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Abstract  28 

Citizen science platforms have revolutionized biodiversity monitoring by enabling large-scale 29 

data collection. However, concerns about potential biases, such as urban sampling bias, have 30 

raised questions about the quality and representativeness of these datasets. This study assesses 31 

the spatial distribution of butterfly observations collected through the citizen science platform 32 

Biodiversidad Virtual in the Iberian-Balearic region over a 23-year period (2000–2023). 33 

Butterfly records were classified into three ecosystem types—urban areas, grasslands, and 34 

forests—and three population density zones—urban, peri-urban, and rural areas—using land 35 

cover and population density maps. Temporal trends in observation growth and minimum 36 

distances of records to urban and rural areas were analyzed. The results show consistent growth 37 

in butterfly observations across all ecosystem types, with rural and natural areas contributing 38 

significantly more records than urban areas. Observations in grasslands exhibited the highest 39 

growth rate, followed by forests and urban areas. The analysis of distances revealed preference 40 

for recording biodiversity in natural areas, with records consistently closer to rural areas than 41 

urban centers. These findings challenge the perceived dominance of urban bias in citizen 42 

science datasets and highlight the capability of citizen science platforms to capture data from 43 

diverse ecosystems. This study shows that, for one of the most important georeferenced 44 

datasets on butterflies of the Iberian Peninsula, urban biases are minimal, and 45 

geographic representation is robust. Further research is recommended to examine 46 

cultural and regional factors in other databases, enhancing their application in ecological 47 

research and conservation planning. 48 
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 52 

1. Introduction 53 

Citizen science platforms have revolutionized biodiversity monitoring and detecting by 54 

providing tools that enable the efficient and cost-effective collection of massive amounts of data 55 

(Dickinson et al., 2012). These platforms offer numerous benefits for research, allowing 56 

investigations to be conducted at various scales and with extensive datasets, making them 57 

essential resources for ecological research and conservation (Dickinson et al., 2010). Relevant 58 

advancements have been achieved through these platforms, including the early detection of 59 

invasive alien species (González-Moreno et al., 2024), the identification of threatened species 60 



(Rosa & Freitas, 2024), and the tracking of phenology and migratory patterns (Howard & 61 

Davies, 2006; Newson et al., 2016; Sanderson et al., 2021). 62 

Despite their advantages, citizen science platforms are subject to various biases that can 63 

impact data quality and representativeness (Geldmnan et al., 2016). The full extent of these 64 

biases remains poorly understood, requiring further investigation to mitigate their effects 65 

(Dickinson et al., 2010). Among these biases are taxonomic biases (e.g.: misidentification or 66 

identification of species that cannot be identified by macroscopic features), which favor 67 

charismatic groups like birds while underrepresenting invertebrates and fish (Della Rocca et al., 68 

2024). Large-scale geographic biases are also prominent, with most observations concentrated 69 

in developed countries, leaving regions with high biodiversity but low citizen participation 70 

poorly covered (Requier et al., 2020). At smaller scales, geographic biases are influenced by 71 

accessibility and visitation frequency, both of which play significant roles in the generation of 72 

observations (Mair & Ruete, 2016; Hugo & Altwegg, 2017). These limitations can reduce the 73 

potential of these platforms to address global ecological questions equitably. However, many 74 

“academic” databases also contain errors and biases, and these have to be lived with and 75 

methodologies exist to minimize them (Ponder et al., 2001; Wehi et al., 2012; Sánchez‐76 

Fernández et al., 2022). 77 

One specific bias is urban sampling bias, where the higher density of observations in 78 

urban areas is driven by easier access and the higher concentration of participants (Ward, 2014). 79 

This bias often results in the under-sampling of natural ecosystems such as grasslands and 80 

forests, limiting the representation of species inhabiting these habitats. This issue highlights the 81 

need to assess the spatial distribution of observations to determine whether these data accurately 82 

reflect ecological patterns or are disproportionately influenced by the observer location. 83 

This study aims to evaluate the spatial distribution of observations collected through a 84 

citizen science platform, focusing on spatial biases in data collection within the Iberian-Balearic 85 

region. Butterflies were chosen as the focal taxa due to their visual appeal within citizen 86 

science, their relevance in large-scale studies as bioindicators (Parmesan, 2003; Otaki, 2020; 87 

Pallottini et al., 2023), and their central role in numerous monitoring programs worldwide—88 

e.g., eButterfly (Prudic et al., 2017), EuropeanBMS (van Swaay et al., 2008), UKBMS (Pollard 89 

& Yates, 1994)—. The analysis spans over two decades (2000–2023), with georeferenced 90 

observations categorized under two schemes: (1) land use types—urban areas, grasslands, and 91 

forests—and (2) population density zones—urban, peri-urban, and rural areas. By analyzing 92 

temporal trends, the study seeks to determine whether citizen science data exhibit a significant 93 

bias toward urban areas or if they represent a broader range of ecosystems. These findings will 94 



provide valuable insights into the quality and representativeness of citizen science data and their 95 

applicability in addressing ecological research and conservation challenges. 96 

 97 

2. Material and Methods 98 

2.1. Data Collection 99 

Observations of butterfly species from the superfamily Papilionoidea present in the Iberian 100 

Peninsula were gathered from the citizen science platform Biodiversidad Virtual (currently 101 

inside of Observation.org https://biodiversidadvirtual.observation.org/). The dataset included 102 

georeferenced records from photographs reported between 2000 and 2023 (Supplementary 103 

Material S1). These data are uploaded to GBIF until 2018 (GBIF, 2025) and subsequently 104 

included in the Observation.org data, being public data from a citizen science platform (Figure 105 

1). Data were filtered deleting duplicates and selecting only with Spanish data (where most of 106 

records of Biodiversidad Virtual are held and has the highest representativeness) excluding 107 

Canary Island records.  108 

Georeferenced and dated data were categorized using the CORINE Land Cover 109 

database (COPERNICUS, 2020) downloaded from Copernicus Global Land Service. The 110 

original land cover categories were reclassified into three main ecosystem types: Forests 111 

(“Vineyards”, “Fruit trees and berry plantations”, “Olive groves”, “Agro-forestry áreas”, 112 

“Broad-leaved forest”, “Coniferous forest”, “Mixed forest”, and “Transitional woodland-113 

shrub”); Grasslands (“Non-irrigated arable land”, “Permanently irrigated land”, “Rice fields”, 114 

“Pastures”, “Annual crops associated with permanent crops”, “Complex cultivation patterns”, 115 

“Land principally occupied by agriculture, with significant areas of natural vegetation”, 116 

“Natural grasslands”, “Moors and heathland”, and “Sclerophyllous vegetation”); and Urban 117 

Areas (“Continuous urban fabric”, “Discontinuous urban fabric”, “Industrial or commercial 118 

units”, “Road and rail networks and associated land”, “Port areas”, “Airports”, “Mineral 119 

extraction sites”, “Dump sites”, “Construction sites”, “Green urban areas”, and “Sport and 120 

leisure facilities”). Other types of land cover categories unrelated to butterfly fauna (e.g.: 121 

“Glaciers and perpetual snow”, “Salt marshes” or “Bare rocks”) have not been considered in 122 

any of the above categories. 123 

The data were also classified into urban, peri-urban and rural areas, by reclassifying the 124 

Gridded Population of the World version 4 (GPWv4) human population raster (CIESIN- 125 

Columbia University, 2018) using the following criteria :  ≥1000 people km2, periurban >250 126 

people km2 within a 15-km distance from urban extent edge, and rural<250 people km2 and/or 127 



>15 km from the urban extents edge, and is commonly used as a representative of the 128 

urbanization level in ecological studies (Cano et al. 2014; Polidori et al. 2021)  129 

2.2. Data Analysis 130 

Accumulation butterfly data by year were calculated for each ecosystem type. Temporal trends 131 

in citizen science contributions across the ecosystems were visualized using line graphs. The 132 

curve or linear adjustment for each ecosystem type were calculated by obtaining the estimated 133 

increase in data for each ecosystem type. A descriptive analysis was conducted to assess 134 

whether the data exhibits a spatial bias toward urban areas or if the observations are more 135 

evenly distributed among the three ecosystem types.  136 

We also calculate the minimum distance of each record to the closest urban and rural 137 

area. With this information we performed an ANOVA test to show whether the means of the 138 

distances between the two areas are different or which are smaller. 139 

Reclassification of CORINE LandCover and human population was performed in 140 

ArcGIS for Desktop v 10.8 (ESRI, 2019) using the function Reclass. Data analysis (ANOVA 141 

and minimum distances) and visualization were performed using the R software (version 4.3). 142 

The ggplot2 package was used for creating graphs and sf and dplyr to the distance calculation.  143 

3. Results 144 

The analysis showed temporal trends in the annual frequency of butterfly observations across 145 

the three ecosystem types: forests, grasslands, and urban areas. The total number of 146 

observations increased steadily for all ecosystem categories from 2000 to 2023 (Figure 2A). 147 

Observations in forest areas showed a consistent increase throughout the study period, 148 

contributing significantly to the overall dataset (linear adjustment y= 1561.7x - 7654.8, R2= 149 

0.9431). Observations in grassland ecosystems exhibited the highest growth rate over the study 150 

period, surpassing urban areas and approaching the number of observations recorded in forests 151 

toward the end of the analyzed period (linear adjustment y= 1379.2x - 6764.4, R2= 0.9453). 152 

Finally, observations in urban areas also increased over time but at a slower pace compared to 153 

forests and grasslands (linear adjustment y= 362.17x - 1884.4, R2= 0.9266). Following this, the 154 

increase of urban records is the smallest among all the studied ecosystem categories (Δurban = 155 

362.17 < Δforest = 1561.7 and Δgrasslands =1379.2). 156 

The same pattern is observed with the area types and the butterfly records by year 157 

(Figure 2B). In this case, the number of peri-urban and urban registers is much lower than the 158 

number of rural registers, which shows that the annual increases are also smaller (linear 159 



adjustmentrural: y= 2874.2x - 14205, R2= 0.9429; linear adjustmentperiurban: y= 292.02x - 1463.3, 160 

R2= 0.9266; linear adjustmenturban: y = 286.8x - 1367.7; R2= 0.9266). 161 

The mean of the distances of each record to rural and urban areas are different 162 

(ANOVA: F= 3019.8; p< 2e-16) being higher to the urban areas and smaller to rural areas  163 

(Figure 3). This and previous analyses demonstrate that citizen science records pertain to 164 

photographs of volunteers and appear to be unbiased by proximity to cities. 165 

 166 

4. Discussion 167 

The study reveals the consistent growth in butterfly records across all ecosystem types over a 168 

23-year period (an average of ~3500 butterfly photographs and records per year). Rural and 169 

natural areas contributed considerably more observations than urban regions. These findings 170 

challenge the commonly perceived urban bias in citizen science data, demonstrating instead a 171 

more balanced spatial distribution of observations. 172 

There was greater growth in records and a higher number of observations in non-urban 173 

in our results, contrasting with those of Hugo and Hazell (2017). These authors found a greater 174 

sampling effort near urban areas and main roads in South Africa, a pattern that could be 175 

influenced by the own region or country characteristics and associated accessibility challenges. 176 

Also, in contrast with our results, Geldmann et al. (2016) observed that in Denmark, higher 177 

population density correlated with increased sampling intensity across species datasets, 178 

suggesting that cultural and demographic factors, play a significant role in shaping sampling 179 

patterns. These differences highlight the importance of regional characteristics and participant 180 

motivations in influencing data collection efforts. The Iberian Peninsula has a much higher 181 

proportion of rural and natural areas compared to other European countries (EUROSTAT, 2024) 182 

and has few dangerous organisms to humans (i.e.: poisonous and toxic fauna, parasites and 183 

vectors of diseases and endemic diseases) compared to other countries in the world (Li et al., 184 

2024). This, together with relatively favorable climatic conditions, could explain the differences 185 

observed in the contributions of other authors. Moreover, the cultural factor may also play an 186 

important role in the non-existence of this bias in this territory. For example, in certain areas of 187 

the Iberian Peninsula (Catalonia) a usual and recurrent hobby of people is to go into the natural 188 

areas to contribute to photographs and data of wildlife. 189 

The distances of records to natural areas were consistently shorter than those to urban 190 

areas, suggesting a deliberate cultural preference for documenting biodiversity in natural 191 

environments. It is plausible that the recreational and aesthetic appeal of these areas motivates 192 



participants to engage in citizen science projects, although further research is needed to confirm 193 

how these factors influence participation. Cultural perceptions of natural areas as biodiversity-194 

rich spaces may also play a significant role, with participants prioritizing these areas based on 195 

their intrinsic ecological and educational value (Hugo & Altwegg, 2017). While accessibility 196 

influences spatial biases to some extent (Millar et al., 2019), the intentional focus on natural 197 

habitats reflects broader sociocultural and motivational drivers. These findings emphasize the 198 

need to account for both logistical and cultural factors when interpreting spatial patterns in 199 

citizen science data, underscoring the importance of proper study design and statistical 200 

adjustments to maximize the utility and representativeness of these datasets (Brown et al., 2019; 201 

Robinson et al., 2018). 202 

The Iberian-Balearic region demonstrates a relatively well-represented sampling effort 203 

for butterflies (García-Barros et al., 2023), however some rural areas still need to be more 204 

sampled (e.g,: grasslands areas of the central Iberian Peninsula used for agricultural activities). 205 

As a geographically critical biodiversity hotspot, the Iberian Peninsula faces challenges such as 206 

rural abandonment and urban concentration, which could introduce geographic biases in data 207 

collection (Pascual et al., 2011; Quintas-Soriano et al., 2023). However, the results of this study 208 

align with those from well-sampled regions such as Great Britain, where most of the territory is 209 

well-represented, and spatial biases have not negatively impacted distribution models for birds 210 

(Johnston et al., 2020). 211 

The Iberian Peninsula, as a well-sampled region, provides an excellent case for 212 

employing citizen science data, particularly using platforms like Biodiversidad Virtual. This 213 

study demonstrates that, at least for this platform, urban biases are minimal, and geographic 214 

representation is robust. This may allow us to affirm with more confidence, for example, that 215 

the observation of a species in an urban area rather than a rural area is not due to a bias in the 216 

information from a citizen science source, but rather to a real pattern. Citizen science data 217 

represent a valuable resource, significantly reducing economic costs and accelerating 218 

knowledge generation by eliminating traditional data collection processes. However, it is crucial 219 

to analyze each database and region individually, as cultural factors may influence data 220 

collection patterns. Identifying and minimizing biases and errors within these datasets will 221 

enhance their transformation into robust scientific data, maximizing their utility and ensuring 222 

their effective application in ecological research and conservation planning. 223 
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Figures 230 

 231 

Figure 1. Geographic distribution of butterfly observations in the Iberian-Balearic region 232 

Map showing butterfly records from the Biodiversidad Virtual database. Only records from the 233 

Iberian-Balearic region are represented and included in the analysis due to the high 234 

representativeness of this territory. 235 

 236 
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 238 

 239 

 240 

 241 



 Figure 2. Temporal trends in butterfly observations by ecosystem type A) Temporal trends 242 

in cumulative butterfly observations across three ecosystem types: forests, grasslands, and urban 243 

areas, based on data collected through the citizen science platform Biodiversidad Virtual 244 

between 2000 and 2023. B) Temporal trends in cumulative butterfly observations across three 245 

area types: rural, periurban, and urban areas. 246 

 247 

 248 

  249 



Figure 3. Distance analysis of butterfly observations to rural and urban areas Violin and 250 

boxplot plot with the minimum distances in meters of each record of butterflies from 251 

Biodiversidad Virtual database to the closest rural and urban area. 252 

 253 
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