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ABSTRACT 
Thermal stratification, which is a common feature of lentic freshwater systems, has extensive 
effects on ecological interactions and ecosystem function, including processes that may determine 
which ponds can support fish populations and affect growth, phenology, and metabolism where 
populations exist. Because these habitats are important for Northern freshwater fishes, 
improvement of our ability to forecast thermal stratification and associated ecological processes, 
like dissolved oxygen dynamics, could increase the accuracy of occupancy and distribution 
modeling, inform conservation strategies, and predict contemporary evolutionary patterns. 
Although thermal regimes in temperate systems are well-characterized, the irregular thermal 
regimes that are often present in small Arctic and subarctic lakes and ponds are more poorly 
understood. In a unique cave pond system near Mývatn Iceland, where conditions shaped by 
thermal stratification may be acting as selective agents on divergence of Arctic charr populations, 
we found differences in thermal stratification regimes related to the orientation of cave openings 
and the highly irregular catchment topography . In particular, while greater exposure to warm air 
temperatures can facilitate summer stratification and results in more variable temperatures, 
exposure to wind – which is modulated on a small scale by the terrain – can facilitate mixing. 
These patterns caused only the more sheltered of the two ponds remain continuously mixed. We 
also found that growth rates and body condition in the ponds’ Arctic charr populations (Salvelinus 
alpinus) are consistent with constraints on growth and metabolism imposed by low temperature in 
the cooler, continuously mixed pond, although we cannot rule out the effects of prey limitation.  
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INTRODUCTION 
As major sources of ecological variation between lentic aquatic habitats, the mixing 

regimes of lakes and ponds can have large and important effects on the ecological processes 
occurring within them (Boehrer and Schultze 2008; Woolway et al. 2022). Thermal stratification 
between water layers entails not only gradients of temperature, but also dissolved oxygen (DO), 
salinity, CO2, CO4, and nutrients (Gibson 1999; Song et al. 2013; Rabaey and Cotner 2024). In 
most lakes wind drives mixing, and most large temperate lakes are dimictic, mixing in the spring 
and autumn (Boehrer and Schultze 2008). In polar regions, however, where temperatures remain 
cool in the summer, thermal regimes can be irregular even in large lakes, with some remaining 
stratified throughout the year (Gibson 1999), stratifying along a chemocline generated by snow- 
and ice-melt (Cortés and MacIntyre 2020), or exhibiting weak stratification or polymixis. For 
example, in Iceland, even deep lakes that are dimictic, notably Þingvallavatn (Adalsteinsson et 
al. 1992; Malmquist et al. 2020) and Lagarfljót (Ramón et al. 2020), are typically weakly 
stratified and can vary considerably in strength of stratification between years, and can 
sometimes be thoroughly mixed by strong winds even in the summer (Malmquist et al. 2020). 
Most lakes and ponds at this latitude, however, are much smaller and/or shallower than these 
dimictic lakes (Verpoorter et al. 2014), and even in temperate regions, shallow lakes often have 
more complex mixing regimes. Holgerson et al. (2022) found that ponds in southern Ontario 
larger than 4 ha were usually isothermal with any stratification breaking down at night. In 
contrast, ponds with a smaller surface tended to mix intermittently if less than ~74 cm deep, and 
rarely or never mix if deeper. The extent to which these observations apply to ponds with 
complex or irregular basin topography, and in cooler subarctic regions where there is typically a 
smaller difference in the air temperature and the water temperature, is unclear. Such small ponds 
may have already undergone dramatic community changes with warming climate (Nishikawa et 
al. 2024), and are important drivers of larger-scale ecological processes (Rautio et al. 2011) 
across a region that is rapidly warming.  

Among the vertebrates that use subarctic ponds and small lakes, the small number of 
Northern fish species that inhabit them year round is expected to be most directly and acutely 
affected by variation in thermal regimes. By changing lake and pond thermal regimes, climate 
change is expected to dramatically alter the suitability of some habitats, forcing populations of 
these northern species, to migrate or adapt to these changes where migration is not possible 
(Jeppesen et al. 2020; Kelly et al. 2020). Still, the thermal regimes of their habitats are expected 
to strongly influence growth patterns, phenology, and population dynamics. For example, 
although one such broadly distributed species, the Arctic charr (Salvelinus alpinus), exhibits 
extremely high levels of intraspecific diversity and is able to occupy a large range of aquatic 
habitats, its habitat use is constrained by both temperature and dissolved oxygen concentrations 
(Elliott and Baroudy 1995; Kelly et al. 2020). Understanding the current interactions between 
charr populations and the thermal regimes of their habitats is therefore critical for understanding 
the ecology of these systems, and anticipating future adaptation and local extinction risk.  

Temperature and dissolved oxygen are key parameters associated with mixing regimes 
that affect fish physiology, development, and behavior (McDonald and McMahon 1977; Cote et 
al. 2020; Rodrigues et al. 2022), which can generate selective pressures, potentially reinforcing 
reproductive isolation between populations (Ohlberger et al. 2013; Kahilainen et al. 2014). 
Although Arctic charr are very tolerant of cold water, even to the extent that they can continue to 
grow at nearly freezing temperatures (Elliott and Baroudy 1995), their phenology and 
development is heavily influenced by temperature, DO, and their interaction. In hypoxic 



conditions, embryo weight and weight at hatching are reduced, and mortality of alevins at 
relatively warmer temperatures dramatically increases (Gruber and Wieser 1983). Even in cold 
water, low DO can result in significant alevin mortality, and at 5º, Baroudy (1993) showed that 
7-day survival for charr from Windermere, England was 100% at 75% oxygen saturation (9.6 
mgL-1), but only 25% at 50% oxygen saturation (6.4 mgL-1). Additionally, temperature variation 
can constrain spawning phenology (Alekseyev et al. 2019). Slight temperature increases can also 
increase growth post-hatching (Leblanc et al. 2019), and can strongly influence the development 
of head morphology, with elevated temperatures resulting in a morphology similar to that seen in 
benthivorous charr morphs (Hooker et al. 2023). The closely related brook charr (Salvelinus 
fontinalis) even exhibits transgenerational plasticity in which the offspring’s expression of genes 
related to immunity, metabolism, and neural development is affected by the temperatures 
experienced by parents during gametogenesis (Banousse et al. 2024), which could induce 
variation between age cohorts and populations in response to thermal regime variation. 

We focus our investigation of thermal regimes on groundwater-fed ponds that are situated 
within lava caves inhabited by distinct small populations of small-bodied Arctic charr in the 
Mývatn and Laxá Conservation Area in Northeast Iceland (Judson et al. 2024; Leblanc et al. 
2024). Environmental microgeographic variation alongside isolation can therefore be expected 
not only to produce variation in ecological dynamics, but also to facilitate evolutionary 
divergence over very small spatial scales through selection on behavior, developmental, and 
physiological processes. Such small-scale divergence has been documented in aquatic habitats 
spanning lotic-lentic gradients (Haenel et al. 2021), between reproductive habitats of different 
temperatures (Kavanagh et al. 2010; Arietta and Skelly 2021), and between distinct habitat 
patches within tidal marshes (Wagner et al. 2017). We also know that invertebrate communities 
in the cave ponds, on which the charr are dependent for food, are shaped by temperature and 
dissolved oxygen concentrations (Kristjánsson et al. 2024). Especially for metapopulations with 
small constituent populations vulnerable to local extinction, such adaptive variation is expected 
to be critical for enabling adaptation to climate change (Denney et al. 2020; Arietta and Skelly 
2021).  
 To consider whether variation in thermal regimes between ponds could be an important 
driver of small-scale ecological variation and divergence in Arctic charr, which exhibits 
particularly high diversity in phenotype (Klemetsen 2013), we analyzed depth profiles for two 
adjacent cave ponds. Each of the ponds is the habitat for a population of small-bodied Arctic 
charr, and the two populations experience little gene flow between them (Leblanc et al. 2024). 
These ponds are partially subterranean and have highly irregular basin and surface morphology 
that differs between the ponds, but are also inferred to have the same groundwater source and 
similar water chemistry due to their proximity. Therefore, we hypothesized that the deeper and 
more sheltered of these two ponds, C24, would stratify and the other, C23, would mix more 
regularly or continuously (see pond descriptions below). If ponds demonstrated stratification, we 
modelled meteorological data for potential contributions to the ponds’ thermal mixing regimes. 
The relative contributions to pond stratification of local surface terrain and weather shared across 
the Mývatn lava fields is important for determining the potential heterogeneity of mixing 
regimes across the hundreds of ponds in this area, and determining whether temporal variation in 
thermal regimes is predictable. Because stratification can modulate the suitability of a habitat for 
charr, we used the stratification models to hindcast thermal dynamics during summers from 
2013-2024 to demonstrate its potential utility in reconstructing the environments experienced by 
charr populations in the ponds. We also tested for associations between changes in stratification 



intensity and dissolved oxygen in the summer of 2024 to determine if it is likely that 
stratification plays a role in modulating DO dynamics. Finally, as divergent thermal regimes are 
likely to affect Arctic charr body condition and growth patterns, we tested for differences 
between ponds and sampling seasons in the body conditions of fish captured between 2014 and 
2024. 
 
METHODS 
Site Description 
The ponds described here are located in a lava field directly northwest of the southern basin of 
Mývatn, a large shallow lake in Northeast Iceland. The lava field contains numerous caves 
formed by lava tubes, many of which are filled with groundwater that creates permanent ponds. 
Twenty ponds, in two locations west and northwest of the lake have been the subjects of a long-
term monitoring project since 2012 because they contain small populations of small-bodied 
Arctic charr founded within the past 2200 years, and described in Leblanc et al. (2024).  
 This study focuses on two cave ponds in particular, hereafter referred to as C23 and C24 
(65.61722º N, 17.05426º W and 65.61718º N, 17.05376º W, respectively) which are located 14 m 
apart. Despite their proximity, they contain Arctic charr populations with low rates of gene flow 
from C23 to C24, and no detectable gene flow in the other direction (migration rate from C23 to 
C24 = 0.110 per generation, p = 0.04; Judson et al. 2024; Fst = 0.093; Leblanc et al. 2024). C23 
has two openings separated by a low arch approximately 5 m wide, with the passage between 
them oriented in an east-west direction. A total of 2.2 m2 of the surface of C23 is exposed to 
direct overhead sunlight or precipitation and 5.8 m2 of vertical area separates the surface of the 
water and the ceiling of the cave at the openings. C24 has one larger opening and an immediately 
adjacent smaller one, with a combined surface of approximately 2 m2 or less xposed to the sky. 
There is only a negligible vertical area at the larger opening of C24 – likely less than 1 m2 – 
meaning there is almost no space between the surface of the water and the ceiling of the cave 
chamber at the opening. The surface of C24 is mostly shielded from wind by turf hummocks. 
Although we believe most of the pond area of C23 is visible, C24 likely includes a substantial 
area that is inaccessible not measurable without diving equipment. The substrate of these ponds 
is predominantly fine organic mud, with some rocky areas near the shore. They lack macrophytes 
but have attached algae and diatoms that serve as primary producers. 
 
Temperature and Dissolved Oxygen Measurements 
We recorded temperature profiles by suspending HOBO data loggers (UA − 002-64 Onset 
Corporation, Bourne, MA) 20 cm apart along vertical transects from buoys at the deepest 
accessible points of C23 and C24. Because water levels were unusually high when temperature 
loggers were deployed due to late snowmelt, suspending them from anchored buoys instead of 
anchoring the loggers directly allowed them to maintain their depth relative to the surface, but 
likely resulted in some change in the distance from the benthos (which was <20 cm when 
deployed). Loggers recorded temperatures in the caves at 6-hour intervals from June 20 to 
September 4, 2024. Additionally, shoreline temperature loggers have been deployed at C23 and 
C24, along with the other ponds in the long-term cave charr study. These are not used in the 
analyses described here, but could be used in future stratification hindcasting models. 
 We obtained daily average air temperature, wind speed, and wind direction data from 
Veðurstofa Íslands (the Icelandic Meteorological Office) for the Mývatn weather station 
(65.61933° N, -16.97684° W, 3.5 km east of the ponds) for the period during which our water 



temperature loggers were deployed in C23 and C24. We also collected air temperature data at 6-
hour intervals using a HOBO logger deployed at a site approximately 3.68 km south of the ponds 
(65.58413° N, -17.05642° W) to obtain data on diel fluctuations of air temperature near a cave 
opening and ensure that temperature data from different locations within the study area were 
consistent with each other. 
 Dissolved oxygen (DO) was recorded using a miniDOT logger (PME, Vista, CA) placed 
near the center of C23, which took measurements at 1-hour intervals from June 21, 2024 – 
September 18, 2024. This probe was positioned so that it was 18 cm above the bottom, and the 
temperatures it logged corresponded with the temperatures at 100 cm depth in our depth profile. 
The logger was removed for 10-30 min on August 21 so that the pond could be electrofished and 
then replaced at a slightly different location. Although there appears to have been little effect on 
the measured water temperature, the move of the probe, and mixing and suspension of sediment 
caused by wading through the pond to electrofish, may have influenced subsequent DO 
concentrations. As a result, DO data collected following the repositioning of the probe has been 
omitted from subsequent analyses, but is shown in Figure S1. 
 
Limnological Calculations and Data Analysis 
All data processing and analysis was conducted in R v. 4.5.1 (R Core Team 2025). Data from 
temperature profiles were synchronized to common six-hour intervals using linear interpolation 
(Gebhardt et al. 2024). We calculated the thermocline depth, when possible, using the 
ts.thermo.depth function in the R package rLakeAnalyzer (Winslow et al. 2019) using the default 
minimum density gradient cutoff. We calculated Relative Thermal Resistance to Mixing (RTRM; 
Wetzel 2001; Song et al. 2013) – a metric of water density differential based on temperature – in 
both caves between the shallowest (20 cm) and deepest (100 cm in C23; 140 cm in C24) HOBO 
loggers. Because the chemical identities of solutes are unknown in the ponds, and because of the 
similarity of their water chemistry due to proximity and sharing of a common catchment, RTRM 
was calculated using densities for pure water. 

Although authors sometimes set a threshold RTRM value to define stratification (see e.g., 
Song et al. 2013), the density or temperature gradient thresholds and related parameters used to 
define stratification are often unreported, or arbitrary and inconsistent (Gray et al. 2020; 
Holgerson et al. 2022). Additionally, density gradients in Arctic and subarctic lakes and ponds 
are often less extreme because the density of water changes more rapidly relative to temperature 
when it is warmer, and these lakes are typically exposed to cooler summer temperatures than 
temperature lakes. For instance, Þingvallavatn, Iceland’s largest natural lake, is considered to be 
dimictic, but the temperature gradient at its thermocline is approximately an order of magnitude 
less than what we measured in C23 (Adalsteinsson et al. 1992; Jónasson 1992). A fixed threshold 
RTRM value for stratification in this investigation would also be arbitrary, so we refrain from 
defining one, and instead rely on RTRM values to describe a continuous gradient of 
stratification. 
 We tested for the influence of daily average wind direction, wind speed, and air 
temperature on RTRM as a measure of the extent of stratification in C23, using generalized 
additive models (GAMs) as implemented in the R package mgcv (Wood 2011; Wood 2023). 
Multiple models were fit with different combinations of predictors and then compared using AIC 
scores to determine which combination of predictors best explained variation in RTRM. To make 
the total number of models more manageable, we included main effects of air temperature and 
wind direction in each model, as these were expected to be the principal drivers of thermal 



stratification. Wind speed was only included in some models as a main effect because its 
influence on RTRM was generally expected to be contingent on wind direction. Model variants 
were then defined by the inclusion (or lack thereof) of wind speed and interactions (two- and 
three-way) between air temperature, wind direction, and wind speed. As the response of RTRM 
to the physical predictors was unlikely to be instantaneous, models were fit using both 1-day and 
2-day lags on independent variables, with all terms in a given model lagged in the same way. We 
then tested a null model with no independent variables. The smoothing splines for wind direction 
were implemented as cyclic cubic regression splines, and thin plate regression splines used for 
other variables were unpenalized for main effects and penalized for interactions to minimize 
excessive wiggliness (Wood 2003, 2017).  

While the non-seasonal models have the benefit of being able to predict RTRM using 
only a single day’s meteorological data, their main drawback is that they cannot account for 
seasonal variation. To account for potential seasonal variation, the best-fitting GAM was refit 
with a term for “day of the year”, fit with a thin plate regression spline (TPRS). The “day of the 
year” terms captured autocorrelated changes in the fitted values of the model. However, residuals 
could also be autocorrelated, which has different implications for the other model components 
are fit to the data. Therefore, we also fit variants of the models accounting for residual 
autocorrelation. This was done using a first-order autoregressive process using the corAR1 
function in the nlme R package (Pinheiro et al. 2023), following procedures described in 
Simpson (2018) and Enevoldsen et al. (2022) that are further described in the supplementary 
materials. 

 
Fig. 1. Temperature profiles in two small groundwater fed ponds (Mývatn, Northeast Iceland) in summer 2024. 
Temperatures are shown on a color scale from blue to red, representing cooler to warmer temperatures. The thin black 
line in the C23 profile shows the calculated thermocline depth. The filled area represents the range of depths covered 
by the temperature data, while the horizontal black line represents the surfaces of the ponds 
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Because the variance of RTRM increases with its magnitude, all GAMs used a Tweedie 
distribution with a log-link function. The Tweedie distribution encompasses various continuous 
and discrete distributions depending on the value of the an estimated parameter p, including the 
Poisson (p = 1) distribution, the gamma (p=2) distribution, and mixtures of the two (1< p <2) 
(Dunn and Smyth 2005). This makes it a very flexible way for modeling nonnegative values with 
potential overdispersion. While negative RTRM values are possible, they are highly transient 
because they indicate denser water higher in the water column (physically unstable), and they 
were rarely present in our time series, accounting for only 1 of 74 daily mean RTRM values (-
0.034) in the C23 dataset, and approximately 3% of values in the 6-hourly dataset. Therefore, we 
added the absolute value of the minimum RTRM to all response values, so no values were 
negative and models could be fitted using the log-link function.  
 The non-seasonal model with the lowest AICs and its associated seasonal model were 
then used to hindcast RTRMs of C23 from May 15 – September 30 (inclusive) from 2013 – 
2024. If the magnitude of mortality and plastic effects of thermal stratification on the charr 
populations are able to be determined through continued study of these populations, existing 
charr data may be used to estimate mortality and selection resulting from yearly variation in 
stratification dynamics.  

Finally, although establishing a mechanistic model of DO variation in these ponds is 
outside the scope of this paper, we used a rolling correlation of DO and RTRM measured at 6-hr 
intervals to determine whether a mechanistic association between DO and thermal stratification 
is likely. Because DO experienced dramatic diel fluctuations from mid-July through the 3rd week 
of August, DO and RTRM changes relative to the same time on the previous day were used to 
remove this effect. Correlations used a 3-day (12 time-point) lagging window. DO data following 
the August 21 removal and replacement of the DO probe are reported in supplementary materials 
(Figure S1), but were excluded from this analysis because of a subsequent abrupt decline in diel 
fluctuations that are assumed to be related to the disturbances associated with electrofishing in 
the pond or probe repositioning. 

 
Charr Length Distributions and Body Condition 
To begin to understand the consequences of pond thermal regimes on the resident charr 
populations, we used phenotypic data collected since 2012 (Leblanc et al. 2024) to test for effects 
of pond and season on the body conditions of Arctic charr. In most years (excepting when field 
work was not possible due to inclement weather), data was collected on two occasions at the 
beginning of the summer growth period in June to early July, and on two occasions near the end 
of the summer growth period in August to early September. All fish were captured using Gee 
style minnow traps or electrofishing. Some individuals were observed in two or more sampling 
periods, but are considered independent for these analyses.  

For body condition, we used the Le Cren index (Kn) (Le Cren 1951), with predicted 
weight-at-length established using common length-mass curve for both populations. While Kn is 
a ratio of observed to predicted weight that averages to 1 across lengths, the use of a common 
length-mass curve permits comparisons between populations and seasonal samples, whereas 
using within-group Kn would place the condition of different groups in non-comparable units (Le 
Cren 1951; Ghinter and Youcef 2021). Kn was calculated using observations of fish that were at 
least 45 mm in fork length beginning in the August field season of 2014, when we began using a 
balance precise to 0.1 grams, whereas our previous balance was only precise to grams. We 
performed a test for differences between Kn of individuals from different ponds and captured in 



different seasons using an ANCOVA that included interactions between fork length and cave or 
season, and a three-way interaction term, but excluded a term for the main effect of fork length 
because the use of Kn eliminates that effect. We confirmed the absence of any significant main 
effect of fork length by running an additional model that included fork length as the first term. 
Body condition models used type I sums of squares. 

 
Fig. 2. Local weather conditions and pond stratification dynamics in two small groundwater fed ponds (Mývatn, 
Northeast Iceland) through summer 2024.  
Daily mean temperatures (a), wind direction (b), and wind speed (c) at the 3.5 km distant Mývatn weather station, and 
Relative Thermal Resistance to Mixing (RTRM) at both caves (d) throughout the study period. The pale green line in 
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(a) represents air temperature recorded from a HOBO logger at 6-hour intervals 5.28 km southwest of the weather 
station and 3.68 km south of the ponds, placed near the opening of a pond. This shows that air temperature varies little 
across the lake, and therefore the weather conditions recorded at the weather station should also be similar to those at 
the ponds. The diel fluctuations in the logger temperature data are a consequence of the 6-hour sampling resolution. 
In (b), 0º and 360º represent winds originating from the north. RTRMs of C23 and C24 at 6-hour intervals are shown 
in (d), with higher RTRM values indicating more intense stratification 

 
Size-specific growth rates are reported from simulated model fits (n = 100 for each pond 

´ season group). Parameters for simulations were extracted from posterior distributions of the 
“spatial” model in Mittell et al. (2025), which estimated growth coefficients for each population 
and season, irrespective of year. They used a Bayesian approach to estimate growth rates for 20 
populations in the cave ponds around Mývatn, based on repeated observation of tagged 
individuals. 

 

 
Fig. 3. GAM model 2 partial effects of weather on stratification, and site map and photograph 
Partial effects of temperature (a), wind direction (b), and the interaction between wind direction and speed (c) on pond 
stratification in C23, as measured by Relative Thermal Resistance to Mixing (RTRM) in GAM model 2. Negative 
partial effects in (a-c) indicate reduced RTRM (increased mixing), while positive effects indicate increased RTRM 
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(increased stratification). The photograph in (d) shows the study area from the north, facing south, with the south basin 
of Mývatn in the distance. In the inset map, black lines indicate the cave openings and shading indicates elevation and 
vegetation type. Pale green indicates grassy areas only slightly above the water table, while the darker greens indicate 
elevated areas with mostly low, shrublike vegetation. The orange arrow is oriented from 200° SSW, the approximate 
direction in which wind has the strongest negative effect on stratification. Photo by Kári Heiðar Árnason 
 
RESULTS 
Thermal Gradient Formation 
Throughout the study period, C24 did not stratify and temperature varied little (Figure 1, S2). 
The difference between temperatures recorded at 20 cm and 140 cm reached a maximum of 
1.0ºC, but rarely exceeded 0.5ºC irrespective of air temperature, and had maximum and median 
RTRM values of 5.06 and 1.89, respectively, indicating constant, thorough mixing. In contrast, 
loggers in C23 recorded several distinct periods of elevated RTRM values between mid-July and 
mid-August, the most prominent of which began on July 14 and lasted for approximately a week 
(Figure 2). C23 had a maximum temperature difference of 3.0º C between depths of 20 cm and 
100 cm, and a maximum RTRM of 21.52 on the afternoon of July 16.  
 As might be expected for such a shallow pond, when a putative thermocline developed in 
C23, it was unstable and short-lived. After calculated thermocline depths of exactly 30 and 90 
cm – which were assumed to be calculation artefacts – were removed, the most durable 
thermocline persisted for 4 days, from 18:00 on July 31 to 12:00 on Aug 4. Furthermore, as C23 
became more stratified the temperatures recorded by the deeper loggers would decline, becoming 
colder than when the water column was thoroughly mixed, even as water temperatures near the 
surface increased (Figure S2).  
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Fig. 4. Partial Effects of weather variables on stratification in Seasonal GAM model 
Partial effects of temperature (a), wind direction (b), seasonality (c), and a wind direction ´ speed interaction (d) in 
the Seasonal GAM. All effects included in this model are statistically significant. Note that at higher wind speeds, 
winds from SSW had a negative, de-stratifying effect 
 
Predictors of RTRM 
GAMs with 1-day lags on meteorological variables yielded better fits than those with 2-day lags 
(Table 1). Moreover, the model with 1-day lagged effects of temperature, wind direction, and 
wind direction ´ wind speed interaction (Model 2) had the lowest AIC among those models only 
including meteorological predictors. This model did not include a main effect of wind speed, and 
fit slightly better than Model 3, which was identical to Model 2 except for its inclusion of a wind 
speed main effect. Model 2 explained 69.3% of the deviance in RTRM, and each of its terms was 
statistically significant (Table 2, Figure 3). RTRM increased (i.e., lower mixing) with 
temperature until approximately 12ºC where the effect of temperature plateaued. Conversely, 
wind was associated with reduced RTRM (i.e., greater mixing) when coming from 
approximately 200º SSW, corresponding to more direct exposure to the western opening of C23 
(Figure 3). In Model 2, greater wind speed promoted greater mixing, but only when it aligned 
with wind directions of greatest exposure, as indicated by the wind direction ´ wind speed 
interaction (Figure 3). 
 The addition of the seasonal component (“day of the year”) to Model 2 substantially 
improved the model fit and raised the deviance explained to 84.9%. However, the inferred effects 
of temperature, wind direction, and wind direction ´ wind speed interaction as described above 
were largely unchanged directionally, although the main effect of wind direction was somewhat 
weaker. RTRM showed a hump-shaped relationship with day of the year, with a peak in late July 
(“day of year” 210; Figure 4). This pattern ostensibly cannot be directly explained by air 
temperature (as this was separately accounted for in the model) but could be tied to a related 
mechanism that manifests over a different time scale. Accounting for residual autocorrelation 
further improved the fit of the model in terms of AIC, but reduced the deviance explained by the 
predicted values under the model (i.e., excluding the residuals) to about 76.1%. In this model, the 
effects of temperature, wind direction, and seasonal smooth were significant (Table 2); but those 
effects were weaker than for the models omitting the residual autocorrelation structure (Figures 
S3-S4), and the effect of wind direction was so weak as to not be practically meaningful. 
Moreover, the wind direction ´ wind speed interaction was not significant. Essentially, the model 
including a residual autocorrelation structure attributed a greater portion of the autocorrelated 
variation in RTRM data to residual error, reducing the influence of the predictors. While 
mathematically clear, there is some mechanistic ambiguity in the attribution of observed 
temporal autocorrelation to the predicted values (i.e., meteorological predictors; seasonal 
smooth) versus error (i.e., residual autocorrelation). As our goal was to understand the potential 
influence of the model predictors, we hereafter focus on the results from the model including the 
meteorological predictors and seasonal smooth, but not residual autocorrelation.  
 



 
Fig 5. Hindcasted stratification in a small pond in Northeast Iceland from local meterological data for 2013-2024 
Daily mean Relative Thermal Resistance to Mixing (RTRM) in C23, empirically calculated (black; 2024 only) and 
hindcasted RTRM from GAM Model 2 (blue) and the Seasonal Model (red), with 95% credible intervals shaded. 
Vertical dashed lines represent the beginning and end of the date range of empirical stratification data used in the 
models. Both models included main effects of temperature and wind direction and a wind direction ´ wind speed 
interaction, all on a 1-day lag. The seasonal model additionally had a term for the day of the year.  
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To characterize the expected mixing regime under different meteorological conditions, 
we hindcasted the model using temperature, wind speed, and wind direction data from May 15th 
to September 30th of every year from 2013 to 2024. For the sake of comparison, we did this for 
both the model including a seasonal smooth and without, with the caveat that the seasonal 
smooth was only fit to data from June 21 to September 18, 2024 and therefore our hindcasting 
extended beyond the temporal range of the RTRM data used to fit the model. Nearly every year 
experienced multiple transient periods of elevated resistance to mixing, although the timing 
varied substantially across years, and models diverged beyond the dates for which RTRM was 
calculated in 2024 (Figure 5). Nonetheless, this illustrates that the complex mixing regime 
observed in 2024 is likely representative of the typical behavior. Inclusion of the seasonal 
smooth led to lower back-casted RTRM values early and late summer, leading to greater periods 
of complete mixing than expected based on the meteorological predictors alone.  
 
Dissolved Oxygen 
For most of the study period, 24h-changes in RTRM and DO were negatively correlated such 
that reduced mixing (higher RTRM) was associated with declines in DO (Figure 6). However, 
this negative association weakened and briefly reversed following the period of strongest 
stratification in July, became re-established for approximately a week, then again reversed during 
the weaker stratification at the beginning of August. The correlation coefficient between daily 
changes in DO and RTRM then gradually declined through mid-August. 
 
 

Table 1. Model fit summaries for GAM models of effects on stratification 
Brief descriptions of all tested general additive models of pond thermal gradient for C23. Model terms are: T – 
temperature, Wd – wind direction in degrees, Ws – wind speed, D – day of the year. Model 2, the best-fitting non-
seasonal model, was used as the basis for the seasonal models. Bold typeface is used to indicate the best-fitting 
model by Akaike’s Information Criterion (AIC) and its seasonal version. Models with a lag of 1 day on independent 
variables have an n of 75, whereas models with a lag of 2 days have an n of 74. P indicates the p parameter of the 
Tweedie distribution used by mgcv to fit the model, not the significance of the model fit 
Model No. Formula Lag (days) df AIC p 

Null ~ 1 NA 2 444.1 NA 

1 ~ T + Wd 1 11.37 273.87 1.721 

2 ~ T + Wd + WdWs 1 11.79 268.87 1.700 

3 ~ T + Wd + Ws + WdWs 1 13.12 269.55 1.706 

4 ~ T + Wd + Ws + TWdWs 1 12.63 273.15 1.706 

5 ~ T + Wd + TWdWs 1 10.20 272.11 1.725 

6 ~ T + Wd + Ws + WdWs + TWdWs 1 15.95 271.56 1.705 

7 ~ T + Wd 2 8.27 286.67 1.738 

8 ~ T + Wd + WdWs 2 11.69 287.23 1.734 

9 ~ T + Wd + Ws + WdWs 2 12.32 288.28 1.736 

10 ~ T + Wd + Ws + TWdWs 2 9.98 284.81 1.744 

11 ~ T + Wd + TWdWs 2 9.54 283.78 1.740 

12 ~ T + Wd + Ws + WdWs + TWdWs 2 11.98 285.78 1.743 

Seasonal ~ T + Wd + WdWs + D 1 15.89 224.96 1.556 



 
Table 2. Stratification GAM model results for the best-performing model, with and without a seasonal term and 

an autoregressive component 
Summary results for models 2 and the seasonal model. All GAMs were run using the Tweedie distribution with a 
log link function. The seasonal model incorporates a Day term, while model 2 requires only the weather data from 
the previous day. Thin plate regression splines are indicated by TPRS. The wind direction splines are cyclic such 
that values of 0 and 360 are equivalent. Models 2 – AR1 and Seasonal – AR1 incorporate first-order autoregressive 
components with values of autocorrelation coefficient ρ reported (see supplementary materials for more on how 
this value was obtained). Reported REML scores for these two models are fREML scores 

Model Terms Spline/ 
Smooth Type edf F P 

2 T TPRS 3.17 25.03 < 0.001 *** 
 Wd Cyclic 2.00 4.60 < 0.001 *** 
 WdWs Cyclic:TPRS  1.93 0.81 0.004 ** 
Seasonal D TPRS 3.89 15.42 < 0.001 *** 
 T TPRS 3.00 23.51 < 0.001 *** 
 Wd Cyclic 1.32 1.51 0.0243 * 
 WdWs Cyclic:TPRS  2.13 1.31 < 0.001 *** 
2 – AR1 T TPRS 2.41 10.29 < 0.001 *** 
 Wd Cyclic 0.45 0.17 0.299  
 WdWs Cyclic:TPRS 0.39 0.04 0.271  
 corAR1(~ D) ρ = 0.83072     
Seasonal – AR1 D TPRS 3.33 6.74 < 0.001 *** 
 T TPRS 2.37 13.46 < 0.001 *** 
 Wd Cyclic 0.00 0.00 0.013 * 
 WdWs Cyclic:TPRS 0.85 0.11 0.206  
 corAR1(~ D) ρ = 0.5926354     

 Deviance Explained 
(%) DF AIC -REML Scale Estimate 

2 69.3 11.79 268.87 134.94 0.730 
Seasonal 84.9 15.89 224.96 114.70 0.435 
2 – AR1 39.8 7.63 228.89 81.47 1.173 
Seasonal – AR1 76.1 11.54 217.04 81.99 0.552 

 
Charr Body Condition and Size-Specific Growth 
 Both populations exhibited significant differences in body condition between seasons 
(Table 3, Figure 7), with higher condition in August than June, consistent with increased food 
availability in the summer. Although there was no difference in the main effect of population on 
body condition, there was a significant interaction between fork length and population, such that 
smaller individuals in C24 were heavier than C23 fish of the same length, and the inverse was 
true for larger individuals. The three-way interaction between population, season, and length was 
not significant, but the population-specific length effect is particularly prominent in August, with 
the differences in condition between caves being greater at the end of the growing season (Figure 
7). Despite the significant effects, the model had low explanatory power, with an adj. R2 of only 
0.027. Although the Shapiro-Wilk test identified significant departure from normality in the 
model residuals (W = 0.956, p <0.001), this is primarily a consequence of the distribution’s light 
tails, as the positive skew is mild (0.743). 
 In both ponds, growth was higher in the summer than in the winter months (Table 4, 
Figure 7). Additionally, growth rates decreased with size in both ponds and across summer and 
winter seasons. Among larger fish, C23 exhibited higher growth rates in summer and winter, but 
rates of growth were faster among fish less than ~85 cm in C24 than among similarly-sized fish 
in C23 during the winter. 



 
 

Table 3. Effects of sampling season and pond on charr condition 
Results of an Ancova for differences in Le Cren Indices between ponds and 
between seasons. Type I sums of squares are used for this test, and terms are listed 
in order of inclusion in the model. Lengths were centered about the mean length 
prior to performing this analysis. 
Effect Df SS MS F p  
Season 1 0.125 0.125 8.069 0.005 ** 
Pond 1 0.003 0.003 0.190 0.663  
Season:Length 2 0.073 0.037 2.377 0.094  
Pond:Length 1 0.113 0.113 7.291 0.007 ** 
Season:Pond:Length 1 0.041 0.041 2.675 0.102  
Residuals 613 9.472 0.015    

 
 

Table 4. Trends in size-specific growth rates of charr by pond and season 
Seasonal growth rates in mm/month, as a function of fork length. Intercepts represent the value at 
93 mm, the mean fork length of individuals in the Mittell et al. (2025) growth models. Slopes 
represent change in mm/month as a function of fork length. 
Pond Season Intercept Intercept 95% CI Slope Slope 95% CI 
C24  Summer 3.39 3.27, 3.52 -0.0481 -0.0509, -0.0453 
C24  Winter 0.78 0.74, 0.83 -0.0169 -0.0175, -0.0162 
C23  Summer 3.72 3.59, 3.85 -0.0402 -0.0431, -0.0374 
C23  Winter 0.79 0.75, 0.83 -0.0120 -0.0126, -0.0114 

 
DISCUSSION 
Here we demonstrated that the catchment morphology and orientation of two subarctic ponds 
(separated by only 14 m) interacted with local weather conditions and resulted in divergent 
thermal regimes, providing distinct summer conditions for two populations of Arctic charr. Such 
small-scale environmental heterogeneity in temperature and DO can have consequences for the 
species and populations that inhabit these environments. While one cave (C24) remained well-
mixed throughout the study period, the other (C23) experienced transient periods of elevated 
thermal resistance to mixing associated with pronounced thermal gradients. Wind direction 
played a key role in shaping the mixing regime, with well-mixed periods associated with winds 
approximately matching the orientation of C23 between openings. Temporal variation in mixing 
was associated with the DO dynamics, with periods of reduced mixing being associated with 
declines in DO, presumably due to reduced gas exchange between the atmosphere and the 
hypolimnion (Smith and Bella 1973). Moreover, although we cannot establish a causal link with 
thermal regime from the available data, populations of Arctic charr in the two caves differed in 
their interactions between pond and length to affect body condition and size-specific growth 
rates. Because temperature and DO influence charr phenology (Alekseyev et al. 2019), growth 
(Leblanc et al. 2019), survival (Gruber and Wieser 1983; Baroudy 1993; Baroudy and Elliot 
1994), and morphology (Hooker et al. 2023), and can restrict the livable volume of a body of 
water (Smith and Bella 1973), our results suggest that the variation in pond thermal regimes 
induced by the interaction between weather and wind exposure may play an important role in 
shaping population ecology at a very fine scale.  
 Interestingly, distinct differences were found between two ponds that are superficially 
similar in many respects. Both ponds are largely sheltered from sunlight, share groundwater 



origin based on temporal series of chemical parameters (pers. comm. Leblanc), and have 
relatively small volumes. While the RTRM values calculated in C23 are lower than what is 
typical for stratified temperate lakes and ponds because of its low year-round temperatures, both 
C23 and C24 are largely sheltered from most of the disturbances that would induce mixing in 
more typical ponds because of the lava ceiling and surrounding terrain. Both have very small 
areas exposed to direct sunlight, meaning that radiative heating of the benthos is not a factor that 
would induce mixing, and both are generally sheltered from wind, except when the wind 
direction matches the direction of the cave opening (see Figure 3). Even though C23 has a larger 
surface exposed to the air, the air temperature in the chamber under the arch is often cooler than 
the outside air temperature (personal observation). As a consequence, even a relatively low 
thermal gradient appears able to resist mixing in C23 for days to weeks, except when 
southwesterly winds are able to force air to flow under the arch and interact with the surface of 
the pond. Alongside less wind exposure, C24 has a much smaller surface capable of interacting 
with the air, particularly relative to its possibly large subterranean volume. This likely prevented 
sufficient warming of its surface to induce stratification in the first place. 
 The distinct populations of Arctic charr inhabiting these two subarctic ponds exhibited 
differences in growth rates and condition, which suggests that the local environmental 
heterogeneity found could be important for these populations. Larger individuals tended to have 
lower body condition in C24 than similarly-sized individuals in C23 (Figure 7), and the size-
dependent growth rate during the winter decreased with body size more slowly in C23 than it did 
in C24. These patterns are consistent with the tendency of charr and trout to gain mass at rates 
that increase with temperature in populations along thermal gradients (Murdoch et al. 2015; 
O’Gorman et al. 2016). However, they might also be a consequence of the restricted access to 
allochthonous prey inputs in C24, particularly chironomid midges, which are ecologically 
important species in the Mývatn ecosystem (Einarsson et al. 2004) and make up a large 
proportion of charr prey in some nearby ponds during the high-growth summer months 
(Kristjánsson et al. 2012). Pulses in prey availability and thermal regimes may also interact. For 
instance, Armstrong et al. (2010) showed that the effects of temperature on phenology and 
growth limit access to prey that is only available to individuals above a certain size threshold. 
Disentangling these effects will require further work, including data from other stratifying and 
non-stratifying sites. 
 The lava fields around Mývatn include hundreds of ponds inhabited by numerous small 
populations of Arctic charr (Leblanc et al. 2024) and stickleback (Seymour et al. 2013), with 
varying levels of physical connectedness and gene flow between ponds. While both of the ponds 
we studied here are very small, and support populations of only a few dozen adult charr (census 
N: C23 = 60, C24 = 42; Ne: C23 = 6, C24 = 22; Leblanc et al. 2024), all the cave ponds in the 
lava field of Mývatn may consist of thousands or tens of thousands of individuals. Additionally, 
many of the caves are irregularly shaped, and often have several distinct basins and openings 
with varying orientations and degrees of exposure to fluctuations in air temperature, snow 
accumulation in the winter, and changes in wind speed and orientation. As a consequence, the 
morphological variation among cave catchments may drive ecological dynamics in this broader 
system in much more complex ways than the methods employed in the present study would 
allow us to predict. Nevertheless, this study establishes the importance of the link between the 
physical surroundings, internal ecological dynamics, and potentially the biotic communities of 
ponds in close proximity that were previously thought to be environmentally similar and 
relatively static.  



 

 
Fig. 6. Stratification and dissolved oxygen dynamics, and their relationship, in a thermally dynamic pond 
24-hr change in RTRM (blue) and DO (red) throughout the temperature profile logger deployment is shown in (a). A 
rolling correlation between daily changes in DO and thermal gradient intensity (Pearson’s r; black), with a lagging 
12-point, 36-hr window, are shown in (b), along with RTRM. Daily changes in RTRM and DO are strongly negatively 
correlated for most of the period from the beginning of the study to early-August, when the correlation abruptly 
reverses, then collapses 
 
Limitations 
Local environmental heterogeneity and associated phenotypic variation can be difficult to 
quantify, due to the large sample sizes required to obtain power to statistically support the small 
effect sizes that are expected. Quantifying how local environmental variation might shape 
phenotypic variation on a finer scale is of great interest to ecologists and evolutionary biologists, 
and we have shown that this study system may be especially well suited to to address this 
subject. However, although there are numerous ponds of varying morphology across the lava 
fields around Mývatn, this study only included two with relatively simple morphology compared 
to some more complex, deeper and wider ponds in the area. Some ponds include multiple basins 
that are deep enough to stratify and have a broad range of vertical openings (i.e. from very low to 
high lava ceiling above the water surface), meaning less or more direct interaction with the 
climatic conditions that induce both stratification and mixing. It is therefore unclear how 
prevalent thermal stratification is in ponds across this landscape, and how important its effects 
are to the ponds’ ecology. These factors make the task of predicting the thermal dynamics in 
some ponds especially complex. 

We have also not directly considered groundwater temperatures or flows in our models of 
stratification. The flow of groundwater where the two caves are situated is in an approximately 
south-westerly direction, and is likely responsible for maintaining cool water temperatures in the 
ponds during summer and preventing them from freezing from top to bottom in the winter. 
However, the rate of flow and baseline temperature of the groundwater entering the ponds is not 
known, and without direct measurements, we cannot confirm this stabilizing effect. In addition, 
because large portions of these ponds are underground, some common limnological variables are 
not easily measurable, e.g. volume of water, so our models were designed with easily accessible 
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meteorological data. Similar models for small ponds may be improved with the incorporation of 
more limnological data.   

Finally, because water is densest at 4°C, ponds can be warm- or cold-stratified, and 
RTRM has positive values during both warm- and cold-stratification. Indeed, in both February 
2023 and March 2025, we have observed that the surface of C24 was ice-free while C23 was 
frozen over, indicating possible annual cryostratification in the latter. However, because our 
temperature data were collected in the summer, only four days in our dataset had average air 
temperatures < 4°C, and none of those reached 3°C or below. As a consequence, our models 
show only a positive effect of temperature on stratification, even though this relationship should 
reverse as temperatures cross and extend below the 4°C line. This means that the current model 
fit should not be used to predict RTRM during cooler times of the year, although ongoing data 
collection should make this possible in the future. 
 

 
Fig. 7. Body condition and size-specific growth rates in charr populations 
Body condition (a) and size-specific growth rates (b) with confidence intervals based on simulated data (n = 100 per 
group) using the estimated parameters shown in Table 4 (b) of charr in C23 and C24, both ± 95% CI. Reported 
lengths are fork lengths, and only individuals with fork lengths ≥ 45 mm were included in Kn calculations. Late-
summer body condition and winter growth rates are both higher in small individuals and lower in large individuals 
from C24, compared to similarly-sized individuals from C23. Simulations are based on model parameters from 
Mittell et al. (2025) 
 
Conclusion 

The ponds surrounding Mývatn are of particularly complex morphology due to the recent 
volcanic history of the region (Thórarinsson 1979), which can result in divergent pond mixing 
patterns, even over very short distances. The Arctic charr that inhabit these subarctic ponds 
exhibit differences in growth rates and body condition that could be a consequence of this 
limnological variation, and similar or related effects are likely to be a common feature of small 
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populations in freshwater. These effects require further investigation to establish a definitive 
causal link, and to determine their ecological importance in regulating communities and 
populations. If such investigations establish strong effects, these dynamics may drive variation 
across northern aquatic communities and populations across Arctic and subarctic freshwater 
systems, and be an engine of adaptation in the face of climate change. In a similar localized 
system, for instance, Gallagher and Fraser (2024) have shown that hatching and emergence 
phenology in stream populations of brook trout (Salvelinus fontinalis) have shifted in response to 
climate change since 1980, but have changed the least in streams fed primarily by groundwater 
(which are cooler in the summer and warmer in the winter). Adaptive evolution over 
contemporary time-scales is a common feature of wild populations (Sanderson et al. 2021), and 
across Arctic and subarctic environments, lakes and ponds are expected to stratify more 
frequently and for longer durations as the climate warms (Woolway et al. 2021). The ranges of 
coldwater fish populations are expected to shift as a consequence (Gillis et al. 2024), forcing 
populations to either adapt, migrate northward, or face local extinction, and the ability to predict 
ecological processes, particularly those associated with thermal dynamics, is required to 
understand the shape these responses will take.  
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Supplementary Tables 
 

Supplementary Table 1. GAM Model Results for C23 
Summary results for models except 2, seasonal, 2 – AR1, and seasonal – AR1, which are reported in Table 2. All 
GAMs were run using the Tweedie distribution with a log link function. None of the below models incorporate 
autoregressive components. As described in Table 1, models 1-6 have a 1-day lag on all independent variables, 
while models 7-12 use a 2-day lag. The wind direction spline is cyclic such that values of 0 and 360 are equivalent.  

Model Terms Spline/ 
Smooth Type edf F p 

1 T TPRS 3.39 22.03 <0.001 *** 
 Wd Cyclic 3.25 2.38 <0.001 *** 
3 T TPRS 2.91 28.78 <0.001 *** 
 Wd Cyclic 1.52 1.62 0.033 * 
 Ws TPRS 1.079 9.23 0.003 ** 
 WdWs Cyclic:TPRS 2.37 0.72 0.009 ** 
4 T TPRS 2.76 31.01 <0.001 *** 
 Wd Cyclic 1.49 1.37 0.054  
 Ws TPRS 1.98 4.79 0.008 ** 
 TWdWs TPRS: Cyclic:TPRS 1.30 0.06 0.110  
5 T TPRS 2.92 26.06 <0.001 *** 
 Wd Cyclic 2.50 6.51 <0.001 *** 
 TWdWs TPRS: Cyclic:TPRS  0.52 0.01 0.270  
6 T TPRS  2.64 33.29 <0.001 *** 
 Wd Cyclic 1.40 1.39 0.041 * 
 Ws TPRS 1.00 9.49 0.003 ** 
 WdWs Cyclic:TPRS  2.54 0.88 0.004 ** 
 TWdWs TPRS: Cyclic:TPRS 1.94 0.05 0.228  
7 T TPRS 2.93 22.88 <0.001 *** 
 Wd Cyclic 1.06 0.25 0.128  
8 T TPRS 2.92 24.90 <0.001 *** 
 Wd Cyclic 0.78 0.45 0.152  
 WdWs Cyclic:TPRS  2.44 0.37 0.095  
9 T TPRS 2.85 27.85 <0.001 *** 
 Wd Cyclic 0.45 0.19 0.250  
 Ws TPRS  1.00 0.48 0.491  
 WdWs Cyclic:TPRS  2.62 0.45 0.062  
10 T TPRS  2.58 40.63 <0.001 *** 
 Wd Cyclic 1.8 x10-5 0.00 0.388  
 Ws TPRS 1.00 0.65 0.423  
 TWdWs TPRS: Cyclic:TPRS 2.04 0.15 0.014 * 
11 T TPRS 2.63 36.76 <0.001 *** 
 Wd Cyclic 0.34 0.14 0.265  
 TWdWs TPRS: Cyclic:TPRS  1.98 0.14 0.017 * 
12 T TPRS 2.48 43.11 <0.001 *** 
 Wd Cyclic 3.4 x10-5 0.00 0.412  
 Ws TPRS  1.00 0.97 0.328  
 WdWs Cyclic:TPRS  1.42 0.20 0.153  
 TWdWs TPRS: Cyclic:TPRS 1.91 0.12 0.028 * 

 
  



Supplementary Figures 
 

 
Figure S1. DO Concentrations (mgL-1) and RTRM in C23 
Full DO concentration recordings from MiniDOT logger, and RTRM. Vertical line indicates 
when the logger was removed and then replaced so the pond could be electrofished. 
 



Figure S2. Thermal Profiles by Logger 
Thermal profiles are shown with color gradient indicating logger depth, with loggers separated 
by 20 cm. The data presented here is the same as the data presented in Figure 1, but visualized in 
a way that emphasizes temperature differences between depths. 
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Figure S3. Partial Effects of GAM 2–AR1 
Partial effects of GAM model 2–AR1. Of these effects, only temperature is significant, when the 
AR1 correlation structure is included in the model.  
 

 
Figure S4. Partial Effects of GAM Seasonal–AR1 
Partial effects of GAM model Seasonal–AR1. All are main effects are significant, when the AR1 
correlation structure is included in the model.  
 



 
Figure S5. Model 2 Residual Autocorrelation 
Vertical bars are an ACF plot of GAM model 2 residuals, showing clear autocorrelation. Blue 
curve shows exponential decay in temporal autocorrelation, using autocorrelation coefficient 
obtained by gamm() model with first-order autoregressive correlation structure, as described in 
supplementary methods. 
 

 
Figure S6. Seasonal Model Residual Autocorrelation 
Vertical bars are an ACF plot of Seasonal GAM model residuals, showing clear autocorrelation. 
Blue curve shows exponential decay in temporal autocorrelation, using autocorrelation 
coefficient obtained by gamm() model with first-order autoregressive correlation structure, as 
described in supplementary methods. 
 
 
 
 



 
Figure S7. Hindcast Using Model 2–AR1 and Meteorological Data 
Figure shows Model 2–AR1 fitted values of RTRM using historical meteorological data for May 
15-September 30 in 2013-2024 (top panel) and 2024 only (bottom panel). Orange lines in 2024 
represent measured daily average RTRM values. Grey bands represent 95% credible interval 



around fitted values. This model includes an AR1 correlation structure, and thus incorporates 
autoregressive effects. 
 

 
Figure S8. Hindcast Using Model Seasonal–AR1 and Meteorological Data 



Figure shows model Seasonal–AR1 fitted values of RTRM using historical meteorological data 
for May 15-September 30 in 2013-2024 (top panel) and 2024 only (bottom panel). Orange lines 
in 2024 represent measured daily average RTRM values. Grey bands represent 95% credible 
interval around fitted values. This model includes a day term and AR1 correlation structure, and 
thus incorporates seasonal and autoregressive effects. 
  



Supplementary Methods 
 
The appropriate distribution and link function for the GAMs used to model RTRM in C23 is 
somewhat difficult to determine because of the unusual characteristics of RTRM as a variable. 
Because the variance of RTRM increases with its value, it is heteroscedastic, but it is also not 
bounded by zero. Instead, RTRM values below 0 are possible, but unstable, because they indicate 
upper layers of water that are more dense that lower layers. This means that RTRM has a 
functional limit slightly below zero, and can dip into negative numbers on cool summer days (or 
more rarely on winter days when air temperatures are between 0° and 4°). We resolved this issue 
by modeling GAMs using Tweedie distributions with a log link function, and added the absolute 
value of the minimum RTRM to make all response values ≥ 0. Where possible, the Tweedie 
distribution family was modeled using mgcv’s tw() function, which automatically fits its own p 
parameter. However, while tw() is available for gam() and bam() models, it is not available in 
gamm(), which was used to determine autocorrelation coefficients as described below. In gamm() 
models we used Tweedie() for the model family and supplied the value for p returned in the 
output of non-autoregressive models. 
 
Although estimates of autocorrelation coefficients can be obtained from autocorrelation 
functions (ACF) on model residuals, as in Enevoldsen et al. (2022), they can also be identified 
using general additive mixed models (GAMMs) with autoregressive correlation structures, as in 
Simpson (2018). In our models, the autocorrelation coefficients returned by GAMMs were 
substantially higher than those implied by ACFs (see Figures S5 and S6), presumably because 
the AR1 correlation structures absorbed some of the variance that was partitioned to the 
independent variables in non-autoregressive GAMs. We then used the correlation coefficients 
return by the GAMMs as the input rho value in an analogous bam() model, which can use the 
more flexible tw() function to model the distribution family. Because the autocorrelation 
coefficients are so high, the autoregressive models we report should be taken extremely 
cautiously, particularly because our independent variables are meteorological in nature, and 
therefore also temporally autocorrelated.  
 
 


