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Weather and landscape morphology drive thermal regime variation among Mývatn ponds, and 
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ABSTRACT 
Thermal stratification is common in lentic freshwater systems, and has extensive effects on 
ecosystem function and the interactions between aquatic organisms and their surroundings. 
Although thermal regimes in temperate systems are well-characterized, small arctic and subarctic 
lakes and ponds can have irregular thermal regimes, and the conditions leading to stratification 
and mixing are less predictable. Nevertheless, they can be important habitats for northern fish 
species, and their ecological processes, including thermal stratification and dissolved oxygen 
dynamics, may determine whether they can support fish populations. Where such populations do 
persist, temperature and dissolved oxygen determine where and when fish are active, including 
foraging and spawning behavior, and consequently may shape trajectories of local adaptation. We 
studied differences in thermal stratification regimes in two adjacent ponds in a unique cave pond 
system in Iceland, where conditions shaped by thermal stratification may be acting as selective 
agents for phenotypic divergence of Arctic char. In particular, we characterize differences in 
thermal stratification regimes in relation to the orientation of cave openings and the highly 
irregular catchment topography, describe the association of the thermal regimes with dissolved 
oxygen dynamics, and describe potential consequences for the ponds’ resident charr populations. 
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INTRODUCTION 
The Arctic charr (Salvelinus alpinus) is a culturally and economically significant species of salmonid 
with a holarctic distribution (Reist et al. 2013). Although it exhibits extremely high levels of 
intraspecific diversity and is able to occupy a large range of aquatic habitats, its habitat use is 
constrained by both temperature and dissolved oxygen concentrations (Elliott and Baroudy 1995; 
Kelly et al. 2020). By changing lake and pond thermal regimes, climate change is expected to 
dramatically alter the suitability of some habitats, forcing charr populations to migrate or adapt 
to these changes where migration is not possible (Lehtonen 1998; Kelly et al. 2020; Gillis et al. 
2024). Understanding the current interactions between charr populations and the thermal 
regimes of their habitats is therefore critical for anticipating future adaptation and local 
extinction risk. 

The mixing regimes of lakes and ponds are major sources of variation between lentic 
aquatic habitats with large effects on the ecological processes occurring within them. 
Stratification between water layers establishes gradients of not just temperature, but also 
dissolved oxygen (DO), salinity, CO2, CO4, and nutrients (Gibson 1999; Song et al. 2013; 
Rabaey and Cotner 2024). In most lakes wind drives mixing, and most large temperate lakes are 
dimictic, mixing in the spring and autumn (Boehrer and Schultze 2008), while some polar lakes 
may remain stratified throughout the year (Gibson 1999) or stratify along a chemocline 
generated by snow- and ice-melt (Cortés and MacIntyre 2020). Although some deep Icelandic 
lakes are dimictic, notably Þingvallavatn (Adalsteinsson et al. 1992) and Lagarfljót (Ramón et al. 
2020), most Icelandic most lakes or ponds are much smaller and shallower. Small, shallow lakes 
often have more complex mixing regimes. Holgerson et al. (2022) found that temperate ponds in 
Ontario larger than 4 ha are usually isothermal with any stratification breaking down at night, 
but ponds with a smaller surface tend to mix intermittently if less than ~74 cm deep, or rarely or 
never mix if deeper than 74 cm. The extent to which these observations apply to ponds with 
complex or irregular basin topography, and in cooler subarctic regions is unclear. Nevertheless, 
such environments may be important drivers of ecological processes across a landscape, or 
inhabited by populations or species that are of conservation interest. 

Temperature itself, along with some ecological parameters associated with thermal 
mixing regimes, particularly dissolved oxygen, affect fish physiology, development, and behavior 
(McDonald and McMahon 1977; Cote et al. 2020; Rodrigues et al. 2022), and in the long term 
can create selective pressures on freshwater fishes and may e.g., reinforce reproductive isolation 
between populations (Ohlberger et al. 2013; Kahilainen et al. 2014). Although Arctic charr are 
very tolerant of cold water, even to the extent that they can continue to grow at nearly freezing 
temperatures (Elliott and Baroudy 1995), their phenology and development is heavily influenced 
by temperature, DO, and their interaction. In hypoxic conditions, embryo weight and weight at 
hatching are reduced, and mortality of free-swimming embryos at relatively warmer 
temperatures dramatically increases (Gruber and Wieser 1983). Even in cold water, low DO can 
result in significant mortality of free-swimming embryos, and at 5º, Baroudy (1993) showed that 
7-day survival was 100% at 75% oxygen saturation (9.6 mgL-1), but only 25% at 50% oxygen 
saturation (6.4 mgL-1). 

We focus our investigation of thermal regimes on ponds that are situated within lava 
caves inhabited by small populations of small bodied Arctic charr in the Mývatn and Laxá 
Conservation Area in Northeast Iceland. Environmental microgeographic variation can 
therefore be expected not only to produce variation in ecological dynamics, but also to facilitate 
evolutionary divergence over very small spatial scales through selection on behavior, 
developmental, and physiological processes. Such small-scale divergence has been documented in 
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aquatic habitats spanning lotic-lentic gradients (Haenel et al. 2021), between reproductive 
habitats of different temperatures (Kavanagh et al. 2010; Arietta and Skelly 2021), and between 
distinct habitat patches within tidal marshes (Wagner et al. 2017). We also know that invertebrate 
communities in the cave ponds around Mývatn, on which the charr are dependent for food, are 
shaped by temperature and dissolved oxygen concentrations (Kristjánsson et al. 2024). Especially 
for metapopulations with small constituent populations vulnerable to local extinction, such 
adaptive variation is expected to be critical for enabling adaptation to climate change (Denney et 
al. 2020; Arietta and Skelly 2021).  
 To consider whether variation in thermal regimes between ponds could be an important 
driver of small-scale ecological variation and divergence in Arctic charr, which is widespread in 
Northern latitudes and exhibits particularly high diversity in phenotype (Klemetsen 2013), we 
analyzed depth profiles for two adjacent subarctic cave ponds. These ponds are partially 
subterranean and have highly irregular basin morphology, and we hypothesized that the deeper 
and more sheltered of these two ponds, C24, would stratify and the other, C23, would mix more 
regularly or continuously (see pond descriptions below). We then assessed meteorological 
variables for their potential contributions to the ponds’ thermal mixing regimes. The relative 
contributions to pond stratification of localized landscape morphology and weather shared across 
the Mývatn lava fields is important for determining the potential heterogeneity of mixing regimes 
across the hundreds of ponds in this area, and determining whether temporal variation in 
thermal regimes is predictable. Finally, we tested for associations between changes in 
stratification intensity and dissolved oxygen, to determine if is likely that stratification plays a role 
in modulating DO dynamics. 
 
METHODS 
Site Description 
The ponds described here are located in a lava field directly northwest of the southern basin of 
Mývatn, a large shallow lake in Northeast Iceland. The lava field contains numerous caves 
formed by lava tubes, many of which are filled with groundwater that creates permanent ponds. 
Twenty ponds, in two locations west and northwest of the lake have been the subjects of a long-
term monitoring project since 2012 because they contain small populations of small-bodied 
Arctic charr, described in Leblanc et al. (2024).  
 This study focuses on two cave ponds in particular, hereafter referred to as C23 and C24 
(65.61722º N, 17.05426º W and 65.61718º N, 17.05376º W, respectively) which are located 14 m 
apart from one another. Despite their proximity, they contain Arctic charr populations with no 
significant gene flow from C24 to C23 and only low rates of gene flow from C23 to C24  
(migration rate from C23 to C24 = 0.110 per generation, p = 0.04; Judson et al. 2024; Fst = 
0.093; Leblanc et al. 2024). C23 has two openings separated by a low arch approximately 5m 
wide, with the passage between them oriented in an east-west direction, has a total of 2.2 m2 of its 
surface open to the sky, and 5.8 m2 of vertical area separating the surface of the water and the 
ceiling of the cave at the openings. C24 has one larger opening and an immediately adjacent 
smaller one, with a combined surface of 0.8m2 exposed to the sky, and neither opening has a 
vertical area – meaning there is no space between the surface of the water and the ceiling of the 
cave chamber. Although we believe most of the pond area of C23 is visible, C24 likely includes a 
substantial area that is inaccessible without diving equipment. Both ponds have mostly rocky 
substrates with some fine organic mud in deeper areas, and lack macrophytes, but have attached 
algae and diatoms that serve as primary producers. 
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Temperature and Dissolved Oxygen Measurements 
We recorded temperature profiles by suspending HOBO data loggers (UA − 002-64 Onset 
Corporation, Bourne, MA) 20 cm apart along vertical transects from buoys at the deepest 
accessible points of C23 and C24. Because water levels were unusually high when temperature 
loggers were deployed due to late snowmelt, suspending them from anchored buoys instead of 
anchoring the loggers directly allowed them to maintain their depth relative to the surface, but 
likely resulted in some change in the distance from the benthos (which was <20 cm when 
deployed). Loggers recorded temperatures in the caves at 6-hour intervals from June 20, 2024 to 
September 4, 2024. 
 We obtained daily average air temperature, wind speed, and wind direction data for the 
Mývatn weather station (65.61933° N, -16.97684° W, 3.5 km east of the ponds) from Veðurstofa 
Íslands (the Icelandic Meteorological Office) for the period during which our water temperature 
loggers were deployed in C23 and C24. We also collected air temperature data at 6-hour 
intervals using a HOBO logger deployed at a site approximately 3.68 km south of the ponds 
(65.58413° N, -17.05642° W) to obtain data on diel fluctuations of air temperature and ensure 
that temperature data from different locations within the study area were consistent with each 
other. 
 Dissolved oxygen (DO) was recorded using a miniDOT logger (PME, Vista, CA) placed 
near the center of C23, which took measurements at 1-hour intervals from June 21, 2024 – 
September 18, 2024. This probe was positioned so that it was 18 cm above the bottom, and the 
temperatures it logged corresponded with the temperatures at 100 cm depth in our depth profile. 
The logger was removed for 10-30 min on August 21 so that the pond could be electrofished, and 
replaced at a slightly different location, and although there appears to have been little effect on 
the measured water temperature, the move of the probe and wading through the pond to 
electrofish may have influenced subsequent DO concentrations. 
 
Limnological Calculations and Data Analysis 
All data processing and analysis was conducted in R (R Core Team 2023). Data from 
temperature profiles were synchronized to common six-hour intervals using linear interpolation 
(Gebhardt et al. 2024). We calculated the thermocline, when possible, using the ts.thermo.depth 
function in the R package rLakeAnalyzer (Winslow et al. 2019). We calculated Relative Thermal 
Resistance to Mixing (RTRM; Wetzel 2001; Song et al. 2013) – a metric of water density 
differential based on temperature – in both caves between the shallowest (20 cm) and deepest 
(100 cm in C23; 140 cm in C24) HOBO loggers. Because the chemical identities of solutes are 
unknown in the ponds, and because of the similarity of their water chemistry due to proximity 
and a common catchment, RTRM was calculated using densities for pure water. 
 We tested for the influence of daily average wind direction, wind speed, and air 
temperature on RTRM as a measure of the extent of stratification in C23, using generalized 
additive models (GAMs) as implemented in the R package mgcv (Wood 2011; Wood 2023). All 
tested models included main effects of air temperature and wind direction, and some also 
included wind speed and its interaction with wind direction. Because the variance of RTRM 
increases with its value, all GAMs used a Tweedie distribution – which is flexible enough to 
encompass both gamma and poisson distributions at differing parameter values – with a log link 
function. Additionally, because RTRM is not formally bounded by zero but is unstable at 
negative values, the absolute value of the minimum RTRM was added to all response values, so 
no values were negative and models could be fitted using the log link function. Because the 
thermal gradient is a response to previous conditions, models were run using both 1-day and 2-
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day lags on independent variables. The smoothing splines for wind direction were implemented 
as cyclic cubic regression splines (Wood 2003, 2017). 
 While the non-seasonal models have the benefit of being able to predict RTRM using 
only a single day’s meteorological data, their main drawback is that they cannot account for 
seasonal variation or temporal autocorrelation. To account for temporal variation, the best-
fitting GAM model was rerun with a term for “day of the year”, fit with both a thin plate 
regression spline (TPRS) and an adaptive smooth (details in supplementary materials; Simpson 
2018). The temporal and non-temporal models with the lowest AICs were then used to hindcast 
RTRMs of C23 from May 15 – September 30 (inclusive) from 2013 – 2024, or all but the first 
year of the Arctic charr monitoring program.  
 

 
Figure 1. 
Temperature profiles of both ponds throughout the study period. Temperatures in both panels are on the same color 
scale. The grey line in the C23 profile shows the calculated thermocline depth. 
 
 
 Temporal autocorrelation of model residuals was accounted for using a first-order 
autoregressive process using the corAR1 function in the nlme R package (Pinheiro et al. 2023), 
following procedures described in Simpson (2018) and Enevoldsen et al. (2022) that are further 
described in the supplementary materials. 

Finally, although establishing a mechanistic model of DO variation in these ponds is 
outside the scope of this paper, we used a rolling correlation of DO and RTRM measured at 6-
hr intervals to determine whether a mechanistic association between DO and thermal 
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stratification is likely. Because DO experienced dramatic diel fluctuations from mid-July through 
the 3rd week of August, DO and RTRM changes relative to the same time on the previous day 
were used to remove this effect. Correlations used a 3-day (12 time-point) lagging window. DO 
data following the August 21 removal and replacement of the DO probe are reported in 
supplementary materials (Figure S1), but were excluded from this analysis because of a 
subsequent abrupt decline in diel fluctuations that are assumed to be related to the disturbances 
associated with electrofishing or probe movement. 
 

 
Figure 2.  
Daily mean temperatures, wind direction, and wind speed at the Mývatn weather station, and RTRM at both caves 
throughout the study period. The pale green line in the first panel represents air temperature recorded from a HOBO 
logger at 6-hour intervals 5.28 km southwest of the weather station and 3.68 km south of the ponds to show that air 
temperature varies little across the lake, and therefore the weather conditions recorded at the weather station should 
be similar to those at the ponds. The diel fluctuations in the logger temperature data are a consequence of the 6-hour 
sampling resolution. The daily mean RTRM between the 20 cm and 100 cm depth loggers in C23 is illustrated in the 
first three panels by line color, RTRMs of C23 and C24 at 6-hour intervals are shown in the final panel. 
 
 
RESULTS 
Thermal Gradient Formation 
Throughout the study period, C24 did not stratify, and temperature varied little during the study 
period (Figure 1, S2). The difference between temperatures recorded at 20 cm and 140 cm rarely 
differed by a maximum of 1.0ºC, but rarely exceeded 0.5ºC, irrespective of air temperature, 
indicating constant, thorough mixing. Loggers in C23, by contrast, recorded several distinct 
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periods of thermal stratification between mid-July and mid-August, the most prominent of which 
began on July 14 and lasted for approximately a week (Figure 2). C23 had a maximum 
temperature difference of 3.0º C between depths of 20 cm and 100 cm.  
 As might be expected for such a shallow pond, when a thermocline developed in C23, it 
was unstable and short-lived. After thermocline depth calculations of exactly 30 and 90 cm – 
which were assumed to be calculation artefacts – were removed, the most durable thermocline 
persisted for 4 days, from 18:00 on July 31 to 12:00 on Aug 4. Furthermore, as C23 became 
more stratified the temperatures recorded by the deeper loggers would decline, becoming colder 
than when the water column was thoroughly mixed, even as water temperatures near the surface 
increased (Figure S2). C24 did not form a thermocline throughout the study period.  
 
 
 

 
Figure 3. 
GAM model 2 partial effects on RTRM in C23. Negative partial effects rusult indicate increased mixing, while positive 
effects result in increased stratification. In the map, black lines indicate the cave openings, and shading indicates 
elevation and vegetation type. Pale green indicates grassy areas only slightly above the water table, while the darker 
greens indicate elevated areas with mostly low, shrublike vegetation. The orange arrow is oriented towards 200° SSW. 
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Figure 4. 
Daily mean RTRM empirically calculated (orange) and predicted RTRM from GAM Model 2 (black), with 95% 
credible interval shaded. This model does not contain a temporal term, so each point is predicted from only the 
previous day’s meteorological data. 
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Stratification Models 
GAM models with a 1-day lag on meteorological variables yielded better fits than models with 2-
day lags (Table 1). Model 2, the 1-day lagged model with an interaction between wind speed and 
direction, but without a main effect of wind speed, had the lowest AIC of tested models without a 
temporal component, so its results will be presented here (Table 2, Figure 3). Model 2 explained 
69.3% of the deviance in RTRM, and all three model terms were significant. The negative effect 
of wind on RTRM was strongest when winds were blowing towards approximately 200º SSW. 
The effect of air temperature on RTRM increased steadily to approximately 12º C before the 
rate of increase in the effect of temperature slowed slightly. When wind speed and three-way 
interactions of temperature, wind direction, and wind speed were included in 1-day lagged 
models, the main effect of wind speed tended to be significant, while the interaction did not 
(Table S1, Figure S3). 
 Models incorporating a seasonal component (day), performed better than those without, 
explaining between 84.2% (Model 12) and 88.6% (Model 14) of deviance, and both adaptive 
spline models providing slightly better explanatory power than the models using TPRS for the 
day term. Unlike the non-seasonal models, in both Model 12 and Model 14, neither the main 
effect of wind direction nor the three-way interaction between temperature, wind speed, and 
wind direction were significant, but in Models 11 and 13, all effects were significant (Table 2, 
Figure S4). In Models 11-13, a strong seasonal effect of day was present, and peaked at the end of 
July or the beginning of August. Although a similar general pattern was observed in Model 14, 
this term was much more sensitive. After incorporating an autoregressive model component to 
account for residual autocorrelation, only the temperature term of Model 2–AR1 remained 
statistically significant, and only temperature and day remained significant in Model 11–AR1 (Table 
2, Figures S5-6). However, the AIC of 2–AR1 remained higher than three of the four seasonal 
models excluding autoregression. Because the results of Models 11 and 13 were nearly identical, 
only Model 11 was fitted with an autoregressive component. Additionally, the autocorrelation 
coefficients used are conservative, possibly overestimating autocorrelation, and as a consequence 
the AR1 models should be interpreted with considerable caution (Figures S7-8, see 
Supplementary Methods). 

Using Model 2 to model RTRM throughout the summer of 2024 (Figure 4) shows 
correspondence between measured and predicted values, albeit with a seasonal pattern in the 
difference between the two. The autoregressive version of this model predicts much lower 
RTRM in the middle of the summer, and higher RTRM in cooler weather than the empirical 
thermal gradients (Figure S9). Because Model 11 incorporates seasonality, its fitted values more 
closely match the measured thermal gradient at the beginning and end of the deployment period, 
but also predict complete mixing in the weeks before and after temperature logger retrieval 
(Figure S10). This is in contrast to Model 2 which predicts two periods with moderate gradients 
in May and June before logger deployment. This pattern in the differences between the seasonal 
and non-seasonal models’ predictions is consistent for all years from 2013-2024, with Model 11 
predicting very weak thermal gradients except in July and August, and Model 2 regularly 
predicting periods of at least moderate gradients well into May and September. Model 11–AR1 
produces somewhat a less accurate model fit that Model 11, but this effect is less extreme than its 
non-seasonal counterpart (Figure S11). 
  
Dissolved Oxygen 
For most of the study period, the change in strength of the thermal gradient, even when very 
weak, was negatively correlated with change in DO, sometimes very strongly (Figure 5). 
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However, this negative association weakened and briefly reversed following the period of 
strongest stratification in July, became reestablished for approximately a week, then again 
reversed during the weaker stratification at the beginning of August. The correlation coefficient 
between daily changes in DO and RTRM then gradually declined until it was once again 
strongly negative by the beginning of September. 
 
 
Table 1. Model formulas and AIC fits for GAM models 
Brief descriptions of all tested general additive models of pond thermal gradient for C23. Model 
terms are: T – temperature, Wd – wind direction in degrees, Ws – wind speed, D – day of the 
year. Model 2, the best-fitting non-seasonal model, was used as the basis for seasonal models 11 
and 13. Model 4, the best-fitting non-seasonal model that incorporated a three way interaction 
between weather variables was used as the basis for seasonal models 12 and 14. Models 2, 11, and 
13 are the focus of the remainder of results reported here. For these reasons, Models 2, 4, 11, and 
13 are indicated in bold below. Full model results and a discussion of Model 14 are presented in 
the supplementary materials.  
Model No. Formula Lag (days) df AIC 
1 ~ T + Wd 1 11.37 273.87 
2 ~ T + Wd + WdWs 1 11.79 268.87 
3 ~ T + Wd + Ws + WdWs 1 13.21 269.44 
4 ~ T + Wd + Ws + TWdWs 1 9.89 270.23 
4.1 ~ T + Wd + TWdWs 1 9.86 271.81 
5 ~ T + Wd + Ws + WdWs + TWdWs 1 16.23 271.62 
6 ~ T + Wd 2 8.27 286.67 
7 ~ T + Wd + WdWs 2 11.69 287.23 
8 ~ T + Wd + Ws + WdWs 2 11.69 287.23 
9 ~ T + Wd + Ws + TWdWs 2 9.28 283.88 
9.1 ~ T + Wd + TWdWs 2 9.28 283.88 
10 ~ T + Wd + Ws + WdWs + TWdWs 2 10.97 285.02 
11 ~ D + T + Wd + WdWs 1 15.89 224.96 
12 ~ D + T + Wd + Ws + TWdWs 1 16.48 229.33 
13 ~ D + T + Wd + WdWs 1 15.65 223.85 
14 ~ D + T + Wd + Ws + TWdWs 1 21.05 215.02 

 
Table 2. GAM Model Results for C23 
Summary results for models 2, 11, and 13. All GAMs were run using the Tweedie distribution with a log link 
function. Models 11 and 13 incorporate seasonal components, while model 2 requires only the weather data from 
the previous day. Thin plate regression splines are indicated by TPRS, and the Wind Speed term uses a TPRS 
spline with shrinkage to penalize large swings in responses. The wind direction spline is cyclic such that values of 0 
and 360 are equivalent. Models 2 – AR1 and 11 – AR1 incorporate first-order autoregressive components with 
values of autocorrelation coefficient ρ reported (see supplementary materials for more on how this value was 
obtained). Reported REML scores for these two models are fREML scores. 

Model Terms Spline/ 
Smooth Type edf F p 
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2 T TPRS 3.17 25.03 < 0.001 *** 
 Wd Cyclic 2.00 4.60 < 0.001 *** 
 WdWs Cyclic:TPRS (shrinkage) 1.93 0.81 0.004 ** 
4 T TPRS (shrinkage) 2.64 22.52 < 0.001 *** 
 Wd Cyclic 2.29 3.77 0.004 ** 
 Ws TPRS (shrinkage) 0.86 1.11 0.022 * 
 TWdWs 

TPRS: Cyclic:TPRS 
(shrinkage) 

0.00 0.00 0.576  

11 D TPRS 3.89 15.42 < 0.001 *** 
 T TPRS 3.00 23.51 < 0.001 *** 
 Wd Cyclic 1.32 1.51 0.0243 * 
 WdWs Cyclic:TPRS (shrinkage) 2.13 1.31 < 0.001 *** 
13 D Adaptive 3.62 16.48 < 0.001 *** 
 T TPRS 3.05 23.62 < 0.001 *** 
 Wd Cyclic 1.32 1.50 0.0244 * 
 WdWs Cyclic:TPRS (shrinkage) 2.15 1.31 < 0.001 *** 
2 – AR1 T TPRS 2.41 10.29 < 0.001 *** 
 Wd Cyclic 0.45 0.17 0.299  
 WdWs Cyclic:TPRS (shrinkage) 0.39 0.04 0.271  
 corAR1(~ D) ρ = 0.83072     
11 – AR1 D TPRS 3.33 6.74 < 0.001 *** 
 T TPRS 2.37 13.46 < 0.001 *** 
 Wd Cyclic 0.00 0.00 0.013 * 
 WdWs Cyclic:TPRS (shrinkage) 0.85 0.11 0.206  
 corAR1(~ D) ρ = 0.5926354     

 Deviance Explained (%) DF AIC -REML Scale Estimate 
2 69.3 11.79 268.87 134.94 0.730 
11 84.9 15.89 224.96 114.70 0.435 
13 85.1 15.65 223.85 112.34 0.431 
2 – AR1 39.8 7.63 228.89 81.47 1.173 
11 – AR1 76.1 11.54 217.04 81.99 0.552 

 
DISCUSSION 
We showed that two cave ponds separated by only 14 m, and serving as habitats to separate 
populations of Arctic charr, experience divergent thermal regimes as a consequence of the 
interaction between weather and the irregular morphology and orientation of the caves 
themselves. Additionally, mixing in C23 appears to be associated with changes in DO, and 
stratification may reduce the relative role of physical processes – compared to biological processes 
– in governing oxygen dynamics. This suggests that variation in pond thermal regimes across this 
landscape plays an important role in shaping ecological processes at a very fine scale, and may be 
a direct and indirect agent of selection on the resident charr populations. 
 While the RTRM values calculated in C23 are lower than what is typical for lakes and 
ponds that are considered stratified because of their low year-round temperatures, both C23 and 
C24 are largely sheltered from most of the disturbances that would induce mixing in more typical 
ponds. Both have very small areas exposed to direct sunlight, meaning that radiative heating of 
the benthos is not a factor that would induce mixing, and while C23 has a larger surface exposed 
to the air, the air temperature in the chamber under the arch is often cooler than the outside air 
temperature, as is common among caves in the area. As a consequence, even relatively low 
RTRMs can resist mixing in C23, except when northeasterly winds are able to force air to flow 
under the arch and interact with the surface of the pond. Although C24 has even less exposure to 
wind, it also has a much smaller surface capable of interacting with the air. This likely prevented 
sufficient warming of its surface to induce stratification in the first place. 
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 The lava fields around Mývatn include hundreds of ponds both within and outside of lava 
tube caves, which are inhabited by numerous small populations of charr (Leblanc et al. 2024) and 
stickleback (Seymour et al. 2013), with varying levels of physical connectedness and gene flow 
between ponds. While both of the ponds we studied here are very small, and support populations 
of only a few dozen adult charr (census N: C23 = 60, C24 = 42; Ne: C23 = 6, C24 = 22; Leblanc 
et al. 2024), the metapopulation they are a part of may consist of thousands or tens of thousands 
of individuals. Additionally, many of the caves are irregularly shaped, and often have several 
distinct basins and openings with varying orientations and degrees of exposure to fluctuations in 
air temperature and changes in wind speed and orientation. As a consequence, the 
morphological variation among caves may drive ecological dynamics in this system in much 
more complex ways than the methods employed in the present study would allow us to predict. 
 

 
Figure 5.  
The association between daily change in DO and thermal gradient intensity, calculated in 6-hr increments. The top 
panel shows 24-hr change in RTRM (blue) and DO (red) throughout the temperature profile logger deployment. The 
bottom panel shows a rolling correlation of daily change in DO and thermal gradient intensity (Pearson’s r; black), 
with a lagging 12-point, 36-hr window.  
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Limitations 
There are numerous caves of varying morphology across the lava fields around Mývatn, and this 
study only included two with relatively simple morphology compared to some caves in the area 
with multiple basins, openings, and cave branches. It is therefore unclear how prevalent thermal 
stratification is in ponds across this landscape, and how important its effects are to the area’s 
ecology. Additionally, some ponds include multiple basins that are deep enough to stratify, and 
cave openings that are vertically, rather than laterally-facing, meaning less direct interaction with 
the climatic conditions that induce both stratification and mixing.  

We have also not directly considered groundwater temperatures or flows in our models of 
stratification. The flow of groundwater in an approximately south-westerly direction, towards the 
lake, is likely responsible for maintaining cool water temperatures in the ponds during summer, 
and preventing them from freezing from top to bottom in the winter, but the rate of flow and 
baseline temperature of the groundwater is not known. The seasonal effect of groundwater 
temperature on stratification is likely captured by the day term in our temporal GAMs (see 
discussion of model 14 in supplementary methods and figure S12), but without direct 
measurements, we cannot confirm this. In addition, because large portions of these ponds are 
underground, some common limnological variables are not easily measurable, e.g. volume, so 
our models were designed with easily accessible meteorological data, but similar models for small 
ponds may be improved with the incorporation of such information.   

Finally, because water is densest at 4° C, ponds can be warm- or cold-stratified, and 
RTRM has positive values during both warm- and cold-stratification. However, because our 
data were collected in the summer, only four days in our dataset had average temperatures < 4°, 
and none of those reached 3°. As a consequence, our models show only a positive effect of 
temperature on stratification, even though this relationship should reverse as temperatures cross 
and extend below the 4° line. This means that the current model fit should not be used to predict 
RTRM during cooler times of the year, although ongoing data collection should make this 
possible in the future. 
 
Conclusion 

While the ponds surrounding Mývatn are of particularly complex morphology due to the 
volcanic history of the region, many lakes and ponds across northern latitudes have extremely 
complex and irregular morphologies. As we have shown, this variation can result in wildly 
divergent pond mixing patterns, even over very short distances. As important as the ecological 
dynamics of this divergence are when considered over a large scale, they may also drive variation 
across northern aquatic communities and populations at a very local scale, and be an engine of 
adaptation in the face of climate change. Adaptive evolution over contemporary time-scales is a 
common feature of wild populations (Sanderson et al. 2021), and across Arctic and subarctic 
environments, lakes and ponds are expected to stratify more frequently and for longer durations 
as the climate warms (Woolway et al. 2021). The ranges of coldwater fish populations are 
expected to shift as a consequence (Gillis et al. 2024), forcing populations to either adapt, migrate 
northward, or face local extinction, and the ability to predict ecological processes is required to 
understand the shape these responses will take at the local scale.  
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Supplementary Tables 
 

Supplementary Table 1. GAM Model Results for C23 
Summary results for models except 2, 11, 13, 2 – AR1, and 11 – AR1, which are reported in Table 2. All GAMs 
were run using the Tweedie distribution with a log link function. None of the below models incorporate 
autoregressive components. As described in Table 1, models 1-5, 12, and 14 have a 1-day lag on all independent 
variables, while models 6-10 use a 2-day lag. The wind direction spline is cyclic such that values of 0 and 360 are 
equivalent.  

Model Terms Spline/ 
Smooth Type edf F p 

1 T TPRS 3.39 22.03 <0.001 *** 
 Wd Cyclic 3.25 2.38 <0.001 *** 
3 T TPRS 2.96 27.74 <0.001 *** 
 Wd Cyclic 1.63 1.93 0.022 * 
 Ws TPRS (shrinkage) 0.95 2.12 0.001 ** 
 WdWs Cyclic:TPRS (shrinkage) 2.36 0.67 0.012 * 
4.1 T TPRS (shrinkage) 2.71 22.23 <0.001 *** 
 Wd Cyclic 2.50 6.61 <0.001 *** 
 TWdWs TPRS: Cyclic:TPRS (shrinkage) 0.44 0.01 0.301  
5 T TPRS (shrinkage) 2.42 25.43 <0.001 *** 
 Wd Cyclic 1.46 1.55 0.031 * 
 Ws TPRS (shrinkage) 0.94 2.09 <0.001 *** 
 WdWs Cyclic:TPRS (shrinkage) 2.57 0.88 0.004 ** 
 TWdWs TPRS: Cyclic:TPRS (shrinkage) 2.18 0.06 0.200  
6 T TPRS 2.93 22.88 <0.001 *** 
 Wd Cyclic 1.06 0.25 0.128  
7 T TPRS 2.92 24.90 <0.001 *** 
 Wd Cyclic 0.78 0.45 0.152  
 WdWs Cyclic:TPRS (shrinkage) 2.44 0.37 0.095  
8 T TPRS 2.92 24.90 <0.001 *** 
 Wd Cyclic 0.78 0.45 0.152  
 Ws TPRS (shrinkage) 0.00 0.00 0.549  
 WdWs Cyclic:TPRS (shrinkage) 2.44 0.37 0.095  
9 T TPRS (shrinkage) 2.23 28.49 <0.001 *** 
 Wd Cyclic 0.35 0.15 0.262  
 Ws TPRS (shrinkage) 3.2 x10-5 0.00 0.501  
 TWdWs TPRS: Cyclic:TPRS (shrinkage) 2.08 0.15 0.015 * 
9.1 T TPRS (shrinkage) 2.23 28.49 <0.001 *** 
 Wd Cyclic 0.35 0.15 0.262  
 TWdWs TPRS: Cyclic:TPRS (shrinkage) 2.08 0.15 0.014 * 
10 T TPRS (shrinkage) 2.16 28.65 <0.001 *** 
 Wd Cyclic 0.36 0.15 0.252  
 Ws TPRS (shrinkage) 1.6 x10-5 0.00 0.399  
 WdWs Cyclic:TPRS (shrinkage) 2.00 0.13 0.025 * 
 TWdWs TPRS: Cyclic:TPRS (shrinkage) 1.14 0.14 0.196  
12 D TPRS 3.99 16.29 <0.001 *** 
 T TPRS (shrinkage) 2.35 27.11 <0.001 *** 
 Wd Cyclic 2.2x10-4 0.00 0.365  
 Ws TPRS (shrinkage) 1.93 3.13 <0.001 *** 
 TWdWs TPRS: Cyclic:TPRS (shrinkage) 2.16 0.07 0.116  
14 D TPRS 9.90 10.71 <0.001 *** 
 T TPRS (shrinkage) 2.33 21.77 <0.001 *** 
 Wd Cyclic 2.1x10-5 0.00 0.878  
 Ws TPRS (shrinkage) 0.94 2.10 0.002 ** 
 TWdWs TPRS: Cyclic:TPRS (shrinkage) 1.31 0.03 0.244  
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Supplementary Figures 
 

 
Figure S1. DO Concentrations (mgL-1) and RTRM in C23 
Full DO concentration recordings from MiniDOT logger, and RTRM. Vertical line indicates 
when the logger was removed and then replaced so the pond could be electrofished. 
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Figure S2. Thermal Profiles by Logger 
Thermal profiles are shown with color gradient indicating logger depth, with loggers separated 
by 20 cm. The data presented here is the same as the data presented in Figure 1, but visualized in 
a way that emphasizes temperature differences between depths. 
 

C23 

C24 
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Figure S3. Partial Effects of GAM No.4 
Partial effects of GAM model 4. The three-way interaction between temperature, wind direction 
and wind speed was not significant and is not shown.  
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Figure S4. Partial Effects of GAM No.11 
Partial effects of GAM model 11. All effects included in this model are shown, and are 
statistically significant. Model 13 is not shown because effects were nearly identical to those in 
model 11. Note that at higher wind speeds, winds blowing in a south-westerly direction had a 
negative, de-stratifying effect. 
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Figure S5. Partial Effects of GAM No.2–AR1 
Partial effects of GAM model 2–AR1. Of these effects, only temperature is significant, when the 
AR1 correlation structure is included in the model.  
 

 
Figure S6. Partial Effects of GAM No.11–AR1 
Partial effects of GAM model 11–AR1. Of these effects, only day and temperature are significant, 
when the AR1 correlation structure is included in the model.  
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Figure S7. Model 2 Residual Autocorrelation 
Vertical bars are an ACF plot of GAM model 2 residuals, showing clear autocorrelation. Blue 
curve shows exponential decay in temporal autocorrelation, using autocorrelation coefficient 
obtained by gamm() model with first-order autoregressive correlation structure, as described in 
supplementary methods. 
 

 
Figure S8. Model 11 Residual Autocorrelation 
Vertical bars are an ACF plot of GAM model 11 residuals, showing clear autocorrelation. Blue 
curve shows exponential decay in temporal autocorrelation, using autocorrelation coefficient 
obtained by gamm() model with first-order autoregressive correlation structure, as described in 
supplementary methods. 
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Figure S9. Hindcast Using Model 2–AR1 and Meteorological Data 
Figure shows Model 2–AR1 fitted values of RTRM using historical meteorological data for May 
15-September 30 in 2013-2024 (top panel) and 2024 only (bottom panel). Orange lines in 2024 
represent measured daily average RTRM values. Grey bands represent 95% credible interval 
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around fitted values. This model includes an AR1 correlation structure, and thus incorporates 
autoregressive effects. 
 

 
Figure S10. Hindcast Using Model 11 and Meteorological Data 



 25 

Figure shows model 11 fitted values of RTRM using historical meteorological data for May 15-
September 30 in 2013-2024 (top panel) and 2024 only (bottom panel). Orange lines in 2024 
represent measured daily average RTRM values. Grey bands represent 95% credible interval 
around fitted values. This model includes a day term, and thus incorporates seasonal effects. 

 
Figure S11. Hindcast Using Model 11–AR1 and Meteorological Data 
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Figure shows model 11–AR1 fitted values of RTRM using historical meteorological data for May 
15-September 30 in 2013-2024 (top panel) and 2024 only (bottom panel). Orange lines in 2024 
represent measured daily average RTRM values. Grey bands represent 95% credible interval 
around fitted values. This model includes a day term and AR1 correlation structure, and thus 
incorporates seasonal and autoregressive effects. 
 
 
 

 
Figure S12. Model 14 Effect of day and Air Temperature 
The partial effect of the day term in model 14 is shown in blue with a 95% CI and residuals. The 
average daily temperature recorded at the Mývatn weather station is shown in light orange with 
the darker orange curve showing a loess smooth with the a value (span) set to 0.35. This shows a 
close association between air temperature and the effect of day with the day effect lagging 3-8 day 
behind temperature. Without further data to confirm this hypothesis, this could be understood as 
the day smooth absorbing the effect of groundwater temperature. Judging by AIC, this model fits 
the data better than every other model tested, despite not including an autoregressive correlation 
structure.  
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Supplementary Methods 
 
The appropriate distribution and link function for the GAMs used to model RTRM in C23 is 
somewhat difficult to determine because of the unusual characteristics of RTRM as a variable. 
Because the variance of RTRM increases with its value, it is heteroscedastic, but it is also not 
bounded by zero. Instead, RTRM values below 0 are possible, but unstable, because they 
indicate upper layers of water that are more dense that lower layers. This means that RTRM has 
a functional limit slightly below zero, and can dip into negative numbers on cool summer days 
(or more rarely on winter days when air temperatures are between 0° and 4°). We resolved this 
issue by modeling GAMs using Tweedie distributions with a log link function, and added the 
absolute value of the minimum RTRM to make all response values ≥ 0. Where possible, the 
Tweedie distribution family was modeled using mgcv’s tw() function, which fits its own p 
parameter. However, while tw() is available for gam() and bam() models, it is not available in 
gamm(), which was used to determine autocorrelation coefficients as described below. In gamm() 
models we used Tweedie() for the model family and supplied the value for p returned in the output 
of non-autoregressive models. 
 
Although estimates of autocorrelation coefficients can be obtained from autocorrelation functions 
(ACF) on model residuals, as in Enevoldsen et al. (2022), they can also be identified using general 
additive mixed models (GAMMs) with autoregressive correlation structures, as in Simpson 
(2018). In our models, the autocorrelation coefficients returned by GAMMs were substantially 
higher than those implied by ACFs (see Figures S7 and S8), presumably because the AR1 
correlation structures absorbed some of the variance that was partitioned to the independent 
variables in non-autoregressive GAMs. We then used the correlation coefficients return by the 
GAMMs as the input rho value in an analogous bam() model, which can use the more flexible 
tw() function to model the distribution family. 
 
Because the autocorrelation coefficients are so high, the autoregressive models we report should 
be taken extremely cautiously, particularly because our independent variables are meteorological 
in nature, and therefore also temporally autocorrelated. Further, model 14, our best-fitting model 
(as judged by AIC), appears to suggest that the seasonal effects shown in models 11-13 may be 
detecting, but underfitting, what is actually an effect of groundwater temperature (Figure S12). 
An ACF plot of model 14’s residuals show no significant autocorrelation, and fitting it as an 
autoregressive model is not possible due to the adaptive P-spline on the day effect. 
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