 

174 sites; and iii.) current temporal range due to the relatively recent establishment of the network in 

175 2019 (Fig. 1). The Long-term Ecological Research Network has some sites that collect 

176 phenological information, but these data are not collected with a standardized protocol and 

177 synthesis of them is challenging (Mulder et al., 2021; Schulze, 2023; but see Keenan et al., 

178 2014). Moving forward, NEON promises to be an irreplaceable long-term reference for fine-

179 resolution phenological data compatible with all data amassed by the USA-NPN through their 

180 active partnership and delivering NEON data through the USA-NPN portal.   

181 Remote Sensing 

182 Remotely-sensed data are capable of capturing continental and interannual changes in 

183 phenology, yet the spatial resolution of the data is often too coarse to discern phenological 

184 changes at the species-level (Gallinat et al., 2021; Reyes-González et al., 2021). Satellites, near-

185 Earth imagery, and biologging devices have allowed for spatially continuous observations with 

186 improving temporal resolution (Zarnetske et al., 2019; Lechner et al., 2020; Latifi et al., 2023). 
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187 Remote-sensing techniques related to phenology have been applied successfully to detect the 

188 start and end of the growing season (i.e., leaf out and leaf off) for either dominant tree taxa or 

189 functional types, and primarily in temperate deciduous and tropical dry forests (Dronova & 

190 Taddeo, 2022). Recent applications of deep-learning algorithms to high-resolution hyperspectral 

191 and red-green-blue images (1-m and 0.25-m, respectively) from near-Earth (i.e., airborne) remote 

192 sensing of NEON sites enable the segmentation and identification of individual tree crowns 

193 (Weinstein et al., 2024), paving the way for the detection of individual tree-crown phenology 

194 from frequent near-Earth image acquisition (e.g., by drones). Furthermore, the National 

195 Aeronautics and Space Administration’s Surface Biology and Geology High Frequency Time 

196 Series (SHIFT) near-Earth remote-sensing campaign in 2023 enabled the detection of 

197 superblooms in the grasslands of coastal California from weekly flyovers (Angel et al., 2024). 

198 Although hyperspectral sensors have broadened the possibilities of remotely-sensed phenological 

199 monitoring, such efforts remain limited to specific sites (e.g., NEON sites) or campaigns with 

200 high spatial and temporal resolution. Another limitation is that the earliest remote sensing data 

201 are limited to the 1970’s (i.e. Landsat 1 products) and do not provide substantial pre-global 

202 warming information comparable to point-based herbarium data. 

203 Moving forward: bridging data silos in macrophenology

204 Data Harmonization

205 Data harmonization is not a new concept in ecology. For decades there has been 

206 tremendous interest across the scientific community in pooling and harmonizing plant trait data. 

207 For instance, the TRY database has excelled in aggregating trait data and supported extensive 

208 advances in trait-based plant ecology, but lacks a common format that limits compatibility 

209 between data sets (Kattge et al., 2011, 2020). More recently, ecologists have recognized the 

210 importance of considering intraspecific trait variation, emphasizing the coordination of open 

211 science efforts around individual-level trait information (Violle et al., 2012; Cope et al., 2022). 

212 Except by remote-sensing networks, phenological data are collected from individual organisms 

213 and allow for exploration of intraspecific trait variation. This makes phenological data an 

214 excellent test bed for developing and testing approaches for data harmonization of individual-

215 level traits. Various approaches exist for harmonizing ecological data that could be applied to 
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216 phenological data. Many of these approaches incorporate common terminology and structures 

217 (i.e., design patterns) representing relational tables tracking organismal information (e.g., 

218 taxonomy, measurement [i.e., trait, number of individuals]) and other important metadata (e.g, 

219 geographic locations and differences in sampling methodologies (O’Brien et al., 2021; Keller et 

220 al., 2023)(Fig. 2).  

221
222 Figure 2.  Cyclical connections between phenological data harmonization and artificial 

223 intelligence (AI) / machine learning (ML) trait extraction can produce data to feed into 

224 models, further supporting improved predictions of plant phenology.  

225

226 Using common terminology and notation is a key aspect of harmonizing phenological 

227 data to make it easier for researchers (and algorithms) to discover and use data. Ontologies 

228 provide a structured, formal language for the standardization of terminology and concepts related 

229 to data management (see Stucky et al., 2018; Schneider et al., 2019; O’Brien et al., 2021; 

230 Lenters et al., 2021; Dumschott et al., 2023; Keller et al., 2023). To our knowledge, the most 

231 well-developed catalog for ontologies in plant phenology was made available by Stucky et al. 

232 (2018), who assembled a robust framework of aggregated vocabulary from global phenological 

233 records. Contributions towards such efforts are crucial for dispelling uncertainties in naming 

Page 10 of 27

Manuscript submitted to New Phytologist for review



For Peer Review

10

234 conventions for phenophases. For example, intensity-based vocabulary may require a minimum 

235 percentage of reproductive organs to be displayed as “open flowers” for an individual’s 

236 phenophase to be identified as “flowering”, whereas qualitative assessments of flowering status 

237 may simply require the presence of a single open flower. The ontology of Stucky et al. (2018) 

238 could also be combined with more vocabulary pertaining more widely to ecological traits to 

239 capture other important information (e.g., the location of observation). The Ecological Trait Data 

240 Standard (ETS) is a common vocabulary to facilitate trait data harmonization and is implemented 

241 in some trait data integration networks (Open Traits Network; Gallagher et al., 2020). Notably, 

242 ETS incorporates terms used by the Darwin Core Standard (DwC), a glossary of terms to 

243 facilitate sharing information about biodiversity maintained by the Biodiversity Information 

244 Standards Taxonomic Databases Working Group. Common vocabularies propagate a shared 

245 understanding of phenological phenomena that lay the groundwork for the harmonization of data 

246 into a common structure. 

247 A robust data design pattern (i.e., relational structure) will empower the increased 

248 integration of harmonized data into derived data products that may make it easier to account for 

249 differences in sampling effort or biases in downstream analyses. Although there are various data 

250 design patterns for plant traits (e.g., structural traits of palms incorporating the ETS [Lenters et 

251 al. 2021]), there is not a well-adopted data design pattern for plant phenological traits. We 

252 propose a phenological trait extension of the Ecological Community Data Design Pattern 

253 (ecocomDP), which was developed for harmonizing community ecology biodiversity data 

254 (O’Brien et al., 2021). The original ecocomDP model is extended with two features: 1) 

255 reconfiguring the table for mapping variables to external dictionaries to allow any variable 

256 attribute (e.g., a trait) to be recorded and linked to an external dictionary of concepts, such as the 

257 ontologies mentioned above, and 2) adding additional descriptive fields to the dataset summary 

258 table (Fig. 3). Because ecocomDP already accommodates community-level analyses, this 

259 extension would enable researchers to ask questions across levels of biological organization 

260 (e.g., from individuals to populations to communities). Another advantage of incorporating trait 

261 data into ecocomDP is that existing NEON and Long Term Ecological Research (LTER) 

262 Network data from various taxa are already harmonized with ecocomDP, making it a good 

263 candidate for the future incorporation of phenological traits as well as additional individual-level 

264 traits. ecocomDP also employs concepts used by ETS and DwC, making data harmonized into its 
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265 structure easily convertible to the DwC-Archive. Finally, ecocomDP strongly emphasizes 

266 metadata, which is essential to ensure that downstream users can determine the relevance of the 

267 data for their study objectives through filtering.   

268
269 Figure 3. Schema of the updated ecocomDP data design pattern with the extension to 

270 accommodate traits (O’Brien et al., 2021). Added fields in the dataset summary table allow 

271 users to include the level of biological organization, level of observation, and the number of 
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272 variables associated with the trait. The variable attribute (previously variable_mappling) now 

273 includes variable type to indicate the type of trait measured (e.g. start and end dates). 

274 With phenological measurements, the protocol for observing the phenophase is a key 

275 aspect to consider. For instance, when combining community-science and observatory-network 

276 data in analyses, it is incumbent to know the difference between observation methods because 

277 each has different levels of observation uncertainty (Binley & Bennett, 2023). Accessible 

278 information about sampling design would help compare levels of uncertainty between data types 

279 and assess their degree of interoperability for specific research objectives (Fig. 4). Sharing 

280 reproducible methods in open platforms such as protocol.io (https://protocols.io; Accessed June 

281 3, 2024) will contribute towards the development of standard disciplinary formats that are useful 

282 in metadata curation. Shared protocols between NEON and NPN are a notable example, but even 

283 their metadata is found only on site-specific publications or their websites. Furthermore, any 

284 protocols used in the collection or curation of herbarium specimens (including their digital 

285 records) that are relevant to plant phenology should be included in the metadata or the specimen 

286 label. This fits perfectly with the concept of the Global Metaherbarium and the Extended 

287 Specimen concept (Davis, 2023). Protocol standards with accessible metadata information and 

288 sampling disclosures will be key in supporting data integration and harmonization among data 

289 sources while highlighting commonalities and differences in observations (Schneider et al., 

290 2019; Dumschott et al., 2023; Keller et al., 2023; ). 
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291
292 Figure 4. Hierarchy of general objectives in plant macrophenology, from broad to specific. 

293 The phenophase event of interest may determine the data types appropriate for achieving the 

294 objective. 

295 Methods for integrating harmonized phenological data into analyses

296 When modeling phenology we need to expand our perspective on where we can apply 

297 observations beyond classic phenological models (i.e., location-specific growing degree day 

298 models; Chamberlain & Wolkovich, 2023). With the integration of different data types into 

299 analyses, models must account for underlying biases from different data containing information 

300 on phenology and its drivers across spatial and temporal scales. Here we discuss macroecological 
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301 approaches to solving two challenges: 1) differences in how phenophases are recorded and 2) 

302 spatial and temporal mismatches between phenological, geographic, and climatic data. These 

303 hurdles greatly impede efforts of macroscale phenology studies as they limit the geographic 

304 scope and questions that may be explored (Gallinat et al., 2021). To address the first challenge of 

305 differences in how phenophases are recorded, there are many methods phenologists could adapt 

306 from species distribution modeling (SDM). Instead of modeling a response of species occurrence 

307 or abundance, we can model the probability of occurrence of a phenophase throughout the year. 

308 For instance, such a model could be used to create rasterized forecasts of species-level 

309 phenological point observations from herbarium, community science, or observatory network 

310 data into a spatially gridded dataset that is compatible with remote sensing data (Peng et al., 

311 2024). For example, Yoder et al. (2024) used herbarium and community-science data to create 

312 gridded predictions of whether Joshua trees are expected to have masted or flowered for each 

313 year and location. These rasterized predictions of mast events can then be compared to remotely-

314 sensed gridded data on leaf phenology (i.e., peak greenness). 

315 Another approach to account for differences in how phenophases are recorded is 

316 occupancy modeling (OM), which is widely used in the field of macroecology to model species 

317 distributions and provides a rich methodology by addressing imperfect detection and 

318 incorporating geographic location error from specimens for analyses of harmonized phenological 

319 data with differences in sampling effort (Erickson & Smith, 2021). One difference in sampling 

320 effort presented by phenological data is that some data types only record presence-only (PO) 

321 information on phenophases (e.g., herbarium records; iNaturalist), whereas others record both 

322 presences and absences (PA) of phenophases (e.g., NPN, NEON). With an OM framework, 

323 differences in sampling effort can be accounted for by treating each data type as a designated 

324 survey or method to account for differences in detection. Recent advances with integrated SDMs 

325 that model PO and PA responses provide a powerful approach for combining data types with 

326 differences in sampling effort (Miller et al., 2019; Isaac et al., 2020; Mäkinen et al., 2024). 

327 Integrated SDMs could be a powerful way to combine disparate phenological data types (Box 1) 

328 and overcome the challenge of accounting for differences in how phenophases are recorded. 
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329
330 A second challenge is that phenological data and drivers of phenological responses are 

331 often measured at different temporal scales and spatial scales (and therefore, levels of biological 
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332 organization) (Fig. 5). Automated integration and synthesis tools have begun to be developed to 

333 facilitate cross-scale phenological studies. For instance, the Pheno-Synthesis Software Suite 

334 (PS3) summarizes ground-based phenological observations into gridded climate and 

335 phenological indices (Morisette et al., 2021). One consideration in using such software is 

336 understanding what spatial and temporal resolutions and extents have the greatest influence on 

337 phenology; to explore the optimal spatial scale between phenological data and its drivers (e.g., 

338 climate, land use topography), different grains (e.g., varying radii around a central phenological 

339 observation point or pixel) and extents (e.g., continental, ecoregion, site for NPN or NEON) that 

340 are then compared in analyses (Zarnetske et al., 2019; Read et al., 2020; Z. Li, 2022). 
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341
342 Figure 5. Temporal and spatial resolution mismatches between phenological attributes. 

343 Abbreviations: Herb. - Herbarium, Phe.cam - Phenocam, iNat. - iNaturalist.  

344

345 A promising approach for exploring scales of space and time simultaneously is through 

346 interpretable machine learning (ML). Interpretable ML aims to understand what input data 

347 characteristics are most important in driving predictions of output data. Local interpretation with 

348 ML—wherein the prediction of a model for a single observation in space and time is considered, 

349 as opposed to trying to understand the overall predictive behavior of the model across the entire 
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350 dataset—is especially relevant for exploring spatio-temporal drivers of geo-referenced 

351 phenological data. This allows for the visualization and estimation of interactions between 

352 location features (i.e., spatial coordinates of phenological data points or grid cells) and other 

353 model features (e.g., temperature data represented by different spatial resolutions or temporal 

354 lags; Z. Li, 2022). An example of a local interpretation method comes from an extension of the 

355 Shapley value in game theory (Shapley 1953), which evaluates how contributions of different 

356 players collectively result in a contest’s outcome. SHapley Additive exPlanations (SHAP), a 

357 recent ML offshoot of Shapley values, quantifies how much each feature collectively contributes 

358 to averaged model predictions (Štrumbelj & Kononenko, 2014). Historical phenological data 

359 could be used as features in such a model to predict contemporary or future phenological 

360 responses. The Shapley value and other local interpretability methods (e.g., Local Interpretable 

361 Model-agnostic Explanation or LIME; Ribeiro et al., 2016) offer an exciting new opportunity to 

362 simultaneously explore spatiotemporal effects of drivers of harmonized phenological data. 

363 Overall, existing modeling approaches from macrosystems ecology and data informatics pose 

364 unique solutions to challenges by the integration of phenological data simultaneously into 

365 analyses.   

366 Concluding remarks

367 Predicting plant phenological responses to global change is important given its close ties 

368 to ecosystem processes and human health. However, given the scale-dependence of plant 

369 phenology, it is difficult to make informed predictions in the absence of data that spans space, 

370 time, taxa, and levels of biological organization. Fortunately, such data are at our fingertips 

371 through various efforts in recording plant phenology at different scales and with different 

372 methods of observation, but the distinct types of phenological data need to be harmonized to 

373 unlock their full potential. Efforts to bridge phenological data silos can benefit from successful 

374 examples from other subdisciplines in ecology. Approaches to harmonize data can be adopted 

375 from existing ecological data design patterns, metadata standards, and ontologies. Biogeographic 

376 and macroecological studies offer many solutions for integrating disparate data with unique 

377 sampling biases into models. They provide a rich methodology for tackling imperfect detection 

378 and incorporating geographic location error from specimens (Erickson & Smith, 2021). Data 

379 informatic approaches towards multimodal and big data fusion are other promising tools to 
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380 automate data extraction and harmonization while improving predictions of plant phenology 

381 through pattern detection. Data interoperability is not a new concept in ecology, and 

382 phenological data harmonization is long overdue. 

383 Glossary

384 Data design pattern: A blueprint that captures the essential data characteristics so that a 

385 centralized workflow can access, reformat, and structure data (O’Brien et al., 2021).

386 Data harmonization: Direct integration of different plant phenological data categories (e.g., 

387 community science, herbarium, remote sensing) under a common schema 

388 Data integration (or data interoperability):  Disparate data sources that may be used in tandem 

389 and are readably applicable in modeling or management frameworks (Brenskelle et al., 2019; 

390 Stucky et al., 2018; Wilkinson et al., 2016). 

391 Data management: The organization and handling of data that supports its continuous discovery, 

392 evaluation, and reuse (Wilkinson et al., 2016). 

393 Machine learning (ML): A subset of methodologies that use algorithms to automate learning 

394 predictions about data (e.g., Deep Learning, random forest; “Artificial Intelligence (AI) vs. 

395 Machine Learning,” n.d.; Pearson et al., 2020). 

396 Occupancy model (OM): A spatially explicit model that determines the occupation of an 

397 organism using presence and absence information.

398 Ontology: Standardized vocabulary and a language framework using formal logic that relates 

399 terms to concepts and allows for the integration of different data (Madin et al., 2008; Stucky et 

400 al., 2018).

401 Plant phenology: The timing of recurring life stages (reproductive or growth) of a plant; with a 

402 focus on angiosperms. 

403 Phenophase: The phenological stage of a plant or animal, that details a particular life cycle stage 

404 (e.g., leaf emergence, migration, breeding).
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405 Species Distribution Model (SDM): A form of occupancy modeling that predicts species 

406 distributions over space based on the attributes of the locations where they are currently known 

407 to occur. 
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440 DP1.10055.001 (RELEASE-2023). 2013-2021 for Region: Contiguous United States. Dataset 
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442 http://doi.org/10.5066/F78S4N1V.
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