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Abstract 

Carbonic anhydrases (CAs) attract interest for their critical roles in various physiological processes and 

potential application in CO2 sequestration to combat global warming. Despite being an important enzyme 

family, the classification and evolution of CAs remain elusive due to their high sequence diversity and long 

evolutionary history. In this paper, the in-silico strategy, Motif-weighted Alignment for Structure-based 

Protein Classification (MASPC) was developed, which uses OmegaFold simulated CA structures combined 

with weighted structural motif alignment, TM-weighted, to facilitate more precise polymorphic analysis of 

large enzyme datasets in a robust manner. The MASPC strategy was first validated by 74 ground-truth CA 

structures extracted from PDB, showing improved performance compared to sequence-based polymorphic 

analysis (ClustalO-RAxML). Subsequently, MASPC was applied to analyze a representative database, 

which contains 1603 CAs from 117 model organisms, with focus on α-, β-, and- γ- CA classes, to cover 

organisms from across life evolution history. The results indicated that α-, β-, and γ-CAs were well grouped 

in their own classes, with clearer clustering associated with the CA’s organism. The structural differences 

among the α-, β-, and γ-CAs revealed by MASPC supported the current understanding that CA classes are 

the results of convergent evolution. The sub-clusters in α- and β-CAs are highly associated with organisms 

according to their appearance in evolutionary history, demonstrating a close correlation between CA 

evolution and life evolution. Furthermore, the MASPC method was also applied to identify 27 potential α-

CAs from the NCBI database with less than 40% sequence similarity to a template human carbonic 

anhydrase II (HCA-II) sequence, demonstrating possible applications in enzyme identification studies. 
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Introduction 

CAs are metalloenzymes with the enzyme designation EC 4.2.1.1 that catalyze the reversible reaction 

between carbon dioxide and water to form bicarbonate. As a highly diverse enzyme family with 7 classes 

described in literature, including α-, β-, γ-, δ-, ζ-, η-, θ-, and ι-classes, the most thoroughly explored are the 

α-, β-, and γ-CAs (Hewett-Emmett & Tashian, 1996). The classification of CA is based on sequence and 

structure differences with Zn2+ ion as the cofactor in most CAs. The Zn2+ ion is typically coordinated by 

multiple His residues in the enzymes (Lindskog, 1997) but has been shown to be replaced with other di-

cations such as Cd2+ or Fe2+. Because of its CO2 sequestration abilities, CAs attract attention for their 

potential to combat global warming (Boone et al., 2013). Moreover, recent studies of CAs have been 

reported that they are involved in many important physiological processes in animals, including the control 

of neuronal excitability (Ruusuvuori & Kaila, 2014), neuroactive alkaloid biosynthesis (Nett et al., 2023).  

 CA structures from different classes are largely unique but share some important characteristics. The 

α-, and γ - CAs use three His residues, along with water, to coordinate the Zn2+ ion, while β-CAs differ 

slightly, using at least two Cys residues and one His residue (Supuran, 2016). Additionally, α-CAs are 

active as a monomer and γ-CAs as trimers. It has been found that CAs are ubiquitous, appearing in archaea, 

bacteria, plants, animals, and humans (Smith et al., 1999). As an ancient enzyme, it is theorized that CAs 

likely co-evolved with their host organisms, leading to the high diversity in the over 61,000 EC 4.2.1.1 

annotated CAs in UniProtKB. It is widely accepted that the CA classes evolved from different ancestors 

and its evolution is often used as a model example of convergent evolution due to the fundamentally 

different protein structures between CA classes but similar catalytic pathways (Liljas & Laurberg, 2000). 

Despite their ubiquity, there is a non-uniform distribution of CA classes across organism domains and even 

kingdoms (Smith & Ferry, 2000). For example, vertebrates only contain α-CAs, while plants contain α, β, 

and γ-CAs. In fact, the high sequence diversity and long evolution history further complicates CA 

classification, bringing a need of more powerful methods for its classification and evolution studies. 

Moreover, with the rapid advancement of genome sequencing technologies, the UniProtKB database now 

contains approximately 250 million sequences, though only a small fraction of them have been 

experimentally characterized. This adds to the increasing need for scalable and effective new solutions for 

large-scale protein classification, especially for proteins showing low sequence similarity with well 

characterized proteins. 

Conventional protein classification was built upon conserved motifs, mainly depending on conserved 

catalytic residues. In addition, sequence similarity and phylogenetic relationships were also utilized to help 

improve accurate classification. While being largely successful, this strategy is less effective when applied 

to proteins with high diversity and different ancestors, such as CAs. For example, the η-CAs were originally 
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identified as α-CAs due to sharing similar His motifs in the active site, but later were separated as a 

new class because of their much longer sequence lengths, among other differences (Del Prete et al., 

2014). Besides the sequence-based methods, Gene3D, a domain-based method was developed for protein 

annotation and classification in 2008, utilizing Hidden Markov Models to help identify proteins (Yeats et 

al., 2008). Other sequence and motif-based methods, such as InterPro (Hunter et al., 2009), PANTHER 

(Mi et al., 2005), and MobiDB (Piovesan et al., 2023), have also been developed. However, these methods 

can be susceptible to misaligning highly diverse proteins due to their highly sophisticated and specialized 

approaches, including inaccurate assumptions about the motifs, as seen in η-CAs. 

Compared to the sequence- or motif- based methods, protein structure alignment could provide more 

accurate classification due to the close correlation between protein structures and functions. Different 

experimental technologies, including Xray, NMR, and Cryo-EM can resolve high resolution protein 

structures. These methods provide useful insight into protein functionality, therefore facilitating more 

accurate protein classification. The major drawback of these experimental methods is that they currently 

cannot be scaled up due to their high costs and are only limited to in vitro purified proteins under laboratory 

conditions. For example, after removing similar entries, it is found that there are less than 100 unique CA 

structures in the PDB, covering a low number of organisms. Recently, with the expansion of the PDB and 

machine learning developments in protein science, protein structure simulation models based on proteins’ 

amino acid sequences were developed and exhibited strong structure simulation capability. Among these 

methods, ΑlphaFold 2 stands out for its use of multiple sequence alignment (MSA) to generate highly 

accurate protein structure predictions (Jumper et al., 2021). In comparison, the Large Language Model 

based ESMFold (Lin et al., 2023) and OmegaFold (Wu et al., 2022) are faster, exhibiting the ability to 

predict protein structures without clear homologs. Compared to experimental structure characterization, 

structure simulation is a trade-off of accuracy for speed and scale, but still allows for structure-based protein 

analysis. Using these models, several attempts at protein classification, identification, and prediction using 

simulated protein structures have been performed, including FoldTree (Moi et al., 2023), which is built 

upon structural alphabets to classify proteins and generate polymorphic trees. 

Here, an in silico method called MASPC was developed, which utilized OmegaFold simulated 

structures to explore the classification and evolution of CAs (Figure 1). MASPC starts by creating an initial 

database containing only unique CAs, called CA-DB-I, from which a representative model dataset designed 

to be as diverse as possible was generated to capture the breadth of CA variability and used as the basis for 

further analysis. Next, the structure simulation using OmegaFold was performed to convert the sequence 

dataset to a simulated structure dataset. Finally, polymorphic studies of CAs based on the simulated 

structures were performed using TM-weighted and Neighborhood Joining (NJ) to incorporate the 
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significant motifs into the analysis. Using the MASPC strategy, 1603 CAs were analyzed to improve the 

current understanding of CA classification, which provided higher fidelity extraction of protein 

relationships, demonstrated by the resulting phylogenetic trees. Moreover, using human carbonic anhydrase 

II (HCA-II) as the target template, MASPC was also successfully applied to identify 27 potentially active 

CA candidates in the hypothetical and uncharacterized protein database extracted from NCBI.   

 

Methods 

Comprehensive CA Sequence Database Creation  

A data cleaning setup was built into the MASPC framework’s Database Creation pipeline, which 

performed boilerplate data filtering and name convention conversion. A protein is decided to be a CA based 

on its GenBank file. To remove redundant CA sequences, the protein similarity was handled within each 

organism instead of against the whole database. This assumes that similar CAs within the same organism 

are likely to be redundant, while similar CAs appearing in different organisms are likely to be the result of 

convergent evolution. To account for the diversity of CAs, a similarity of 70% was used as a maximum 

threshold for the pairwise Needleman-Wunsch sequence similarity comparisons. The database was further 

paired down to proteins between 100 to 500 amino acids to facilitate the structure prediction.  In the process, 

near-identical sequences were filtered, which resulted in a complete database (CA-DB-I, Supplement 

Information File 1) of all unique CA sequences of a given organism. There are a total of 16890 unique 

organisms in CA-DB-I.  

Carbonic Anhydrase Structure Database 

Protein sequences used in this study were sourced from UniProt (www.uniprot.org) and NCBI 

(https://www.ncbi.nlm.nih.gov/). All downloads occurred before March 17th, 2024. BLAST is used to 

create a custom CA database with all found CAs in processed databases. 

To obtain a high-quality structure dataset for evaluating the structure prediction accuracy of OmegaFold 

and the MASPC strategy, a dataset containing 74 CA structures was extracted from PDB (www.rcsb.org). 

Firstly, a search was performed to find all likely CA entries, resulting in a collection approximately 1000 

PDB entries that fit the constraints. A BLAST database was then initialized upon CA-DB-I. Subsequently, 

each of the collected PDB entries were searched using BLAST across CA-DB-I using a high sequence 

similarity threshold of 98% similarity as determined by BLAST, verifying the PDB entry as a CA. A further 

structural comparison was performed using a TM-score threshold of 0.95 to remove identical structures and 

obtain the candidate set of PDB structures. A final manual check of each structure resulted in a 
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representative dataset of structures that was used in further analysis as unique representatives of all PDB 

CAs. The PDB structure database is provided in the Supplement Information File 1. 

Structure Simulation  

OmegaFold was used for CA structure prediction in this study. Structural similarity between protein 

structures was evaluated using TM-score (Zhang & Skolnick, 2004) calculated with TM-align, and TM-

weighted, while Biopython was used for handling biological data (Cock et al., 2009). All the structure 

simulations were performed on Linux 22.04 LTS.  

Polymorphic Analysis and Evolution Tree Creation  

Protein sequence alignments were performed using ClustalO (Sievers et al., 2011) and sequence 

similarity percentages are reported using a normalized Needleman-Wunsch method (Needleman & 

Wunsch, 1970). The phylogenetic trees built from distance matrices were constructed using Neighbor-

joining (NJ) (Saitou & Nei, 1987). Sequence based trees were constructed using ClustalO and RAxML 

(Stamatakis, 2006). iTOL was used to display the phylogenetic trees (Letunic & Bork, 2024), and the 

coloring is based on existing CA annotations in NCBI and UniProt databases. 

The sequence-based trees were constructed using the best 100 iterations of RAxML. For structure-

based trees, structural distances between protein structures were calculated using the structure comparison 

methods, TM-score or TM-weighted. PDB files were compared pairwise, converting the resulting TM-

score or TM-weighted scores to distance measures. Structure based phylogenetic trees were generated using 

NJ.  

TM-weighted  

TM-weighted is a Python implementation of TM-score. A heuristic weight is applied when aligning 

His residues in proteins is introduced to consider the active residues of the potential CA sequences (see 

below). TM-weighted uses a deterministic Kabsch algorithm in line with the original TM-score 

implementation. In the initial alignment step, a weighting factor is applied to each residue, allowing specific 

residues to have a greater influence on the alignment. The final alignment performed using TM-weighted 

considers important local motifs as well as global alignment. The comparison of TM-weighted and TM-

score on CA structure analysis is presented in Figure S1.  
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Low sequence similarity CA confirmation in NCBI database 

The structure-based analysis was also used to confirm CAs with low sequence similarity in the NCBI 

database. A loose regex was used to further filter sequences using well-known motifs, keeping the sequence 

search relevant and controllable. Sequences were then categorized into similarity tiers based on their 

sequence’s similarity to the target protein, in this case chosen to be HCA-II. First, the whole NCBI database 

was searched using the target HCA-II sequence as a template followed by α-CA motif filtering. The 

sequences with similarities between 30-39% to the HCA-II were collected, followed by structure simulation 

using OmegaFold. This specific range was chosen for containing most of the low sequence similarity 

proteins (Figure S4). Among these, sequences with a structural similarity of a TM-weighted score greater 

than 0.5 as compared to the HCA-II structure (PDB: 1BIC) were considered similar (Xu & Zhang, 2010) 

and selected for further analysis. Proteins with any reference to CAs in their GenBank file were considered 

unrelated and were removed to focus the search on unique edge-case proteins. The remaining CAs were 

verified by manual structure alignment and checked for correctly oriented active residues. The structures 

of the final sorted sequences were then referenced with their corresponding UniProtKB entries. 

 

Results 

Validation of structure-based polymorphic analysis with PDB CA structures  

Firstly, the MASPC strategy was validated by published CA structures in PDB. Despite the presence 

of thousands of CA entries in the PDB, only 74 unique CA structures have been resolved in the PDB after 

being cross-referenced with CA-DB-I and further filtered. Among these structures, 10, 17, 5, and 1 CAs 

are annotated as α-, β-, γ-, and ι-CAs, respectively, with the rest being unclassified within their PDB entry 

files (Table 1).  

To evaluate the CA classification strategy, a comparative analysis of sequence-based and structure-

based polymorphism was conducted using these 74 structures (Figure 2). An optimized sequence-based 

phylogenetic tree generated using the best result after 100 iterations of RAxML (Figure 2A) still failed to 

group all the CAs as expected, creating two clades of unclassified CAs. In comparison, structure-based 

trees clearly separated α-, β-, γ-CA clades (Figure 2B). Though the trees have shown similar clustering, 

their pair-wise normalized Robinson-Foulds distances are all greater than 0.5 suggesting though the 

clustering is similar, the trees show variation within each clade. These results suggested that the structure-

based polymorphism was a promising strategy for clustering highly diverse CAs, which could provide more 
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accurate large-scale analysis of CA classification and evolution. To focus on the analysis of active CAs, 

TM-weighted, a method based on TM-score was developed to be incorporated into the MASPC strategy 

for better enzyme classification. Compared to TM-score, TM-weighted aligns more closely with human 

intuition by emphasizing critical His residues, which form key motifs in active CAs, over other residues. 

This reduces the impact of superfluous protein structures that add unnecessary noise, resulting in a more 

relevant alignment metric tailored specifically for comparisons within a particular protein class. Similarly, 

this created a mechanism for weeding out improperly predicted structures or non-CAs into their own 

category, due to their lack of the target structural motif. TM-weighted created accurate CA class-based 

clades similar to TM-score (Figure 2B, 2C). In the TM-weighted polymorphic tree, γ-CAs and β-CAs were 

clustered well with no splitting in the clades. Notably, the ι-CA was grouped closer to α-CA clade in TM-

weighted-based analysis, while it was closer to γ-CAs in the TM-score-based analysis.  

Confirmation of the OmegaFold simulated CA structures   

Next, OmegaFold was evaluated for later use in the large-scale model CA structure simulation. The 

LLM-based OmegaFold was chosen in this study because it has been shown to be effective in predicting 

orphan proteins, a favorable capability given the diversity of protein sequences like CAs. Besides, its low 

computing resource demands meet the speed and cost-efficiency required for large-scale structure 

simulation. To evaluate the applicability of OmegaFold for CA structure simulation specifically for 

phylogenetic analysis, the OmegaFold simulated structures based on the sequences of 74 PDB CA entries 

were compared to the ground-truth PDB structures. Our results showed that the OmegaFold-generated CA 

structures agreed to their ground truth PDB counterparts, with 67 out of 74 showing TM-scores greater than 

0.9, and only one with a TM-score below 0.7 of 0.69 (Figure S2). Not surprisingly, polymorphic studies 

based on OmegaFold's simulated structures closely matched that of the ground truth PDB structures, further 

confirming its effectiveness on CA structure simulation for classification (Figure 2C, 2D). 

TM-weighted High diversity and fast evolution of CAs  

With the observation that OmegaFold structures could provide good CA classification, a more extensive 

analysis was performed on a broader range of model organisms to further understand CA’s classification 

and evolution. 117 representative model organisms were chosen from across all walks of life, representing 

major landmarks of evolution, including archaea, bacteria, plants, fish, and mammals. The 117 selected 

model organisms (Table 2) were searched against the CA-DB-I database to obtain annotated CAs with 

focus on α-, β-, γ-CAs, allowing for a non-repeating database of model organism sequences. To ensure 

enzyme diversity regardless of the model organisms, further sets of α-, β-, γ-, δ-, ζ-, η-CAs were collected 

(Del Prete et al., 2014). A total of 1544 CAs from these representative model organisms with the addition 

of 59 high-variety CAs from literature and the PDB were finally selected for a systematic study of CA’s 
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classification and evolution (Table 2, Supplement Information File 1). Among these 1603 CAs, there 

were potentially 869 α-CAs, 481 β-CAs, 200 γ-CAs and 53 indeterminate CAs from other classes according 

to previous UniProt sequence annotation and subsequent phylogenetic analysis. Most organisms contain 

multiple CA isoforms, ranging from a single CA isoform to 29 isoforms in Ustilago maydis and Oryza 

sativa subsp. japonica, respectively (Figure 3). There are 169 unique CAs in E. coli, which is mainly due 

to the high diversity of individual E. coli strains. In addition, some organisms, mainly plants, contain all α-, 

β-, and γ-CAs, such as Arabidopsis thaliana, while the other organisms contain only one single class CAs, 

such as Mus musculus and Methanosarcina thermophila, which contain only α- or γ-CAs, respectively. An 

example of high sequence variability in contrast to structure conservation are the 12 CA isoforms that have 

been identified in humans. These CA isoforms all belong to α-CAs, with sequence similarity between 28% 

and 64%. However, their structures are very similar, with TM-scores all greater than 0.71 (Figure S3).  

Model CA sequence-based phylogenetic analysis 

The collected CAs were subsequently applied to both sequence- and structure-based analysis. Similar 

to the 74 CAs extracted from the PDB, the 1603 CAs from different classes were not grouped well in the 

sequence-based phylogenetic tree (Figure 4A), providing limited information for their classification. Using 

a maximum likelihood tree construction, RAxML, for sequence-based polymorphic tree construction, CAs 

were largely grouped by organisms, as shown by the outermost color rings of both trees. It was observed 

that although β- and γ-CAs were differentiated into their own branches, the clades were not clearly defined. 

The sequence-based tree separated type-1 β-CAs and type-2 β-CAs (Figure 4A) into different subclades, 

which have been reported to possess distinct difference of the ligation state and the orientation of amino 

acid residues around the active site.  

Additionally, the sequence-based analysis encountered challenges in classifying α-CAs. Unlike the β- 

or γ-CAs, the α-CA clade did not cleanly contain all α-CA proteins under a single branch, instead forming 

staircase-like branches, which could not be categorized as a single clade without encompassing the rest of 

the tree as well. The main α-CA was split into 5 subclades, but the remaining stair-case clades could not be 

easily put into a single clade. This was paired with three identifiable sub-clades corresponding to plant, 

invertebrate, and vertebrate CAs. The sequence-based approach also had difficulties in classifying ζ-CAs, 

with a subgroup between the β- and γ-CA clades, and another subgroup appearing to be mixed in with η-

CAs and unclassified CAs between the α- and γ-CA clades (Figure 4A). The η-CAs were grouped well but 

showed up clustered alongside unclassified structures and a portion of the ζ-CAs (Figure 4A), suggesting 

that the sequence-based approach was not able to truly classify them. Further issues arose with the 

sequence-based approach when considering the human-verified proteins. Notably a verified β-CA 

XP_001699151.1 (Del Prete et al., 2019) appeared grouped under the α-CA clade (Figure 4A). 
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Model CA simulated structure-based phylogenetic analysis 

TM-weighted structure-based phylogenetic tree is different from the sequence based phylogenetic tree, 

with the Robinson-Foulds distance being calculated as 0.87 (Figure 4). These results were in line with the 

analysis of the CA PDB structures (Table 3). Compared to the sequence-based analysis, CAs were better 

clustered in the structure-based phylogenetic tree (Figure 4B), with the annotated α-CAs forming the 

largest cluster and the annotated γ-CAs forming the most conservative cluster. The γ-CAs were more highly 

conserved than both α-CAs and β-CAs, which formed two main sub-clusters. One sub-cluster contained 

CAs predominantly from archaea, and a few from bacteria. The other sub-cluster contains CAs from archaea, 

bacteria, plants and protists. None of γ-CAs came from invertebrates, vertebrates, or fungi. The structure-

based analysis gave a better clustering of γ-CAs (Figure 4A, 5B), and their high structural similarity 

suggested a conserved evolutionary pathway for γ-CAs, potentially originating from a common ancestor. 

Similarly, β-CAs also largely formed several distinct sub-clusters (Figure 4B). One main sub-cluster 

containing CAs mainly from bacteria and plants, while CAs of the rest sub-clusters came from a broader 

range of organisms, including archaea, bacteria, protists, plants, invertebrates, and a few vertebrates. The 

structure and organism differences between those sub-clusters suggested that there may have been a 

divergence in their evolution, indicating possible sub-classifications for β-CAs. It was noticed that the 

currently identified type-1 and type-2 β-CAs were not closely grouped, indicating that more studies are 

needed for a better sub-classification.  

Although α- and γ-CAs share similar active sites, in which they utilize three His residues to coordinate 

the Zn2+ ion, the polymorphic tree showed a significant evolutionary distance between the α-CA and γ-CA 

clusters (Figure 4B). Different from and γ-CAs, α-CAs were primarily found in invertebrates, vertebrates, 

and plants, with no representatives from archaea. Similar to the sequence-based analysis, the structure-

based analysis still could not deliver clear clustering of the α-CAs, but it was clear that the α-CAs were 

grouped better in the structure-based polymorphic tree, forming several sub-groups with close evolutionary 

distance (Figure 4B). In the structure-based polymorphic tree, CAs from invertebrates and vertebrates 

clearly separated from those of plant origin, which seemed to have closer evolutionary relationships of CAs 

from protists, Archaeplastida, etc. It was also noticed that CAs from invertebrates and vertebrates could 

also be separated by two distinct sub-clusters. These distinct sub-clusters indicated the very high diversity 

of α-CAs and their possible differences in origins. More detailed analysis requested further sub-

classification of the α-CA group.  

In addition to the new observations of α-, β-, and γ-CAs, TM-weighted’s classification of η-CAs 

reflected their highly similar active site geometry which originally caused η-CAs to be misclassified as α-

CAs (Figure 4B). Based on the structure similarity analysis, although η-CAs were still grouped with the α-
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CAs, they were isolated clearly from the majority of α-CAs, showing an evolutionary position between α- 

and γ-CAs. Moreover, a miscellaneous zone made up of 10 α-CAs, 5 β-CAs, 1 γ-CA, 13 unknown CAs, 

and all 9 ζ-CAs were presented in the structure-based polymorphic tree, sitting between the  β-, and γ-CAs. 

These structures were loosely folded, and did not contain any geometric motif, suggesting that the structures 

of these CAs had low prediction quality or even that those proteins were possibly misannotated as carbonic 

anhydrases. These proteins were likely grouped together for having low similarity with CAs in other clades 

due to not sharing any expected structural or His motifs with those CA clades. 

Identification of low sequence similarity CAs from database 

Based on the studies presented, it was speculated that the OmegaFold simulated structure-based strategy 

could also be applied for protein classification without heavily relying on sequence similarity. To explore 

its applicability, HCA-II was used as a target protein for a sequence search against the complete NCBI 

database. Proteins with sequence similarity lower than 40%, numbering 14048 sequences, were chosen 

(Figure S4). Subsequently, structures for the proteins were predicted, followed by structure similarity 

comparisons using TM-weighted against the experimentally determined structure of HCA-II. This process 

discovered 27 new α-CAs not currently identified as CAs by their GenBank files. Although these 27 

proteins have a <40% sequence similarity with HCA-II, their TM-scores are in the range of 0.87 to 0.56 

(Figure 5A).  

Next, a structure alignment and comparison with the HCA-II structure (PDB: 1BIC) was performed. 

The identified CAs possessed the HCA-II-like active site pocket, with three characteristic His residues in 

the correct orientation, suggesting they might be active CAs. As a representative example, HBH53009.1, 

which was labeled as a hypothetical protein in the NCBI database with a low sequence similarity of 38.2% 

to HCA-II yet showed high structure similarity with a TM-weighted score of 0.56 (Figure 5A). The 

predicted structure of HBH53009.1 showed different structural features compared to HCA-II’s structure at 

the periphery but maintained the highly overlapped β-sheets and coordinating His residues in the catalytic 

core that is critical to its function as an α-CA (Figure 4B). This result further demonstrates the applications 

of the structure-based CA classification method in low sequence similarity CA identification. 

 

Discussion  

In this study, a structure-based in silico method, MASPC, which weighted key motifs in target proteins, 

was developed to improve the classification of CAs, a group of highly sequence-diverse ancient enzymes 

with carbonic dioxide capturing capability. In MASPC, the structure-based polymorphic analysis, as 

applied through TM-weighted, provided superior accuracy in classifying CAs compared to sequence-based 
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methods. Based on an analysis of 1603 CAs from 117 model organisms, it was observed that α-, β-, and γ-

class CAs possessed distinct structural features, suggesting they might have evolved from different 

ancestral proteins. Further analysis indicated that CA evolution was highly related to their host organisms, 

revealing CA’s correlations to life evolution. Other than for CA classification, this in silico method was 

also applied to identify CAs with low sequence similarity. Using HCA-II as a reference, 27 active CAs with 

sequence similarity under 40% in the NCBI database were identified, further validating the power of 

structure-based approaches. 

Sequence-based methods face significant challenges when dealing with proteins that have evolved from 

different evolutionary ancestors. Both the findings from this research (Figures 2, 5) and other recent studies 

(Moi et al., 2023) indicated that simulated structures offer more reliable clustering for diverse proteins. The 

predicted-structure-based polymorphic tree correctly grouped CAs from different classes, maintaining 

detailed relationships such as evolutionary distances like the experimentally determined structure-based 

polymorphic trees (Figure 2B-D). In contrast, the sequence-based tree was unable to capture these fine 

details and highlighted the extensive sequence variability among CAs (Figure 2A). The better accuracy of 

structure-based analysis was further confirmed in a large-scale dataset analysis (Figure 4). These results 

underscore that while CA sequences are highly variable, their structures remain conserved, and structure-

based polymorphic analysis offers more precise CA classification, which is less reliant on the organism 

from which the protein originates. To enhance this structure-based approach for CA classification, TM-

weighted was developed, building on the TM-score measure to emphasize key motifs during polymorphic 

alignment, ensuring more accurate representations of catalytic features. This reasoning is in line with 

protein evolution theory (Ribeiro et al., 2023), in which enzyme active sites are strictly conserved through 

evolution. TM-weighted differentiates from TM-score, which emphasizes the overall topology and the 

larger structural features. TM-weighted is thus making it more suitable for CA analysis, where diverse 

sequences can complicate protein classification. TM-weighted outperformed TM-score in sub-clustering 

accuracy (Figures 2B-C, Figure S3), providing a clearer distinction between enzyme subclasses. In the 

large and more diverse database analysis, TM-weighted also provided a better clustering of different CAs 

from various organisms. ζ-CAs were not grouped, falling into a misc-zone grouped with hard-to-be 

predicted structures. 

 

Structure provides more accurate clustering guidance; however, it is largely limited by structure 

simulation models. Different structure-based methods can emphasize more complex characteristics of 

proteins. The Robinson-Foulds distance between the structure-based tree using TM-weighted and TM-score 

is 0.801. The TM-score approach groups a single ζ-CA with γ-CAs and groups the other 8 ζ-CAs within 
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the misc clade. Though the η-CAs are grouped near each other, they belong to separate clades. The lack of 

clustering suggests that the TM-score metric can be improved by a weighting mechanism. 

Although ΑlphaFold2 provides the state-of-the-art structure prediction, it requires large amounts of 

computing resources for large scale analysis. Comparably, LLM-based models, such as OmegaFold, 

achieve similar performance but with a much lower resource requirement. OmegaFold is also known for 

orphan protein structure prediction as it does not utilize Multiple Sequence Alignment. Still, there are 

evident issues with transitioning from experimental structures to predicted structures between trees 

generated using experimental methods and trees generated through prediction technologies, exemplified in 

the ground truth vs predicted structure trees (Figure 2, Table 3). Although CAs are far from being 

considered orphan proteins, their evolution spans great periods of time and is subject to vast (Figure 3, 5A). 

In the research here, OmegaFold simulated CA structures showed good agreement with the PDB ground 

truth CA structures in both alignment metric and resulting trees (Figure S2). This suggests at its 

applicability to much larger datasets. Due to the computing resource limitations, the research performed 

here was limited to proteins with length under 500 aa. Most proteins, especially annotated CAs in the 

UniProt database, are shorter than that. Importantly, this in silico approach will continue to improve 

alongside the development of protein prediction technologies and further fine-tuning of the models used to 

predict the structures in the dataset.  

The CAs in the tree demonstrate many different classes of CAs belonging to single types of organisms, 

such as plants, which can contain all 3 main CA classes. Furthermore, multiple isoforms of the same CA 

class in a single organism might be correlated to their functional diversity in different tissues and organs. 

Studies increasingly show that CO2 serves various physiological roles, such as a signaling molecule 

(Phelan et al., 2021), and specific CA isoforms predominate in different cell types and tissues (Agarwal 

et al., 2019).  

The structure-based polymorphic analysis of the CAs from model organisms sheds new light on their 

evolution and correlation with life evolution (Figure 3B). The structure and sequence analysis of the model 

CAs performed in this study support that different CA classes evolved from different ancestors. 

Furthermore, the research here also supports that α-, β-, and γ-CA classes are dominant in different 

organisms. For example, two main sub-clusters exist in α-CAs, of which one sub-cluster is composed of 

invertebrates and vertebrates CAs, and the other sub-cluster consists of α-CAs mainly from invertebrates 

and plants. The branches in these two sub-clusters are separated by different organisms. The coexistence of 

invertebrate CAs in these two sub-clusters, along with the organism-associated CA clades, suggests a 

correlation between α-CA evolution and the broader process of life evolution. It is believed that vertebrates 

evolved from invertebrates, which in turn, had already undergone significant evolutionary diversification 
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before plants emerged. It is speculated that invertebrate α-CAs evolved into two different forms, with one 

pathway leading to similarities with the α-CAs found in plants and the other leading to similarities with 

those found in vertebrates. In addition, the structure-based analysis also showed that several bacterial α-

CAs have high structural similarities with vertebrate CAs (Figure 3B). The bacteria-containing α-CA clade 

is made up of 6 CAs from Aliivibrio fisceri, Pseudomonas fluorescens, a Curvibacter symbiont subsp. 

Hydra magnipapillata, and E. Coli. Their closest vertebrate neighbor is a CA from Danio rerio. Notably, 

H. magnipapillata is an aquatic organism and A. fisceri is a symbiote with aquatic organisms, showing a 

living environment which overlaps with D. rerio.  

γ-CAs are the most conservative CAs mainly existing in bacteria and archaea, with a few in protists 

and plants. Although the active site of γ-CAs are also composed three His residues similar to α-CA, its 

functional unit is a trimer, with three active sites spanning the monomer-monomer interfaces. In this active 

site, the Zn2+ ion is coordinated by each the His residues all three subunits (Ferry, 2010). γ-CAs may be 

the most ancient CAs, considering they mainly exist in prokaryotes and no γ-CA has been identified in 

animals. It is believed that γ-CAs are well conserved in photosynthetic organisms, and a recent study 

showed that γ-CAs are subunits of the mitochondrial complex I of diatoms (Cainzos et al., 2021).  

Compared to α- and γ-CAs, β-CAs exist in more diverse organisms, covering all organisms except 

vertebrates and being dominant in bacteria. β-CAs also exhibited broad structural diversity in this study, 

and it was reported recently that some β-CAs even possess a non-catalytic CO2 binding site (Cronk et al., 

2006) which can be explored for further weighted motif studies.  

Understanding the diverse β-CA classification and its evolution, including the correlation between type-

1 and type 2 β-CAs, is still challenging, but it is worth noting that bacterial CAs ubiquitously exist in the 

different branches of the β-CA cluster (Figure 4B). This may be correlated to bacterial horizontal gene 

transfer (HGT), a key factor in bacterial evolution (Zolfaghari Emameh et al., 2016). In comparison, α-

CA clades are dominated by vertebrates, invertebrates, and plants. The α-CA also shows more variety in 

sub-clusters, which may be a result of less extreme HGT events allowing for differentiation (Crisp et al., 

2015).  

The structure-based method used for CA classification was also applied to facilitate CA identification 

from a low sequence similarity pool (Figure 5). Combined with TM-weighted, the analysis was further 

focused on the potentially active CA candidates. Surprisingly, despite low sequence similarities and His 

weighting in alignment, some proteins still showed high structure similarity with well aligned active sites 

(Figure 5B). These results indicated that the simulated structure-based strategy developed has possible 

applications in more accurate methods for protein annotation. No doubt structure-based analyses will 
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become more and more effective for protein annotation and classification as more powerful structure 

prediction models are developed. 
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Tables 

Table 1. The summarized information of CAs from PDB 

Class Frequency Percentage 

α- CA 10 13.5% 

β-CA 17 23.0% 

γ-CA 5 6.8% 

ι-CA 1 1.4% 

Others 41 56.8% 

 

 

 

  



 

21 
 

Table 2. The summarized information of CAs in selected organisms 

Class Numbers Percentage Organisms (ordered by relative frequency) 

α- CA 862 55.5% Vertebrates, Invertebrates, Plants, Protists 

β-CA 454 29.2% Archaea, Bacteria, Plants, 

γ-CA 195 12.6% Archaea, Bacteria, Plants, Protists 

Others 43 2.8% Invertebrates, Plants, Protists 
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Table 3. Normalized RF distances of PDB trees 

 A B C D 

A 0 0.78 0.96 0.72 

B 0.78 0 0.93 0.80 

C 0.96 0.93 0 0.96 

D 0.72 0.80 0.96 0 
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Figures   

Figure 1 

 

Figure 1. Motif-weighted Structure Alignment for Enzyme Classification (MASPC) strategy and its 

expanded application in CA identification  
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Figure 2 
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Figure 2. Polymorphic analysis of annotated CAs from the PDB.A: Sequence-based phylogenetic tree 

generated using RAxML and ClustalO with the best result from 100 iterations. B: Structure-based 

phylogenetic tree generated using TM-score and NJ based on PDB structures. C: Phylogenetic tree 

generated using TM-weighted and NJ based on PDB structures. D: Phylogenetic tree generated using 

TM-weighted and NJ based on predicted structures.  

 

Figure 3 

 

Figure 3. Variance of CA sequences from selected model organisms. The number of CAs in 

representative organisms are presented with the sequence similarities, TM-score-based structure similarity, 

and TM-weighted-based and structure similarity of CAs in the same organism are calculated.  
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Figure 4
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Figure 4. Polymorphic analysis of CAs selected from the model organisms. 

A: Sequence-based phylogenetic tree generated using RAxML and ClustalO with the best result from 100 

iterations. B: Structure-based phylogenetic tree generated using TM-weighted and NJ based on predicted 

structures.  
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Figure 5 

A 

 

B 

 

 

Figure 5. Application of structure-based CA classification for identifying low sequence similarity CAs 

from NCBI database. A) Analysis of NCBI database using HCA-II as template sequence. After the 

sequence blasting, the sequences with similarity in 30-39% bin (Figure S3) were selected for OmegaFold-

mediated protein structure simulation, followed by TM-score-based structure similarity evaluation.  B) 

Protein structure of the predicted structure HBH53009.1 aligned with HCA-II, 1BIC. Close up of His-Zn2+ 

active site. 
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Supplement Information File 1 
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Supplemental Figures 

Figure S1 

 

Figure S1. Comparison of TM-score with TM-weighted under different motif weights. Alignments 

are performed on all pairs of the 74 PDB CA structures. 
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Figure S2 

 

Figure S2. PDB vs OmegaFold TM-score distribution OmegaFold is shown to be an accurate protein 

prediction method which can be used for further CA prediction applications performed in this study. 
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Figure S3 

 

 

Figure S3. Comparison of structure and sequence similarity for human carbonic anhydrase 

isoforms. In contrast with low sequence similarities, the high structural similarity between structures 

show the diversity of CA sequences, yet relative uniformity of same-class CAs. 
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Figure S4 

 

Figure S4. Numbers of CAs in each similarity tier after sequence blasting with HCAII in NCBI 

database. The 30-39% similarity bin is the most promisi/ng range to search in due to high numbers of 

potentials CAs and low sequence similarities. 

Figure S5 

 



 

35 
 

  

Figure S5. Structure-based phylogenetic tree generated using TM-score and NJ 


