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Highlights: 50 

● Climate change is causing a global redistribution of species, but range shifts often occur at 51 

unexpected rates and directions considering gradual climate change. 52 

● Extreme weather and climate events (EWCEs) are increasing in frequency and severity and can 53 

impact dispersal, establishment, and survival — processes that drive range shifts. 54 

● Previous work has not fully considered the potential role of EWCEs on range shifts. 55 

● To bridge the gap between research on range shifts and EWCEs, we outline processes by which 56 

EWCEs may impact range shift dynamics, as well as approaches and implications of 57 

understanding these processes for management. 58 

 59 

Abstract 60 

Climate change is altering species’ distributions globally. Increasing frequency of extreme weather and 61 

climate events (EWCEs) is one of the hallmarks of climate change. Despite species redistribution being 62 

widely studied in response to longer-term climate trends, the contribution of EWCEs to range shifts is 63 

not well understood. We outline how EWCEs can trigger rapid and unexpected range boundary 64 

fluctuations by impacting dispersal, establishment, and survival. Whether these mechanisms cause 65 

temporary or persistent range shifts depends on the spatiotemporal context and exposure to EWCEs. 66 

Using the increasing availability of data and statistical tools to examine EWCE impacts at fine 67 

spatiotemporal scales on species redistribution will be critical for informing conservation management 68 

of ecologically, economically, and culturally important species. 69 

Climate-induced range shifts 70 

Climate change is causing species to shift their distributions globally, with consequences for 71 

biodiversity and ecosystem functioning, as well as for the economy, food security, and human health 72 
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and culture [1,2]. Species’ geographic ranges are determined by a combination of abiotic and biotic 73 

factors that influence the dispersal, reproduction, and survival of individuals in a population [3]. When 74 

climate becomes less suitable, populations decline due to lower recruitment and higher mortality, 75 

causing range contraction at the trailing edge (see Glossary) [4]. In contrast, range expansion usually 76 

occurs at the leading edge as climatic conditions become more suitable beyond current distribution 77 

boundaries [4]. Overall, species ranges are shifting toward higher latitudes, elevations, and depths in 78 

response to warming temperatures [2,4–6] (Fig. 1). Yet, shifts often lag behind rates of climate change 79 

and can occur in unexpected directions [7,8]. While background rates of warming may facilitate gradual 80 

range shifts driven by (relatively) slow changes in population dynamics and colonisation/extirpation 81 

events, extreme weather and climate events (EWCEs) may affect range shift rates by amplifying 82 

expansion and contraction dynamics. As a result, range edges can experience rapid fluctuations in 83 

expected or unexpected directions that may result in temporary or persistent range shifts depending on 84 

the degree of exposure and the spatiotemporal context of the EWCE. 85 

EWCEs are characterized by their magnitude, duration, and spatial extent and following a 86 

meteorological definition, are categorized as extreme when their magnitude falls beyond a threshold 87 

(e.g., the 90th percentile) over a baseline time period for a given location [9,10] (Box 1). While EWCEs 88 

can be associated with long-term meteorological cycles, such as the El Niño Southern Oscillation, they 89 

can also occur over shorter time scales [11]. EWCEs are increasing in frequency and severity [9,12], with 90 

potentially substantial impacts on distributions of ecologically, culturally, and economically important 91 

species [13]. While EWCEs can contribute to defining range edges [14], the role EWCEs play in range 92 

dynamics remains unclear [but see 15–17,18; Box 2]. This is in part because attributing range shifts to a 93 

specific driver requires long-term and spatially widespread evidence of population responses to climate 94 

fluctuations [19]. Here, we outline how EWCEs can amplify expansion and contraction dynamics, causing 95 

rapid and/or unexpected range shifts or range edge fluctuations. We then discuss how increasing 96 
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availability of data at fine spatiotemporal resolutions and statistical techniques for understanding 97 

impacts of climate variability can improve our understanding of these dynamics and inform conservation 98 

management.   99 

Expansion and contraction mechanisms 100 

EWCEs can amplify range expansion by increasing the probability and frequency of long-distance 101 

dispersal and establishment, or by pushing individuals toward range edges [16,18]. The change in 102 

dispersal dynamics can be described by a shift in the dispersal kernel [20] (Fig. 2). Passively dispersed 103 

sessile organisms, such as wind- or water-dispersed plants and marine larvae, often disperse short 104 

distances, while the probability of dispersing long distances (the tail of the dispersal kernel) is typically 105 

low (Fig. 2). Storms with high winds and currents can contribute to long-distance dispersal and allow 106 

establishment of ephemeral populations far beyond range edges [15,21,22; Box 2]. Active dispersers 107 

may decide when and how to respond to EWCEs. For example, individuals may move to range edge 108 

habitat or beyond in response to reduced habitat suitability caused by EWCEs in the range core [18; Box 109 

2]. As the magnitude and frequency of EWCEs increases [12,23–25], active and passive dispersers may 110 

travel longer distances, extending the dispersal distance (tail length) and increasing the probability and 111 

frequency of propagules dispersing beyond the average dispersal range (tail thickness) [26,27] (Fig. 2). 112 

Greater propagule pressure beyond range edges would increase the likelihood that populations become 113 

self-sustaining over generations and contribute to range expansion [26,27] (Fig. 1). 114 

EWCEs can also facilitate establishment and reproduction phases of expansion by improving 115 

abiotic and biotic conditions beyond range edges [16,28,29]. When EWCEs, such as heat waves, last over 116 

the duration of a species’ lifecycle, reproduction in abnormally favorable climate conditions beyond the 117 

leading range edge can improve establishment success [16]. EWCEs can also improve establishment via 118 

competitive release [30]. For example, wildfires remove adult vegetation, allowing light- and nutrient-119 
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demanding understory plants to expand their range [28,29], while marine heatwaves that reduce kelp 120 

cover have facilitated range expansions of corals and turf-forming algae [31; Box 2]. 121 

Conversely, EWCEs can amplify range contractions by causing population mortality when 122 

conditions exceed critical physiological thresholds [32]. For example, extreme fires have caused 123 

geographically restricted plant species to lose up to 95% of their range [33], marine heatwaves have 124 

caused mass mortality of habitat-forming coral and kelp, leading to 100 km range contractions off the 125 

western coast of Australia [17,34–36], and extreme droughts have caused rapid contraction of the 126 

ponderosa pine, Pinus ponderosa [37].  127 

Impacts of EWCEs on expansion and contraction processes are highly variable across species, 128 

depending on both intrinsic and extrinsic factors [38]. For instance, species traits, including critical 129 

thermal limits [39,40], hygric traits associated with water loss and desiccation rates [41], and body/leaf 130 

size [42,43], as well as habitat quality [44] impact resistance to negative impacts of EWCEs that may 131 

cause range contraction. For example, species living near their critical thermal limits, including marine 132 

ectotherms and tropical insects, exhibit lower resistance to EWCEs than species with larger thermal 133 

safety margins [39,40]. Furthermore, low dispersal, slow-paced life histories, and low habitat 134 

connectivity [44,45] limit resilience to EWCEs as well as expansion probability. When resilience is high 135 

despite low resistance, temporary range contractions may occur, while recovery prevents persistent 136 

range shifts. In contrast, low resistance and resilience will likely cause persistent contractions. 137 

Rapid, unexpected, and fluctuating range dynamics 138 

EWCEs can cause rapid and persistent range shifts or rapidly fluctuating range edge dynamics in 139 

both expected and unexpected directions depending on the spatiotemporal context and exposure to 140 

EWCEs, via the aforementioned expansion and contraction processes. 141 



7 

The spatial context of EWCEs describes the location and extent of impact with respect to a 142 

species’ range. When EWCEs facilitate expansion processes at the leading edge and contraction 143 

processes at the trailing edge, they may amplify rates of range shifts in directions expected by 144 

background climate change. However, when expansion and contraction processes occur elsewhere, 145 

shifts may be ephemeral or occur in unexpected directions. For instance, when cold extremes, which 146 

have become more frequent in the mid-latitudes of the eastern US and Eurasia [46,47], exceed 147 

physiological tolerances of expanding populations, retraction may occur at the leading edge [48–50] 148 

(Fig. 1). Alternatively, EWCEs could reduce competition and cause expansion at the trailing range edge, 149 

where biotic factors often impose range boundaries [51,52]. 150 

The spatial context of an EWCE can also impact the persistence of range shifts by affecting 151 

metapopulation dynamics [44]. When EWCEs negatively impact populations that act as sources of 152 

individuals and genes for metapopulation recovery, mortality is more likely to cause rapid and persistent 153 

range contraction. The abundant centre hypothesis and complementary rare edge hypothesis suggest 154 

species abundance is highest in the center and declines toward range edges [53,54]. Despite mixed 155 

support for these hypotheses [55], when such patterns occur, EWCEs that negatively impact core 156 

populations could amplify future range contraction by depleting source populations, which reduces 157 

potential for demographic rescue at trailing edges [56]. However, immediate impacts on range shifts 158 

may not be apparent when EWCEs do not occur at range edges. On the other hand, EWCEs that cover 159 

large extents of a range or are spatially compounding may amplify the rate and persistence of range 160 

contraction by causing mass mortality, particularly in low quality and poorly connected habitat where 161 

recovery potential declines [44]. Effects may be particularly severe for small-ranged and highly endemic 162 

species, because extirpation risk will increase in the face of EWCEs for a relatively larger proportion of 163 

populations within their range [57].  164 
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The temporal context of EWCEs refers to their time of occurrence with respect to other climate 165 

events can also have important implications for range dynamics. Exposure to temporally compounding 166 

EWCEs that occur with high frequency can amplify expansion and contraction processes [58]. For 167 

example, successive marine heatwaves from 2014 to 2016 combined with anomalous poleward currents 168 

led to range expansions for a number of coastal marine taxa by increasing propagule pressure beyond 169 

range edges, with populations of some species establishing 300-500 km beyond the leading edge [16]. 170 

Where contraction occurs, high frequency EWCEs may exceed the recovery period of the affected 171 

species and cause persistent contraction. Alternatively, recovery following lower frequency events can 172 

cause rapidly fluctuating range edges [44]. Multiple types of EWCEs occurring simultaneously 173 

(Multivariate EWCEs) may also increase the likelihood of mass mortality and consequent range 174 

contractions [58]. For example, simultaneous extreme heat and drought events have caused tree 175 

diebacks at range edges [59], and unusually high temperatures and calm waters have caused contraction 176 

toward deeper depths in marine algae [60]. When these EWCEs are preconditioned, they may amplify 177 

mortality and range contraction [58]. For example, adaptation to a long period of wet climate conditions 178 

or early spring onsets that deplete soil moisture may amplify mortality and range contraction (Box 2) 179 

[58,61]. 180 

Overall, whether EWCEs impact range dynamics depends on organismal exposure, which is 181 

moderated by microclimate variability and compensatory mechanisms, including thermoregulatory 182 

behavior and phenological adjustments [38,62,63]. Climatic buffering effects of topography and 183 

vegetation produce microclimatic refugia within landscapes, such as the understories of forests with tall 184 

and dense canopies or convergent topographic environments (e.g., valley bottoms), that reduce 185 

exposure to extreme heat, cold, and drought [64,65]. Populations that live in or disperse to these refugia 186 

during EWCEs may persist, preventing rapid range contraction and promoting range expansion. 187 

However, the extent to which microrefugia can reduce exposure to EWCEs depends on the capacity for 188 
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vegetation to buffer extreme climate conditions over time [65]. For example, water availability is critical 189 

for maintaining high buffering capacity [66,67]. Heat and drought extremes that increase water deficit 190 

could therefore reduce buffering capacity and increase exposure to extreme climate conditions [66]. 191 

Tree mortality due to drought, wildfire, and insect outbreaks, as well as anthropogenic disturbances, 192 

may compound reductions in microclimate buffering in the long term by increasing canopy openness 193 

[66,68]. Understanding the temporal consistency in microclimate buffering during EWCEs is urgently 194 

needed to assess exposure and possible impacts on range shifts. 195 

Advancing our understanding of EWCE impacts on range shifts 196 

Improving our understanding of EWCE impacts on range shifts requires quantifying climate 197 

variation at biologically relevant spatial and temporal scales and its impacts on population dynamics 198 

across large spatial extents. This is a challenging task, as climate data often face trade-offs between high 199 

spatial (e.g., 1 km2 CHELSA climate data [69]) or temporal resolution (e.g., 1 hour for ERA5 climate data 200 

[70]), while temporally resolved demographic data covering large spatial extents is rare [71]. Coarse 201 

resolutions across either axis represent average measurements over space or time that may overlook 202 

short-term or localized extremes and risk underestimating daily maximum or overestimating daily 203 

minimum temperatures - both of which can have vital impacts on demography and range dynamics [72–204 

74]. Mechanistic microclimate models that downscale temporally resolved macroclimate data, as well as 205 

statistical microclimate models based on globally distributed in-situ microclimate loggers, offer paths 206 

forward, but may require substantial computational capacity when implemented across large spatial and 207 

temporal extents [75,76]. Furthermore, spatiotemporally resolved occurrence data are becoming 208 

increasingly available and can be obtained through large-scale and long-term monitoring initiatives (e.g., 209 

GLORIA, MIREN) [77,78]), citizen science databases (e.g. eBird and iNaturalist [48]), and airborne remote 210 

sensing [e.g., 79]. 211 
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Expanding climatological and biological data allow ecologists to interrogate mechanisms 212 

impacting EWCE-driven range shifts across taxa and regions globally using diverse modelling techniques. 213 

Longitudinal process-based models (e.g., occupancy dynamics models, demographic distribution models, 214 

abundance dynamics models) can provide spatially explicit predictions of demographic dynamics, 215 

including colonization and extinction, in response to short-term climate variability, which may impact 216 

range shifts over short or long time periods [71,73]. When temporally replicated biological data is 217 

absent, eco-physiological models (i.e., mechanistic models) that estimate organismal responses to 218 

temporally variable climate conditions based on physiological first-principles offer a promising 219 

alternative for predicting EWCE impacts on range shifts [71,80]. Additionally, before-after-control-220 

impact (BACI) designs can attribute biological responses to single EWCEs, which may contribute to a 221 

mechanistic understanding of range fluctuations, though challenges in predicting EWCEs may provide 222 

obstacles to obtaining the necessary data [81]. Correlative species distribution models can also improve 223 

our understanding of EWCE impacts on range edges when they incorporate environmental stochasticity 224 

using statistical distributions  that capture information on the frequency and intensity of EWCEs (e.g., 225 

the generalised extreme value distribution) [14,82]. Experimental approaches can supplement these 226 

models to detect mechanisms by which EWCEs influence range dynamics, but are typically limited to 227 

local spatial extents [83].  228 

Implications for Conservation Management 229 

Recognizing that EWCEs often accelerate range expansion and contraction processes pushes 230 

participatory and anticipatory planning to the fore [84]. While uncertainties in estimating and predicting 231 

the impacts of EWCEs on species’ redistribution hampers accurately targeting conservation actions,  232 

improvements in near-term ecological forecasting offer a promising avenue for informing anticipatory 233 

conservation actions [85]. Boult [86] suggests adopting a forecast-based action approach that is used 234 
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regularly for planning and mounting rapid recovery efforts, such as deploying on-the-ground actions, to 235 

buffer sensitive species to single EWCEs (e.g., installing shading of sea turtle nests in anticipation of 236 

extreme heat events; [86]). Knowledge of how EWCEs affect individuals across their geographical range 237 

can help inform where forecasting and management efforts should focus. For example, when a species’ 238 

range core is subject to an EWCE event, the habitat within its range edges can take on enhanced 239 

importance as it serves as an extreme weather refuge [e.g., 18,87]. Similarly, anticipating the arrival of 240 

native and non-native outlier populations beyond range edges can improve identification and 241 

monitoring efforts of population growth and impacts on local ecosystems [84]. Monitoring can then 242 

inform population management plans as well as strategic habitat protection and restoration initiatives 243 

that facilitate expansion by connecting outliers to primary range or habitat predicted to become suitable 244 

in the future [84,88]. Employing these approaches will be critical for ecologically and economically 245 

important species, including habitat-forming species, invasive species, disease vectors, and key fishery 246 

species. 247 

 248 

Concluding Remarks 249 

EWCEs may be catalysts for, or inhibitors of, substantial shifts in species’ distributions under a 250 

changing climate (see Outstanding Questions). While the probability of an EWCE occurring at a duration, 251 

frequency, and spatial position to have an impact on species’ ranges may be relatively low, increasing 252 

examples of EWCEs on range dynamics highlight the importance of understanding these processes [e.g., 253 

16]. To accurately forecast species redistributions, it will be essential to recognise the complex 254 

interactions between extreme events, habitat loss, and gradual changes in climate trends on 255 

populations at biologically relevant spatial and temporal scales. Though incorporating EWCEs remains 256 

challenging due to data limitations, predictive uncertainties in ecological forecasts, and the inherent 257 

complexity of ecological and climatological systems, advancements in data availability and 258 
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methodological approaches are growing rapidly. Using these avenues to begin exploring the 259 

mechanisms we propose will improve our ability to forecast EWCE impacts on range shifts, which can 260 

inform proactive conservation management planning.  261 

Outstanding Questions 262 

● To what extent do extreme weather and climate events (EWCEs) alter the dispersal kernel and 263 

propagule pressure of a species? 264 

● How do EWCEs change the relative rate and magnitude of range expansion and contraction? 265 

● What is the long-term impact of EWCEs on species range shifts? 266 

○ Do mass mortality events induced by EWCEs frequently cause long-term range 267 

contraction? 268 

○ Do EWCE-facilitated long-distance dispersal events often lead to range expansion? 269 

● What is the relative impact of individual versus compound EWCEs on range shifts? 270 

● Besides thermal tolerances and dispersal, what species’ traits will mitigate or exacerbate 271 

impacts of EWCEs on range dynamics? 272 
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Figures 487 

 488 

Figure 1 Impacts of gradual climate change and EWCEs on species’ range shifts. (a) The traditional view 489 

of range shifts, which shows climate warming gradually causing redistribution toward higher latitudes 490 

(although range shifts can also occur toward higher elevations and deeper depths) via gradual expansion 491 

at the leading edge and gradual contraction at the trailing edge. Colors of ranges indicate shifts in the 492 

range over time. (b) The potential impact of EWCEs on range shifts. At the trailing edge, EWCEs can 493 

cause high mortality, leading to range contraction. However, populations may recover to the previous 494 

range boundary. At the leading edge, EWCEs may cause rapid expansion via long-distance dispersal. 495 

However, subsequent EWCEs could cause retraction toward the previous leading edge boundary. 496 
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 497 

 498 

 499 

Fig. 2 Extreme events impact on dispersal kernels: When a source population (gray circle) is influenced 500 

by average conditions, the dispersal kernel will have a shorter and thinner tail resulting in most 501 

propagules (blue dots) dispersing close to the source. Extreme events can increase the length and 502 

thickness of the dispersal kernel tail, resulting in higher propagule pressure further from the source 503 

population. Red lines indicate the length and width of the dispersal kernel tail. Blue color gradient 504 

indicates the probability of dispersal. To simulate dispersal, populations were initialized with 50 505 

individuals and 20 propagules dispersed from each source individual. Dispersal kernels were generated 506 

using a generalized normal distribution ( 
𝑏𝑟

𝑎2  𝛤(
2

𝑏
) 𝑒−(

𝑟

𝑎
)𝑏

). Dispersal for average conditions were 507 

simulated with parameters a = 1 and b = 1, and dispersal for EWCEs were simulated with parameters a = 508 

1 and b = 0.7. While dispersal could occur in other directions, we constrained dispersal to within 10° of 509 

the source point for visualization. 510 

 511 
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Text Boxes 512 

Box 1: What is an extreme event ? 513 

EWCEs occur at multiple spatial and temporal scales and can be defined based on biological 514 

responses or meteorological thresholds in reference to different environmental variables [89–91]. We 515 

have focused on meteorological thresholds, which define an extreme event as a weather or climate 516 

variable surpassing a threshold magnitude and/or duration for a specific area [9,10]. The threshold may 517 

be defined using the statistical distribution of events (e.g., 90th percentile) over a baseline time period 518 

or over a moving window of time to account for amplification of EWCEs by background climate change 519 

[91,92]. When the focus is on a specific species, thresholds may be defined relative to physiological 520 

limits [93], such as critical thermal minimum (CTmin) and maximum (CTmax), derived from experimental 521 

work. For example, an increasing frequency of EWCEs that surpass these thresholds may indicate that 522 

regular monitoring of a population should be initiated to increase detection probability of responses to 523 

EWCEs that are not immediately apparent. Regardless, not all EWCEs surpassing a predefined threshold 524 

lead to extreme biological responses [94].  525 

EWCEs can alternatively be defined ecologically based on ‘extremeness’ of both the climatic 526 

driver and ecological response across varying levels of biological organisation from an individual to an 527 

ecosystem [90]. According to this definition, an EWCE is identified as a statistically uncommon climatic 528 

event that significantly disrupts ecological functions beyond what is considered normal variability 529 

[90,93]. At the individual or population level, the response, such as fecundity, survival rate, or leaf loss, 530 

depends on the actual climatic exposure (e.g., filtered by individual thermoregulatory behaviour or 531 

occupied microclimate), as well as on the extremeness of an event relative to the intrinsic species’ 532 

sensitivity to climatic conditions [93]. At the ecosystem level, the response may be altered forest 533 

structure, carbon cycling, or hydrological dynamics. However, defining response-based EWCEs at larger 534 
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levels of biological organisation may overlook population-level effects that could impact range shifts, as 535 

well as EWCEs that have no visible impact due to community resilience.  536 

Given the complexities and context-specific nature of defining EWCEs, researchers must 537 

carefully select and explicitly report the definition they use in their studies. While species- and response-538 

specific definitions can offer valuable insights for specific cases, we recommend adopting climatological 539 

thresholds, as these provide a consistent framework across systems enabling border comparisons that 540 

can help identify which EWCEs are most impactful and which ecological systems are most sensitive. 541 

 542 

Box 2: Impact of EWCEs on range shifts 543 

Mangroves 544 

Mangroves are one of the few ecosystems for which the increasing frequency of EWCEs has 545 

impacted both range expansion and contraction. While background climate warming is likely causing 546 

poleward expansion of mangroves globally, EWCEs may mediate the rate of range shifts [95]. Tropical 547 

storms increase the dispersal distance of mangrove propagules, which are buoyant and carried by tides, 548 

ocean currents, and storm surges [96]. For example, hurricanes have facilitated expansion at the 549 

poleward range limit of mangroves in Florida where the hurricane season overlaps with mangrove 550 

propagule production, increasing the probability of long-distance dispersal [15,22,96]. In addition, while 551 

extreme cold events are unlikely to inhibit poleward range shifts, they may cause leaf damage and slow 552 

the rate of expansion [97]. In contrast, drought events following several decades of favourable climate 553 

conditions and physiological adaptations to the high moisture availability, led to an extreme dieback of 554 

mangroves and range contraction in Australia [61]. Drought also has inhibited mangrove recovery 555 

following hurricanes in the North Atlantic Basin [98], which may lead to range contraction under 556 

persistent increased disturbance from hurricanes. 557 



22 

       558 

Mangroves have been a key system for understanding the consequences of extreme events and 559 
disturbance, including hurricane impacts, such as the mangroves shown here from Pine Island, FL which 560 
have been impacted by two significant hurricanes in 2022 and 2024.                              561 
© Florida Museum photo by Kristen Grace, March 25, 2017  562 
              563 

   Kelp 564 

Kelp forests are declining globally, largely due to impacts of EWCEs rather than gradual climate 565 

change [17,99,100]. The magnitude of marine heat waves (MHWs) with respect to critical temperature 566 

thresholds impacts the degree of mortality [99]. While not all declines have resulted in range 567 

contractions, EWCEs may lead to temporary or persistent loss at warm range edges. For example, kelp 568 

experienced a 70 km range contraction off the coast of the western United States in response to a 569 

severe El Niño, but slow recovery prevented a persistent range shift [100]. In contrast, a 100 km range 570 

contraction of kelp off the western Australian coast following the 2011 MHW persisted following returns 571 

to non-anomalous temperatures [17]. A shift to dominance by turf-forming seaweeds combined with 572 

poleward flowing currents that increased the proportion of subtropical and tropical taxa in the 573 

ecosystem prevented kelp recovery following the MHW [17].   574 
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 575 

Giant kelp (Macrocystis pyrifera) forests at their equatorial range limit off the coast of Baja California, 576 
México at a) Piedra Blanca (Punta Eugenia area) (credit: Rodrigo Beas) and b) near Asunción (credit: 577 
Roman Lopez from Cooperativa California en San Ignacio). 578 
 579 
 580 

Dickcissel 581 

The Dickcissel (Spiza americana) is a neotropical migrant bird with a widespread breeding range in the 582 

central U.S. An extreme drought in the range core caused temporary abundance increases at northern 583 

range edges [18]. These results suggest that range edge habitats can provide temporary refuge when 584 

core conditions become inhospitable, producing transitory poleward range shifts. Increasing frequency 585 

of EWCEs within the range core combined with background climate change that increases persistence of 586 

high abundances at range edges, could thus result in range shifts over time. 587 

 588 

 589 
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Dickcissel (Spiza americana) Image courtesy of Caleb Persia, https://www.inaturalist.org/people/cpersia 590 
 591 

            592 

 593 

Glossary 594 

Extreme weather and climate events (EWCEs):  Meteorologically, extreme weather events are those 595 

that are “rare at a particular place and time of year”, where rarity is defined by a threshold, which can 596 

be determined statistically as a percentile (e.g., 90th percentile) of the distribution of events over a 597 

baseline time period. Patterns of extreme weather events persisting for some time, such as a season, 598 

form an extreme climate event. However, EWCEs can also be defined based on ecological thresholds. 599 

Dispersal kernel: A probability density function that describes the likelihood of an individual dispersing a 600 

specific distance from its source location. 601 

Leading and trailing edges: The leading edge is the geographical location that describes the current 602 

distribution limit along the expanding range front. The trailing edge is the geographical location that 603 

describes the current distribution limit along the non-expanding or contracting range front of a species. 604 

Microclimatic refugia: Regions that are decoupled from macroclimate conditions, experiencing lower 605 

climatic fluctuations over time and therefore retaining historical climate conditions as the surrounding 606 

climate changes. 607 

Multivariate EWCEs: Multiple EWCEs of different types (e.g., temperature and precipitation) that occur 608 

simultaneously in the same area. 609 

Preconditioned events: An EWCE that causes an extreme impact due to a pre-existing climate condition, 610 

such as a long wet period or an early spring onset, both of which can amplify impacts of drought. 611 

Propagule pressure: The combination of the number of individuals dispersing to an area at any given 612 

time and the number of times individuals disperse to that area. 613 
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Resilience: The capacity for a population or species to recover after being impacted by an EWCE. 614 

Resistance: The extent to which an organism is not impacted by EWCEs. 615 

Spatially compounding EWCEs: Multiple EWCEs occur simultaneously in geographically connected 616 

regions 617 

Temporally compounding EWCEs: EWCEs occurring in quick succession, leading to larger impacts than if 618 

they were to occur in isolation  619 

 620 


