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Abstract 19 

Age-structured stock assessment models are used worldwide to predict the likely impact of 20 

changing harvest on future fisheries yield.  However, age-structured models ignore the impacts 21 

of predator consumption on prey survival (top-down impacts) and prey availability on predator 22 

growth (bottom-up impacts), whereas multispecies statistical catch-at-age models often 23 

incorporate top-down but not bottom-up impacts.  Here, we address this gap by demonstrating a 24 

generic approach for including bottom-up interactions in an age-structured statistical model by 25 

linking individual growth to population-scale consumption.  We specifically extend Ecostate, a 26 

recent model that adapts Ecopath/Ecosim dynamics to jointly estimate biological and fishery 27 

parameters as well as unexplained process errors.  We first add age-structured dynamics for 28 

select species using stanzas, i.e., an age-range over which age-structured productivity and 29 

consumption match mass-balance constraints.  We then incorporate likelihood components 30 

representing fit to age-composition and empirical weight-at-age data while also estimating 31 

residual variation in larval survival (recruitment deviations) and consumption (weight-at-age 32 

deviations).  To demonstrate, we fit to abundance-index and age-composition data for two 33 

commercial species (Alaska pollock and sablefish) in the Gulf of Alaska, including mass-balance 34 

dynamics for its primary energetic supply, and not fitting weight-at-age data so that it can be 35 

used for out-of-sample evaluation of model performance.  We show that the model can be 36 

viewed as a multispecies age-structured model (e.g., estimating adult mortality rates, survey 37 

catchability and selectivity, and biomass while tracking cohorts) and as a mass-balance 38 

ecosystem model (e.g., estimate trophic position and weight-at-age based on forage 39 

consumption).  The predicted weight-at-age is weakly correlated with independent measurements 40 

for pollock and sablefish, but were improved when we incorporated forage biomass indices.  We 41 



 

 

conclude that bottom-up interactions can be added to age-structured stock assessment models, 42 

and can address new questions regarding forage availability on weight-at-age for use in stock 43 

assessments.   44 

 45 

Keyworks:  Multispecies model;  Ecopath with Ecosim;  mass balance; state-space model;  46 

bottom-up interactions; age-structured dynamics 47 

  48 



 

 

Introduction 49 

Interest in how food availability affect productivity for marine species (i.e., “bottom-up 50 

interactions”) is growing for several reasons: 51 

1. Climate change:  Primary production is changing due to global temperature and nutrient 52 

supply (Boyce & Worm, 2015), and regional changes in primary production may impact 53 

ecosystem-level sustainable harvest (Atkinson et al., 2024; Chassot et al., 2010).  Similarly, 54 

changes in regional temperature can affect predator-prey overlap, and subsequently drive 55 

changes in consumption and species interactions (Goodman et al., 2022; Thorson et al., 56 

2021);   57 

2. Managing harvest for forage species:  Alternatively, direct harvest of forage species such as 58 

Atlantic menhaden (Chagaris et al., 2020) and Antarctic krill (Trathan et al., 2022) have led 59 

managers to regulate harvest of forage species based on their impact on other fished or 60 

protected species; 61 

3. Changing size:  Changes in animal size are well documented and have large impacts on 62 

sustainability and human benefits for Pacific salmon (Oke et al., 2020) and for numerous 63 

groundfishes (Thorson et al., 2015).  In well-documented examples such as Baltic cod, a 64 

change in forage abundance and consumption can then lead to decreased size-at-age for a 65 

commercially important fish (Neuenfeldt et al., 2020).   66 

Given these varied motivations, there is a need for analytical methods that can identify “bottom-67 

up” interactions in marine ecosystems.   68 

 Ecological models are often used to analyze the physical and ecological drivers for marine 69 

ecosystem changes.  For example, age-structured stock-assessment models (ASSAM) are 70 

typically fitted to survey and fishery data and then used to predict the likely impact of alternative 71 



 

 

fishery regulation on future biomass and harvest (Methot, 2009).  Alternatively, multispecies 72 

statistical catch-at-age models (MSSCA) extend ASSAM by estimating biomass for multiple 73 

species, and then incorporate “top-down” drivers by predicting variation in natural mortality for 74 

a prey species based on the consumption by their predators (Begley & Howell, 2004; Jurado-75 

Molina et al., 2005).  More recently, there is increased research regarding state-space versions of 76 

MSSCA and ASSAM, which incorporate both variation in measurements (“measurement error”) 77 

and variation in demographic rates over time (“process errors”).  For example, state-space 78 

ASSAM have been developed that estimate changes in weight-at-age (Correa et al., 2023), and 79 

state-space MSSCA can estimate process errors in recruitment for individual species (Adams et 80 

al., 2022).  These models (whether conventional or state-space) are typically fitted directly to 81 

data and then updated as needed to repeatedly inform management for a given stock or 82 

management question.   83 

 Despite their widespread use, ASSAM and MSSCA typically do not estimate “bottom-up” 84 

drivers, i.e., how prey biomass and resulting consumption subsequently affects the productivity 85 

(i.e., growth, reproduction, or survival) of their predators (although see Fitzpatrick et al., 2022).  86 

Instead, bottom-up drivers are typically analyzed using mass-balance or “end-to-end” ecosystem 87 

models that are generally not fitted directly to time-series data.  For example, the mass-balance 88 

model Ecopath is typically balanced by estimating an unknown “ecotrophic efficiency” (the 89 

fraction of mortality rates attributed to modeled predators) given specified values for production 90 

and consumption per biomass as well as biomass and diet proportions for a list of interacting 91 

species (Polovina, 1984).  Ecopath can then be projected over time using Ecosim (Walters et al., 92 

1997), and Ecosim can incorporate age-structured dynamics (Walters et al., 2000) which then 93 

have important consequences for species interactions (Walters & Kitchell, 2001).  Predator 94 



 

 

functional-response parameters are sometimes estimated via fit to time-series data without 95 

otherwise fitting parameters in the original Ecopath mass-balance (Bentley et al., 2024; Scott et 96 

al., 2016).  More recently, Ecostate was developed as a state-space extension to mass-balanced 97 

dynamics, and it estimated both bottom-up and top-down drivers for ecosystem dynamics in the 98 

eastern Bering Sea (Thorson et al., 2024).  However, Ecostate was restricted to modelling 99 

biomass dynamics without age-structure, and therefore did not fit age-composition data, track 100 

cohort strength, estimate fishery selectivity, or incorporate other features that are common in 101 

ASSAM.   102 

 In this paper, we discuss how to incorporate bottom-up interactions into statistical age-103 

structured models by linking individual growth to population-level consumption, and 104 

demonstrate the approach by extending Ecostate to include age-structured dynamics.  We first 105 

outline how simple metabolic assumptions can link individual size-at-age to population-level 106 

consumption.  We then summarize Ecostate and outline how it predicts weight-at-age from 107 

theory (biomass dynamics) and/or observations (biomass indices) for forage species.  We then 108 

demonstrate the model by fitting to two age-structured populations (sablefish Anoplopoma 109 

fimbria and walleye pollock Gadus chalcogrammus) as well as their major forage pathways 110 

(pelagic production and benthic detritus via copepods and euphausiids) in the Gulf of Alaska.  111 

We evaluate model performance by (1) withholding real-world measurements of weight-at-age, 112 

and comparing these with model predictions of weight-at-age; (2) withholding and then 113 

forecasting later biomass index and age-composition data in a retrospective skill-testing 114 

experiment; and (3) evaluating how model performance changes when withholding survey 115 

indices for zooplankton forage.  Our analysis demonstrates that state-space mass-balance models 116 



 

 

serve as a useful middle-ground between stock and ecosystem modelling, and can attribute 117 

predator growth to their consumption of prey.   118 

Methods 119 

We seek to add bottom-up interactions to age-structured models by linking individual growth to 120 

population consumption.  In the following, we adapt an approach derived from Ecopath with 121 

Ecosim (Lucey et al., 2020; Walters et al., 1997) and in particular Ecosim’s multistanza 122 

extension (Walters et al., 2000) that can be repurposed in state-space mass balance and age-123 

structured assessment models.  The method requires: 124 

1. Weight-at-age represented using the generalized von Bertalanffy function in a selected 125 

(“reference”) time; 126 

2. Consumption and metabolic demand that results in weight-at-age in that reference time; 127 

3. Consumption and metabolic demand during a given time-interval, used to calculate growth in 128 

that interval relative to the reference time. 129 

In the following, we define reference weight-at-age, consumption, and metabolic demand as 130 

values that occur in a model equilibrium (see Table S1 for a list of notation).  However, future 131 

studies could apply the method to models without a defined equilibrium, and instead define 132 

growth relative to some initial consumption and weight-at-age.  We proceed by first reviewing 133 

the theory from which this method is derived.   134 

Individual growth and population consumption 135 



 

 

  Fish grow based on the balance between energetic supply (anabolism) and expenditure 136 

(catabolism), and von Bertalanffy (1969 Eq. 7.8) formalized this by theorizing that an animal 137 

with body size 𝜔 (in units mass) has growth rate 
d

d𝑡
𝜔 that follows a differential equation1: 138 

d

d𝑡
𝜔 = 𝐻𝜔𝑑⏟

Anabolism

− 𝐾𝜔⏟
Catabolism

 
(1) 

where 𝑑 is the allometric increase in consumption with body size, 𝐻 is the consumption per 139 

effective size, and 𝐾 is the linear increase in catabolism with body mass (Essington et al., 2001).  140 

Integrating this expression over time where individuals start at zero mass (i.e., 𝜔(0) = 0) then 141 

results in the generalized von Bertalanffy growth function: 142 

𝜔(𝑎) = 𝜔∞(1 − 𝑒
𝐾(1−𝑑)𝑎)

1
1−𝑑 

(2) 

where asymptotic weight 𝜔∞ = (
𝐻

𝐾
)

1

1−𝑑
.  When assuming that body mass scales isometrically 143 

(i.e., 𝜔 = 𝑎𝐿𝑏 where 𝑏 = 3) and that consumption increases with length-squared (i.e., 𝑑 =
2

3
), 144 

this expression reduces to the widely used von Bertalanffy model for length-at-age 𝐿(𝑎) =145 

𝐿∞(1 − 𝑒
−𝑘𝑎) where 𝑘 = 3𝐾.   146 

 Although the von Bertalanffy length-at-age function is widely used in age-structured stock-147 

assessment models, there are relatively few models that incorporate bottom-up interactions by 148 

linking individual growth rate 
d

d𝑡
𝜔 (or growth increments using a linear approximation to 

d

d𝑡
𝜔) 149 

to consumption.  To make this link, let us first assume that a population has equilibrium weight-150 

at-age �̅�𝑎 that arises from the generalized von Bertalanffy growth function (Eq. 2).  It also has 151 

                                                           
1 In the following, we use vector-matrix notation (see Edwards & Auger‐Méthé, 2019), but 

introduce binary subscripts 𝑠2, 𝑔2, etc., due to running out of Roman letters for data and 

subscripts.   



 

 

equilibrium age-distribution �̅�𝑎, and we define biomass 𝛽 = ∑ 𝜈𝑎𝜔𝑎
𝑎max
𝑎=0  such that equilibrium 152 

biomass �̅� = ∑ �̅�𝑎�̅�𝑎
𝑎max
𝑎=0 .   153 

 We start by applying an Euler (piecewise linear) approximation to the von Betalanffy 154 

differential equation (Eq. 1) for equilibrium weight at age, while discretizing integer age 𝑎 into 155 

𝑛Δ intervals, where fractional age 𝑎∗ = 𝑛Δ𝑎 + Δ corresponds to interval Δ of integer age 𝑎: 156 

�̅�𝑎∗+1 = �̅�𝑎∗ +
𝐻�̅�𝑑𝑎∗

𝑛Δ
−
𝐾�̅�𝑎∗

𝑛Δ
 

(3) 

We then assume that anabolism 
𝐻𝜔

𝑎∗
𝑑

𝑛Δ
 will vary with consumption, i.e.: 157 

1. if there is no consumption, then anabolism 
𝐻𝜔𝑎∗

𝑑

𝑛Δ
 is also zero and individuals are predicted to 158 

shrink at rate 
d

d𝑡
𝜔 = −𝐾𝜔 with linear approximation 𝜔𝑎∗+1 = 𝜔𝑎∗ −

𝐾𝜔𝑎∗

𝑛Δ
 159 

2. if consumption, weight-at-age, and abundance-at-age are all at their equilibrium, then we 160 

expect growth to also match its equilibrium value, and this occurs when anabolism is 
𝐻�̅�𝑎∗

𝑑

𝑛Δ
; 161 

3. If consumption doubles relative to its equilibrium, we expect anabolism to also double. 162 

As further complication, a model might track consumption 𝑄 only when aggregating across 163 

fractional ages.  In the following, we partition fractional ages 𝑎∗ into “stanzas” (a.k.a. stages) 𝑠2, 164 

and model equilibrium consumption �̅�𝑠2 (or other quantities) by summing across fractional ages 165 

𝑎∗ ∈ 𝑠2 within a given stanza 𝑠2.  Alternatively, a model might aggregate all fractional ages 𝑎∗ 166 

into a stanza 𝑠2 representing a single integer age 𝑎, and track consumption 𝑄𝑎 for each integer 167 

age.     168 

 To proceed, we re-arrange the individual growth equation (Eq. 3) to show that anabolism at 169 

equilibrium for fractional age 𝑎∗ is �̅�𝑎∗+1 − �̅�𝑎∗ +
𝐾

𝑛Δ
�̅�𝑎∗.  Average individual anabolism must 170 



 

 

be supported by population-scale consumption 𝑄𝑠2 for the corresponding stanza 𝑠2, and that 171 

stanza has metabolic demand ∑ 𝜈𝑎∗′𝜔𝑎∗′
𝑑

𝑎∗′∈𝑠2 .  At equilibrium, we therefore have an identity: 172 

�̅�𝑎∗ (
�̅�𝑠2

∑ 𝜈𝑎∗′𝜔𝑎∗′
𝑑

𝑎∗′∈𝑠2

)
⏟            

Equilibrium consumption
per biomass for stanza 𝑠2

= �̅�𝑎∗+1 − �̅�𝑎∗ +
𝐾

𝑛Δ
�̅�𝑎∗

⏟              
Equilibrium anabolism for

fractional age a∗

 
(4) 

And solving for �̅�𝑎∗ = (�̅�𝑎∗+1 − �̅�𝑎∗ +
𝐾

𝑛Δ
�̅�𝑎∗) (�̅�𝑠 ∑ �̅�𝑎∗�̅�𝑎∗

𝑑
𝑎∗∈𝑠2⁄ )

−1
 then converts the ratio of 173 

consumption and metabolic demand for a given stanza 𝑠2 to anabolism for a given fractional age 174 

𝑎∗.  We can then use �̅�𝑎∗ to calculate anabolism given other levels of consumption and metabolic 175 

demand: 176 

𝜔𝑎∗+1 = 𝜔𝑎∗ + �̅�𝑎∗
𝑄𝑠2

∑ 𝜈𝑎∗′𝜔𝑎∗′
𝑑

𝑎∗′∈𝑠2

−
𝐾

𝑛Δ
𝜔𝑎∗ 

(5) 

This expression therefore links individual, age-specific growth increments to total consumption 177 

𝑄2 aggregated over a set of ages fractional ages 𝑎∗ ∈ 𝑠2.  The expression satisfies our three 178 

objectives, i.e., (1) predicting a decline in size in the absence of consumption, with (2) weight-at-179 

age matching equilibrium values given equilibrium age-structure and consumption, and also (3) 180 

having a linear increase in anabolism with consumption.  Future research could modify the third 181 

characteristic by shunting elevated consumption into elevated survival or reproductive output 182 

(Walters et al., 2000), although we do not explore this here.   183 

 In the following, we demonstrate how Eq. 4-5 can be used to integrate bottom-up interactions 184 

into age-structured population dynamics.  We specifically extend the state-space mass balance 185 

model Ecostate, which informs forage abundance based on both: 186 

1. Theory, i.e., forage species follow a simple biomass-dynamics model such that they have 187 

some assumed or estimated density dependence where, e.g., predator growth will tend to 188 

increase as their fishing mortality rate increases (Fig. S1); 189 



 

 

2. Observations, i.e., where forage biomass will closely match biomass indices when they are 190 

available, such that dynamics will condition upon observations (i.e. predicted growth will 191 

increase when forage indices increase). 192 

In particular, we investigate whether having forage biomass indices can improve predictions of 193 

predator weight-at-age relative.  However, future models could replace our density-dependent 194 

model for prey dynamics with user-specified indices of prey biomass or predator consumption 195 

(i.e., treating prey biomass or consumption as covariates).   196 

State-space mass balance modelling 197 

Ecostate (Thorson et al., 2024) is a state-space model for population-dynamics, which tracks 198 

biomass 𝛽𝑠(𝑡) for each 𝑠 ∈ {1,2, … , 𝑆} of 𝑆 functional groups in continuous time 𝑡𝑚𝑖𝑛 < 𝑡 <199 

𝑡𝑚𝑎𝑥.  Functional groups are categorized as autotrophs (producers), heterotrophs (consumers), 200 

and detritus pools, and we index functional groups as prey 𝑖 and predator 𝑗 in expressions that 201 

involve predators and prey groups.  It uses dynamical equations derived from Ecopath (Polovina, 202 

1984) and Ecosim (Walters et al., 1997, 2000; Christensen & Walters, 2004) and extends these 203 

dynamics to permit: (1) any combination of parameters to be estimated via fit to time-series data 204 

using maximum likelihood, with options for likelihood penalties and/or Bayesian estimation; and 205 

(2) estimation of process errors representing unmodeled variation in dynamics, where the 206 

variance of process errors can be estimated as a hierarchical model.  We first briefly summarize 207 

the previous development of Ecostate, before then introducing how age-structured models are 208 

incorporated.   209 

 Ecostate (mimicking Ecopath) first defines an equilibrium biomass �̅�𝑠, where biomass inputs 210 

(primary production, assimilated consumption, and detrital inputs) match outputs (metabolic 211 



 

 

demand, biomass growth, natural mortality, predation mortality, and detrital turnover) on 212 

average for all functional groups.  This equilibrium is expressed using the “master equation”: 213 

�̅�𝑖⏟
Equilibrium

biomass for prey i

× 𝑝𝑖⏟
Prey 

production
per biomass

× 𝑒𝑖⏟
Prey

ecotrophic

efficiency

=∑

(

 
 
 

𝑑𝑖,𝑗⏟
Proportion of

diet for predator
𝑗 by prey 𝑖

× �̅�𝑗⏟
Equilibrium
biomass for
predator 𝑗

× 𝑤𝑗⏟
Predator

consumption
per biomass)

 
 
 𝑆

𝑗=1

 

(6) 

where 𝑝𝑖 is production per biomass, 𝑒𝑖 is the proportion of biomass that is utilized by modeled 214 

variables (“ecotrophic efficiency”), 𝑑𝑖,𝑗 is diet proportions (where diet matrix 𝐃 has columns that 215 

sum to one for heterotrophs and zero otherwise), and 𝑤𝑗 is consumption per biomass.  Fitting this 216 

equation requires that the analyst specify a fixed value (or estimate as fixed effect) three of the 217 

four parameters {𝑝𝑠, 𝑒𝑠, �̅�𝑠, 𝑤𝑠} for each taxon, and such that the fourth value can be solved 218 

deterministically (Polovina, 1984).  We envision that analysts will typically solve for ecotrophic 219 

efficiency, although it could instead be estimated with a prior in cases when all predators are 220 

being modeled.   221 

 Ecostate (mimicking Ecosim) then defines a differential equation for biomass dynamics over 222 

time 𝛽𝑠(𝑡) given these same parameters: 223 

𝑑

𝑑𝑡
𝛽𝑠(𝑡) =

(

  
 
𝑔𝑠(𝑡)⏟  
Growth
rate

− 𝑚𝑠(𝑡)⏟  
Natural 
mortality
rate

− 𝑓𝑠(𝑡)⏟
Fishing
mortality
rate

+ 𝜖𝑠(𝑡)⏟
Process error 
in biomass rate

)

  
 
𝛽𝑠,𝑡 

𝑑

𝑑𝑡
𝜂𝑠(𝑡) =  𝑓𝑠(𝑡)𝛽𝑠(𝑡) 

(7) 

 

 



 

 

where 𝑔𝑠(𝑡) is a population growth rate, 𝑚𝑠(𝑡) is population mortality rate, 𝑓𝑠(𝑡) a fishing 224 

mortality rate, 𝜖𝑠(𝑡) is an optional process error in biomass rates, and 𝜂𝑠(𝑡) is an accumulator 225 

tracking fishery catches.  Population growth 𝐠(𝑡) and mortality 𝐦(𝑡) are calculated based on a 226 

matrix of consumption rates, and see Table 1 for definitions.  Biomass and catches across all 227 

groups are then integrated at an annual time-step by default (𝛃(𝑡 + 1), 𝛈(𝑡 + 1)) =228 

∫
𝑑

𝑑𝑡
(𝛃(𝑡), 𝛈(𝑡))

𝑡+1

𝑡
 numerically, e.g., using an Adams-Bashforth ordinary differential equation 229 

algorithm with user-specified accuracy (with other ODE solvers also available to users).  The 230 

model can be fitted to a combination of biomass indices and fishery catch time-series (Thorson et 231 

al., 2024).  232 

Combining age-structured and biomass dynamics 233 

Here, we extend Ecostate to incorporate age-structured dynamics for selected heterotrophs.  This 234 

extension starts using the “multistanzas” functionality from Ecosim (Walters et al., 2000), but 235 

incorporates new options to: 236 

1. fit age-composition data, while weighting those data using a multinomial distribution with a 237 

known “input-sample size”, or further down-weighting the input sample size using a 238 

Dirichlet-multinomial distribution as a diagnostic of model mis-specification (Thorson et al., 239 

2023); 240 

2. fit empirical weight-at-age data; 241 

3. estimate logistic selectivity parameters via their fit to age-composition data; 242 

4. estimate parameters representing equilibrium weight-at-age, i.e., von Bertalanffy growth rate, 243 

asymptotic weight, the allometric scaling of consumption to size, and the proportion of 244 

animals that are mature for each age (“maturation ogive”); 245 



 

 

5. estimate stock-recruit parameters representing equilibrium recruits and the steepness of the 246 

emergent stock-recruit relationship occurring at equilibrium conditions for other taxa;  247 

6. estimate annual variation in cohort strength beyond what’s expected from the stock-recruit 248 

relationship as a random effect (“recruitment deviations”), while potentially estimating the 249 

variance of recruitment-deviations using maximum marginal or penalized likelihood; 250 

7. estimate annual variation in consumption for a given predator, beyond what’s expected from 251 

the deterministic skeleton (Eq. T1.1). 252 

These options have not previously been implemented in any model using Ecosim or extensions 253 

of the underlying equations.  Collectively, these extensions allow us to use Ecostate to fit 254 

parameters for a full age-structured stock assessment model, including decadal projections, stock 255 

status, Bayesian priors, process errors, and model diagnostics.  However, the age-structured 256 

model also incorporates both top-down (i.e., changes in natural mortality resulting from predator 257 

consumption) and bottom-up (i.e., changes in individual size resulting from consumption of 258 

prey) controls.   259 

 Following Ecosim, each age-structured population 𝑔2 is represented using one or more 260 

stanzas 𝑠2[𝑔2], and each stanza 𝑠2 is itself associated with a functional group 𝑠[𝑠2], such that 261 

the biomass for stanza-group of an age-structured population is  𝛽𝑠[𝑠2[𝑔2]].  To simplify 262 

presentation in the following, we discuss how age-structured dynamics are incorporated for a 263 

single population and suppress index 𝑔2 from notation throughout.  However, the model (and 264 

associated code) is fully generic, and can incorporate age-structured dynamics for as many 265 

heterotrophs as specified by the user.   266 

 Stated briefly, Ecostate defines unfished equilibrium biomass 
𝑑

𝑑𝑡
�̅�𝑠 = 0 for heterotroph 𝑠 as 267 

occurring when the population growth �̅�𝑠 (which arises from consumption) balances population 268 



 

 

mortality �̅�𝑠 (which arises from predation); mass balance for primary producers and detritus 269 

groups is detailed elsewhere (Thorson et al., 2024).  To convert these biomass-dynamic rates to 270 

age-structured dynamics, Ecostate converts biomass mortality rate 𝑚𝑠(𝑡) + 𝑓𝑠(𝑡) in Eq. 7 to an 271 

individual mortality rate (which has no direct effect on somatic growth rates) and converts 272 

biomass growth �̅�𝑠(𝑡) to an individual growth rate (which has no direct effect on individual 273 

mortality rates).  Both conversions are specified to satisfy two conditions at unfished 274 

equilibrium: 275 

1. the conversion of equilibrium population mortality �̅�𝑠(𝑡)  to individual mortality rate results 276 

in a stable age-distribution.  Given weight-at-age and the stable age-distribution, we can 277 

calculate biomass-per-recruit for a given stanza 𝑠2, and equilibrium recruitment is calculated 278 

as biomass 𝛽𝑠[𝑠2] divided by biomass-per-recruit for that stanza 𝑠2.  We then use equilibrium 279 

recruitment, stable age-distribution, and weight-at-age to calculate biomass for other stanzas.  280 

Equivalently, this equilibrium occurs when production per biomass 𝑝𝑠 for each stanza is 281 

equal to the mortality rate over the corresponding age-range and;  282 

2. the conversion of equilibrium population growth rate �̅�𝑠(𝑡) to individual growth results in a 283 

generalized von Bertalanffy growth function with specified growth rate 𝑘, asymptotic weight 284 

𝑊∞, and allometric scaling 𝑑.  This condition is met by solving for equilibrium consumption 285 

and consumptive demand, and then applying Eq. 4-5. 286 

Further details are notation are provided in Supplementary Material 2.   287 

Fitting to data 288 

In particular, we calculate the likelihood of age-composition data 𝐍 containing vector 𝐧𝑡 of 289 

samples 𝑛𝑎,𝑡 for each integer age 𝑎 in year 𝑡.  However, age-composition sampling typically 290 



 

 

arises from a monitoring program with some selectivity-at-age 𝑠𝑎, so we estimate two parameters 291 

𝜃1 and 𝜃2 that represent the logistic survey selectivity, 𝑠𝑎 = (1 + 𝑒
 𝜃1−

𝑎

𝜃2)
−1

: 292 

𝐧𝑡~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (
𝐬𝛎(𝑡)

∑ 𝑠𝑎𝜈𝑎(𝑡)
𝑎max
𝑎=1

) 293 

where ∑ 𝑛𝑎(𝑡)
𝑎max
𝑎=1  is the input sample size which determines the weighting of these data relative 294 

to other information.  Alternatively, we can instead specify a Dirichlet-multinomial distribution: 295 

𝐧𝑡~𝐷𝑀(
𝐬𝛎(𝑡)

∑ 𝑠𝑎𝜈𝑎(𝑡)
𝑎max
𝑎=1

, 𝜃3) 296 

Where 𝜃3 is (approximately) the ratio of input and effective sample size (Thorson et al., 2017).   297 

 Similarly, we calculate the likelihood of empirical weight-at-age data 𝐖 containing the 298 

average body weight 𝑤𝑎,𝑡 for each integer age and year.  We specify a lognormal distribution: 299 

log(𝑤𝑎,𝑡)~𝑁𝑜𝑟𝑚𝑎𝑙(log(𝜔𝑎(𝑡)) , 𝜎𝑤
2) 300 

where 𝜎𝑤
2  is an estimated parameter representing the residual variance in weight-at-age data (and 301 

future research could incorporate sampling variability as an additional variance when fitting 302 

weight-at-age data).  Model exploration suggests that age-composition data are informative about 303 

production-per-biomass 𝑝𝑠2 (which is proportional to natural mortality rate), and that weight-at-304 

age data are informative about the von Bertalanffy growth parameters 𝑘𝑔2 and 𝑑𝑔2.   305 

 Finally, we also include options to estimate unexplained variation in age-structured 306 

dynamics: 307 

1. Recruitment deviations:  We estimate an annual “recruitment deviation” 𝜙(𝑡) which is 308 

assigned a normal distribution: 309 

𝜙(𝑡)~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎ϕ
2) 310 



 

 

where 𝜎ϕ
2 is the variance of recruitment deviations, and can either be estimated using 311 

maximum marginal likelihood or fixed a priori when using penalized likelihood estimates. 312 

Recruitment deviations can then be informed by unexplained variation in age-composition 313 

data. Recruitment deviations will arise because cohort strength is strongly influenced by 314 

small differences in daily rates of larval survival resulting from ocean temperatures and 315 

advective fields (Cushing, 1990), which may be largely independent of trophic interactions 316 

represented within Ecostate.   317 

2. Consumption deviations:  Similarly, variation in oceanographic conditions (e.g., temperature) 318 

may drive variation in predator-prey overlap and/or predator metabolic demand.  We 319 

therefore incorporate annual variation in predator consumption, where we replace the 320 

deterministic equation for consumption (Eq. T1.1) from Ecostate with a “semi-parametric” 321 

equation: 322 

𝑐𝑖,𝑗(𝑡) = 𝑐�̅�,𝑗⏟
equilibrium

consumption rate

×

𝑥𝑖,𝑗
𝛽𝑗(𝑡)

�̅�𝑗

𝑥𝑖,𝑗 − 1 +
𝛽𝑗(𝑡)

�̅�𝑗⏟          
predator functional

response

×
𝛽𝑖(𝑡)

�̅�𝑖⏟
prey functional 

response

× 𝑒𝜈𝑗(𝑡) 323 

where we again assign a normal distribution to consumption deviations: 324 

𝜈𝑗(𝑡)~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎ν,𝑗
2 ) 325 

Where this variation can again be either estimated or fixed a priori depending upon 326 

computational constraints.  An increase in consumption then decreases survival for prey 327 

species and also increases weight gain for the predator.  Annual variation in consumption can 328 

therefore be informed either via unexplained variation in prey biomass, and/or predator 329 

weight-at-age.   330 



 

 

3. Survival deviations:  We note that process errors can be estimated for the biomass of any 331 

functional group, and this includes stanza of age-structured populations.  Ecostate is 332 

parameterized such that process errors result in unexplained variation in survival rates when 333 

applied to age-structured groups.  These process errors can then represent either excess 334 

mortality or immigration/emigration, similar to their interpretation in state-space age-335 

structured models (Stock et al., 2021).     336 

Parameter estimation 337 

Building upon the mass-balance model Ecostate, we continue to estimate parameters using 338 

RTMB (Kristensen, 2024).  This then provides a user-friendly interface to automatic 339 

differentiation (AD) and the Laplace approximation provided by TMB (Kristensen, 2014).  340 

However, age-structured calculations in Ecostate involve large matrices of abundance-at-age and 341 

weight-at-age for fractional ages 𝑎∗ and years 𝑡∗. Given the size of the AD tape, it is not feasible 342 

to repeatedly calculate the Hessian matrix as required when using the Laplace approximation to 343 

apply maximum marginal likelihood.  We therefore optimize the penalized likelihood while 344 

fixing the variance of random effects at values that are specified a priori.  Future research could 345 

estimate these parameters via a hierarchical Bayesian model, i.e., using tmbstan (Monnahan & 346 

Kristensen, 2018) to sample the joint likelihood, but we do not explore the topic further here.   347 

Case study demonstration 348 

To demonstrate, we fit the model to age-structured survey data for two commercially important 349 

species (walleye pollock and sablefish) as well as their primary energetic pathways (i.e., 350 

zooplankton, benthic invertebrate fauna, primary producers, and benthic detritus) in the Gulf of 351 

Alaska.  These data include: 352 



 

 

1. Survey data for pollock from a stratified random bottom-trawl survey conducted biennially 353 

from 1990 to 2023 by the AFSC (Siple et al., 2024).  Design-based estimators are used to 354 

generate a biomass index, age-composition (in numbers, excluding 2023), and average 355 

weight-at-age.  Survey data east of 140W are excluded as there is evidence that is a separate 356 

stock.  Total catches from 1970-2023 were also used, and details about how they were 357 

obtained can be found in Monnahan et al. (2023).  358 

2. Survey data from a cooperative longline survey for sablefish, which follows a systematic 359 

survey design, including age-composition (in numbers), empirical weight-at-age, and a 360 

biomass index (in mass). We reprocessed the data to only include sets in the Gulf of Alaska, 361 

i.e. excluding stations occurring in the Bering Sea or Aleutian Islands. Given the unknown 362 

area of attraction for longline gear, the biomass index is calculated using a depth-stratified, 363 

area-weighted estimator, and the biomass time-series is treated as a relative index (i.e., 364 

estimating a catchability coefficient).  365 

3. Total annual fishery harvest for the two directed fisheries, extracted from the most recent 366 

stock assessments for pollock (Monnahan et al., 2023) and sablefish (Goethel et al., 2024);   367 

4. An Rpath model for the Western Gulf of Alaska, where we use annual biomass production 368 

per biomass 𝑝𝑠, annual consumption per biomass 𝑤𝑠 (which includes digested and 369 

unassimilated consumption in biomass), and the diet proportions matrix 𝑑𝑖,𝑗, as well as 370 

equilibrium biomass �̅�𝑠 for those species where Ecostate is unable to estimate this based on 371 

available information.  372 

5. A biomass index for large copepods from the EcoFOCI survey; Large copepod (> 2mm; 373 

example species: Calanus spp. and Neocalanus spp.) abundance (numbers per cubic meter) 374 

was estimated from 505 μm mesh, 60 cm diameter bongo nets. Total large copepod 375 



 

 

abundance is summed for each station sampled within a two core areas, one in spring and one 376 

in summer, and the mean abundance is calculated from all stations within the core areas 377 

(Kimmel et al., 2023). 378 

6. A biomass index for euphausiids from the Seward Line (Hopcroft, 2023).  379 

We note that the sablefish stock assessment includes data from the Gulf of Alaska, Bering Sea, 380 

and Aleutian Islands, and therefore does not exactly match our spatial scale (which is restricted 381 

to the Gulf of Alaska).  Similarly, the pollock assessment uses a somewhat restricted spatial scale 382 

that excludes southeast Alaska.  We instead use the spatial scale of the Rpath model for the 383 

Western Gulf of Alaska, and expect that the difference in spatial scale will results in some 384 

differences in model results relative to estimates from each stock assessment.   385 

 For each age-structured population, we estimate unfished biomass for juveniles and adults 386 

(four scale parameters; Table 2).  We also estimate the catchability coefficient and two logistic 387 

selectivity parameters for the primary survey of each species.  To match the pollock stock 388 

assessment, we specify a lognormal likelihood penalty on the bottom-trawl survey catchability 389 

for pollock, with log-mean of log(0.85) and log-standard deviation of 0.1.  To match the two 390 

stock assessments, we also fix steepness ℎ = 0.999 (i.e., approaching a constant stock-recruit 391 

relationship) and estimate recruitment deviations 𝜙𝑠(𝑡).  For both sablefish and pollock, we 392 

assumed that input-sample size for age-composition data was 60 in each year, and used the 393 

Dirichlet-multinomial likelihood to weight these data.  However, the effective sample size 394 

approached the input value (60) for both species, such that we then reverted to nominal 395 

weighting using the multinomial likelihood.  We also fix age-at-maturity 𝑎mat = 6 for sablefish 396 

and 𝑎mat = 4 with logistic slope 𝑤matslope = 1 to (approximately) match the sablefish and 397 

pollock assessments, and fix juvenile natural mortality at values from the Rpath model (𝑀 =398 



 

 

1.65 and 1.96 for sablefish and pollock, respectively).  We estimate adult natural mortality rate 399 

for each age-structured species, while specifying a likelihood penalty centered on the value 400 

assumed in the stock assessment (sablefish: 0.1; pollock: 0.30) and with a log-standard deviation 401 

of 0.1.  We specify specialized von Bertalanffy growth rate 𝑘 = 0.14 for sablefish and 𝑘 = 0.2 402 

for pollock, and also allometric consumption 𝑑 =
1

2
 for sablefish and 𝑑 =

2

3
 for pollock.  These 403 

are fixed here (because we are withholding weight-at-age data for model evaluation), but model 404 

exploration suggests that they are estimable when fitting to weight-at-age data.   405 

 To represent species interactions, we estimate a vulnerability parameter 𝑥𝑖𝑗 = 𝑥𝑗  representing 406 

the constant vulnerability all prey 𝑖 for each of sablefish or pollock as predators 𝑗 (Table 2), and 407 

specify a lognormal penalty on vulnerability 𝑥𝑗 with log-mean log(2) and log-standard deviation 408 

of 1.0 (where 2 is the default value used in most Ecosim implementations).  In addition, we 409 

estimate the catchability coefficient for large copepods and euphausiids (such that estimated 410 

biomass will tend to match the assumed equilibrium biomass fixed from Rpath), and also 411 

estimate process-errors 𝜖𝑠(𝑡) for biomass dynamics of copepods and euphausiids (to allow the 412 

model to match observed cycles and trends for zooplankton forage).  Given that we are using 413 

penalized likelihood (to avoid the computational cost of computing the Laplace approximation), 414 

we fix the variance of recruitment deviations (i.e., 𝜎ϕ
2 = 12 for both case study species) and also 415 

fix the variance of process errors for copepods and euphausiids (i.e., 𝜎𝜖
2 = 12 for both).  416 

However, we confirm that the average across years of the standard-error squared and the sample 417 

variance for deviations approximately matches the input variance (i.e., the tuning metric 418 

discussed in Methot and Taylor (2011)).    419 

 To evaluate model performance, we explore: 420 



 

 

1. Predictive performance for weight-at-age:  We do not fit weight-at-age data directly.  421 

Instead, we use the model to predict annual weight-at-age and then compare these predictions 422 

with out-of-sample weight-at-age measurements.  We explore this comparison visually, but 423 

also calculate the Pearson correlation between log-prediction and log-measurement for each 424 

age separately and then average this correlation across ages;   425 

2. Retrospective skill:  We conduct a retrospective experiment where we exclude all biomass 426 

index and age-composition data after year 𝑇.  However, we retain data for fishery catches in 427 

all years, such that forecasts condition upon fishery harvest that matches the real-world 428 

observations in forecast years.  We then forecast dynamics for year 𝑇 + 1 through 2040.  We 429 

fit 10 “retrospective peals” where the year of last data 𝑇 = {2022,2021,… ,2013}, and 430 

record the forecast (and standard error) for biomass and recruitment-deviations 𝜖𝑡 for pollock 431 

and sablefish.  We compare these forecasts and standard errors with the estimates arising 432 

when fitting to all data (𝑇 = 2023);  433 

3. Value of zooplankton biomass information:  We compare the base model with an alternative 434 

scenario where we exclude biomass indices for zooplankton forage (euphausiids and 435 

copepods).  This also requires eliminating the catchability coefficient for these indices as 436 

well as process-error deviations for these taxa.  We then visually examine how this changes 437 

estimates of biomass trends for all taxa, as well as its impact on the out-of-sample predictions 438 

for weight-at-age for sablefish and pollock.   439 

We also evaluate predictive performance (#1 above) by comparing predicted weight-at-age 440 

against a smoothed version of measured weight-at-age, estimated using a state-space model that 441 

includes age, year, and cohort effects (Cheng et al., 2024).  This state-space model is intended to 442 



 

 

filter out measurement error in the observed weight-at-age (resulting from low but known sample 443 

sizes) prior to the comparison with predictions from Ecostate.   444 

 Collectively, the model estimates population scale for the two age-structured populations 445 

while tracking cohorts, and also predicts time-varying natural mortality (from cannibalism and 446 

predation) and growth (from consumption and weight-specific metabolism).  We can therefore 447 

view the model from two perspectives: as a stock-assessment model with two age-structured 448 

populations, and as a mass-balance model with species interactions.  We therefore organize the 449 

Results to highlight these two perspectives.   450 

Results 451 

Stock assessment model with age-structured dynamics 452 

Inspecting model output from a stock-assessment perspective, we see clear evidence in the age-453 

composition for sablefish (Fig. 1) of a strong cohort born in 1997 (showing up at age-4 in 2001), 454 

2005 (showing up at age-5 in 2009), and again in 2014 and 2016 (showing up at age-3 in 2017 455 

and 2019).  As expected, these cohorts result in increasing biomass as they grow through the 456 

population, i.e., from 2001-2003, 2008-2010, and again from 2017-2023 (Fig. 2).  These latter 457 

cohorts result in adult sablefish biomass in 2023 approaching a high last seen at the beginning of 458 

biomass-index data (1990).  However, biomass relative to equilibrium unfished is still expected 459 

to increase over subsequent years towards the unfished equilibrium (Fig. S2) under the scenario 460 

projected here (i.e. no catches after 2023).   461 

Similarly, inspecting survey age-composition for walleye pollock (Fig. 3), we see strong 462 

cohorts in 1988 (showing up at age-2 in 1990 and age-5 in 1993), 2000 (ages 1/3/5/7 in 2001 463 

onward), 2004 (ages 1/3/5 starting in 2005), and 2012 (showing up at ages 1/3/5).  Finally, there 464 

is preliminary information about important cohorts in 2016 and 2020, which show up at ages-1 465 



 

 

and later despite the continuing size of the 2012 cohort.  The 2000 cohort is associated with rapid 466 

increases in adult biomass from 2001-2003, and the 2004 cohort causes an increase from 2006-467 

2009 (Fig. 3).  Finally, the strong recent cohorts have driven an increase from 300 to over 1000 468 

kilotons from 2020-2023.  Under a scenario of no future fishing, pollock biomass is then 469 

expected to decline slightly towards its unfished equilibrium (Fig. S2).   470 

Mass-balance model with species interactions 471 

Inspecting model output from a mass-balance model perspective (Fig. 4), we see that adult 472 

sablefish has a trophic level (TL) of 4.1 due to consuming adult pollock (TL: 3.6), while 473 

juveniles of both species have similar trophic position (TL: 3.6; see Table 2).  As expected given 474 

this higher TL, adult sablefish has a lower natural mortality rate (0.10) than adult pollock (0.41) 475 

and also has a lower total biomass (adult sablefish: 361 kilotons; adult pollock: 1,609 kilotons).   476 

 The model estimates process errors in biomass dynamics for euphausiids and large copepods, 477 

which result in estimated biomass that closely matches available biomass-index data (Fig. 2).  It 478 

then predicts interannual variation in zooplankton consumption and resulting weight-at-age for 479 

pollock and sablefish (Fig. 5 top row).  Euphausiids are predicted to have cyclic variation in 480 

biomass with highs in 2002, 2009, and 2018, with both highs and lows generally decreasing over 481 

that period.  By contrast, large copepods are predicted to decline consistently from 2005-2015 482 

before subsequently stabilizing (Fig. 2).   483 

Skill assessment #1:  Out-of-sample weight-at-age predictions 484 

 Adult pollock weight-at-age is predicted to increase from 1993-2002 and then decline from 485 

2002-2015 (Fig. 5 top-right panel).  This increase and subsequent decrease in adult pollock 486 

weight-at-age is attributed to the increase and subsequent decline in euphausiid abundance, 487 

associated pollock consumption, and resulting weight-at-age (Fig. S3).  Following 2016, adult 488 



 

 

pollock are then predicted to have increasing weight-at-age, associated with an increase in adult 489 

pollock cannibalism resulting from the strong 2011 cohort (Fig. S3 bottom-right panel).  These 490 

predicted patterns in weight-at-age are moderately (0.31) correlated with held-out survey 491 

measurements of weight-at-age, which also show a progressive increase from 1993-2002 but also 492 

a later peak in 2008-2012, and no evidence of an increase in 2018 onward (Fig. 5 bottom-right 493 

panel).   494 

 Similarly, the model predicts a peak in adult sablefish weight-at-age in 2014 (when adult 495 

sablefish is approaching its lowest levels), and a subsequent drop below equilibrium weight-at-496 

age (Fig. 5 top-left panel).  These predictions have a weakly negative (-0.13) correlation with 497 

held-out measurements of weight-at-age, which show declines for ages 2-10 and increases for the 498 

oldest ages (Fig. 5 bottom-left panel).   The correlation between predictions and out-of-sample 499 

data is largely unchanged for pollock when comparing against smoothed measurements, but is 500 

somewhat more negative for sablefish (Fig. S4) 501 

Skill assessment #2:  Retrospective skill testing 502 

Finally, we conduct a retrospective experiment removing data, forecasting dynamics under future 503 

catches, and comparing forecasts with subsequent predictions when fitting all data (Fig. 6).  The 504 

model has information to precisely estimate recruitment deviations 𝜙(𝑡) for sablefish three to 505 

four years after a given year-class (e.g., the 2019 year-class has stabilized using data through 506 

2022 or 2023), whereas for pollock it estimates them two to three years after (e.g., the 2019 year-507 

class has stabilized by 2021) and there is preliminary evidence in 2023 data of a strong year-class 508 

in 2021.   509 

These retrospective estimates of year-class strength then propagate forward during 510 

biomass forecasts.  Forecasted biomass is generally within the 95% confidence interval even 511 



 

 

when removing 10-years of data, although 10-year forecasts of adult pollock biomass range from 512 

essentially zero to twice the unfished equilibrium value (Fig. 6 1st and 2nd rows).  Sablefish 513 

biomass has increased faster from 2020 onward than what was expected using data available in 514 

2020 (which did not have information about higher-than-average recruitment after 2016, Fig. 6 515 

3rd row).  Similarly, adult pollock biomass forecasts have very broad confidence intervals when 516 

forecasting 6+ years forward, and recent biomass in 2020-2023 is lower than expected in 2013-517 

2015 (Fig. 6 2nd row) due to lower-than-average recruitment from 2013-2020 (Fig. 6 4th row).   518 

Skill assessment #3:  Value of zooplankton indices 519 

When we remove indices for copepods and euphausiids, predicted euphausiid biomass then has a 520 

strong negative correlated with adult pollock biomass and copepods have a strong positive 521 

correlation (Fig. S5), which contrasts strongly with the model predictions when fitting indices for 522 

these zooplankton species (Fig. 2).  Predicted patterns in weight-at-age for sablefish and pollock 523 

are then different due to changes in predicted consumption of large copepods and euphausiids, 524 

and the correlations between predicted and observed weight-at-age declines for both fishes (Fig. 525 

S6).   526 

Discussion 527 

In this paper, we summarized a generic method to incorporate bottom-up interactions in age-528 

structured population models, which calculates individual growth rates from population-level 529 

consumption relative to metabolic demand.  This method uses a minimum of additional 530 

information, i.e., weight-at-age and consumption in a reference time and variable consumption 531 

used to calculate growth increments during other times.  It could therefore be repurposed in other 532 

models as long as prey forage and/or consumption is modeled or specified as covariate.  We then 533 

integrate the method into a recent state-space mass balance model Ecostate, and used modern 534 



 

 

statistical computing (e.g., automatic differentiation) to efficiently estimate both demographic 535 

rates (e.g., equilibrium recruitment), measurement parameters (e.g., catchability coefficients and 536 

survey selectivity-at-age), and process errors (e.g., recruitment deviations) using penalized 537 

likelihood estimation.  This represents the first (to our knowledge) effort to combine state-space 538 

age-structured modelling with multispecies modelling that includes both top-down and bottom-539 

up interactions, and the resulting model can be viewed as both a stock-assessment and a mass-540 

balance ecosystem analysis.   541 

Many hypothesized mechanisms linking climate to fish productivity are mediated by 542 

forage availability, e.g., where increased temperature may impact productivity either positively 543 

(increase individual growth) or negatively (drive starvation mortality) depending on whether fish 544 

can compensate via increased consumption.  In our case study, we showed that Ecostate can fit 545 

abundance-index and age-composition data for multiple age-structured species, and that fitting to 546 

forage biomass indices improves out-of-sample predictions of predator weight-at-age.  We 547 

therefore recommend future research that attributes historical variation in weight-at-age to 548 

climate-linked variation in forage species.  For species where these links can be identified, we 549 

then envision seasonal-to-decadal forecasts and multidecadal projections of predator weight-at-550 

age as a potential next step.  We therefore envision that future research is needed to understand 551 

how additional mechanisms (e.g., prey switching and temperature-dependent metabolism) drive 552 

weight-at-age in these species.  This would extend recent research that attempts to link weight-553 

at-age directly to ocean physics without considering forage availability or consumption (Oke et 554 

al., 2022).     555 

  Our analysis links individual consumption to population-scale consumption by adapting a 556 

differential equation for growth based on anabolism and catabolism (Eq. 1).  However, Von 557 



 

 

Bertalanffy (1960) additionally hypothesized that (1) both anabolism rate 𝐻 and catabolism rate 558 

𝐾 would increase with temperature, and (2) anabolism would increase with temperature faster 559 

than catabolism.  This second assumption then predicts that increased temperature leads to faster 560 

juvenile growth and slower adult growth (Morita et al., 2010), which has sometimes been called 561 

the “temperature-size rule” (Oke et al., 2022).  Although debates continue about whether this 562 

pattern is widely observed (Atkinson, 1994), von Bertalanffy’s first hypothesis is widely 563 

supported (Kingsolver & Huey, 2008).  We therefore also recommend future research to 564 

incorporate a temperature-dependent link in both anabolism and catabolism parameters (𝐻 and 𝐾 565 

in Eq. 1).  This would then allow future studies to investigate the impact of ocean temperature on 566 

fish productivity via both forage availability (population-level consumption) as well as 567 

bioenergetics (individual-level metabolism and foraging rates. 568 

  Despite these ecological and management reasons to study bottom-up drivers for weight-569 

at-age, we also note several drawbacks in the implementation involving Ecostate.  Most 570 

significantly, fishery mortality must be assigned a priori to a given stanza, and therefore fishery 571 

selectivity cannot be estimated using an age- or length-based function as is common in age-572 

structured models.  Future research could relax this assumption, although it would require some 573 

restructuring in how age-structured fishing mortality (Eq. 6) is represented when integrating 574 

biomass-dynamics for all functional groups (Eq. 2).  We also have not represented demographic 575 

differences in sexually dimorphic species (e.g., sablefish).  Future research could approximate 576 

this by modelling males and females as separate age-structured populations, although this would 577 

require pre-processing data to separately model the two.  We also have not added detailed 578 

indexing for multiple survey and fishery fleets to the software package Ecostate, although this 579 

does not pose any fundamental difficulties beyond a more-complex user interface.  Finally, we 580 



 

 

have not incorporated any functionality to fit length-composition data.  This would presumably 581 

require further research to identify how changes in consumption affect skeletal growth (length-582 

at-age) relative to morphometric condition (weight-at-length), and how best to parameterize this 583 

tradeoff (e.g., Correa et al., 2023).   584 

  We also encourage further research to fit directly to consumption data resulting from 585 

stomach-content and diet samples.  Stomach-content data can be standardized to estimate annual 586 

variation in both consumption and diet.  We envision that these data could by fitted either as an 587 

index of total consumption and compositional data regarding diet proportions, or alternatively as 588 

a set of indices of prey-specific consumption.  These two alternative options are somewhat 589 

analogous to the split between fitting age-based survey data as an abundance index and age-590 

compositions, or as a matrix of abundance-at-age, and there are benefits and drawbacks to both 591 

approaches (Thorson et al., 2023).  Regardless of which parameterization is used, we envision 592 

that stomach-content data could be used to identify prey-switching, temperature-dependent 593 

changes in consumption, and other realistic complications that arise in trophic ecology.  We hope 594 

that (1) greater flexibility in representing predator consumption combined with (2) diet and 595 

consumption data from stomach contents will then allow future studies to better match observed 596 

variation in predator weight-at-age.   597 

Acknowledgements 598 

We are heavily indebted to the Rpath development team and Lucey et al. (2020), which 599 

previously described many of the Ecopath and Ecosim equations.  We also thank M. Haltuch, D. 600 

Goethel, and A. Whitehouse for previous suggestions and discussions, C. Monnahan for 601 

providing stock-assessment inputs for Alaska pollock, R. Hopcroft for previously providing the 602 



 

 

euphausiid biomass time-series, and A. Whitehouse and G. Adams for helpful comments on a 603 

previous draft.   604 

References 605 

Adams, G. D., Holsman, K. K., Barbeaux, S. J., Dorn, M. W., Ianelli, J. N., Spies, I., Stewart, I. 606 

J., & Punt, A. E. (2022). An ensemble approach to understand predation mortality for 607 

groundfish in the Gulf of Alaska. Fisheries Research, 251, 106303. 608 

https://doi.org/10.1016/j.fishres.2022.106303 609 

Atkinson, D. (1994). Temperature and Organism Size—A Biological Law for Ectotherms? In M. 610 

Begon & A. H. Fitter (Eds.), Advances in Ecological Research (Vol. 25, pp. 1–58). 611 

Academic Press. https://doi.org/10.1016/S0065-2504(08)60212-3 612 

Atkinson, Rossberg, A. G., Gaedke, U., Sprules, G., Heneghan, R. F., Batziakas, S., Grigoratou, 613 

M., Fileman, E., Schmidt, K., & Frangoulis, C. (2024). Steeper size spectra with 614 

decreasing phytoplankton biomass indicate strong trophic amplification and future fish 615 

declines. Nature Communications, 15(1), 381. https://doi.org/10.1038/s41467-023-616 

44406-5 617 

Begley, J., & Howell, D. (2004). An overview of Gadget, the globally applicable area-618 

disaggregated general ecosystem toolbox. https://imr.brage.unit.no/imr-619 

xmlui/bitstream/handle/11250/100625/FF1304.pdf?sequence=1 620 

Bentley, J. W., Chagaris, D., Coll, M., Heymans, J. J., Serpetti, N., Walters, C. J., & Christensen, 621 

V. (2024). Calibrating ecosystem models to support ecosystem-based management of 622 

marine systems. ICES Journal of Marine Science, 81(2), 260–275. 623 

https://doi.org/10.1093/icesjms/fsad213 624 



 

 

Bertalanffy, L. V. (1969). General System Theory: Foundations, Development, Applications 625 

(Revised edition). George Braziller Inc. 626 

Boyce, D. G., & Worm, B. (2015). Patterns and ecological implications of historical marine 627 

phytoplankton change. Marine Ecology Progress Series, 534, 251–272. 628 

https://doi.org/10.3354/meps11411 629 

Chagaris, D., Drew, K., Schueller, A., Cieri, M., Brito, J., & Buchheister, A. (2020). Ecological 630 

Reference Points for Atlantic Menhaden Established Using an Ecosystem Model of 631 

Intermediate Complexity. Frontiers in Marine Science, 7. 632 

https://doi.org/10.3389/fmars.2020.606417 633 

Chassot, E., Bonhommeau, S., Dulvy, N. K., Mélin, F., Watson, R., Gascuel, D., & Le Pape, O. 634 

(2010). Global marine primary production constrains fisheries catches. Ecology Letters, 635 

13(4), 495–505. https://doi.org/10.1111/j.1461-0248.2010.01443.x 636 

Cheng, M., Goethel, D. R., Hulson, P.-J. F., Echave, K. B., & Cunningham, C. J. (2024). ‘Slim 637 

pickings?’: Extreme large recruitment events may induce density-dependent reductions in 638 

growth for Alaska sablefish (Anoplopoma fimbria) with implications for stock 639 

assessment. Canadian Journal of Fisheries and Aquatic Sciences, cjfas-2024-0228. 640 

https://doi.org/10.1139/cjfas-2024-0228 641 

Christensen, V., & Walters, C. J. (2004). Ecopath with Ecosim: Methods, capabilities and 642 

limitations. Ecological Modelling, 172(2), 109–139. 643 

https://doi.org/10.1016/j.ecolmodel.2003.09.003 644 

Correa, G. M., Monnahan, C. C., Sullivan, J. Y., Thorson, J. T., & Punt, A. E. (2023). Modelling 645 

time-varying growth in state-space stock assessments. ICES Journal of Marine Science, 646 

80(7), 2036–2049. https://doi.org/10.1093/icesjms/fsad133 647 



 

 

Cushing, D. H. (1990). Plankton production and year-class strength in fish populations: An 648 

update of the match/mismatch hypothesis. Advances in Marine Biology, 26, 249–293. 649 

Edwards, A. M., & Auger‐Méthé, M. (2019). Some guidance on using mathematical notation in 650 

ecology. Methods in Ecology and Evolution, 10(1), 92–99. https://doi.org/10.1111/2041-651 

210X.13105 652 

Essington, T. E., Kitchell, J. F., & Walters, C. J. (2001). The von Bertalanffy growth function, 653 

bioenergetics, and the consumption rates of fish. Canadian Journal of Fisheries and 654 

Aquatic Sciences, 58(11), 2129–2138. 655 

Fitzpatrick, K. B., Weidel, B. C., Connerton, M. J., Lantry, J. R., Holden, J. P., Yuille, M. J., 656 

Lantry, B., LaPan, S. R., Rudstam, L. G., Sullivan, P. J., Brenden, T. O., & Sethi, S. A. 657 

(2022). Balancing prey availability and predator consumption: A multispecies stock 658 

assessment for Lake Ontario. Canadian Journal of Fisheries and Aquatic Sciences, 79(9), 659 

1529–1545. https://doi.org/10.1139/cjfas-2021-0126 660 

Goethel, D. R., Hanselman, D. H., Rodgveller, C. J., Fenske, K. H., Shotwell, S. K., Echave, K. 661 

B., Malecha, P. W., Siwicke, K. A., & Lunsford, C. R. (2024). Assessment of the 662 

sablefish stock in Alaska. https://www.researchgate.net/profile/Matthew-Cheng-663 

15/publication/370978839_2022_Alaska_Sablefish_Stock_Assessment_and_Fishery_Ev664 

aluation_SAFE_Report/links/646d2cb937d6625c002c5dae/2022-Alaska-Sablefish-Stock-665 

Assessment-and-Fishery-Evaluation-SAFE-Report.pdf 666 

Goodman, M. C., Carroll, G., Brodie, S., Grüss, A., Thorson, J. T., Kotwicki, S., Holsman, K., 667 

Selden, R. L., Hazen, E. L., & De Leo, G. A. (2022). Shifting fish distributions impact 668 

predation intensity in a sub-Arctic ecosystem. Ecography, 2022(9), e06084. 669 

https://doi.org/10.1111/ecog.06084 670 



 

 

Hopcroft, R. R. (2023). Spring and Fall Large Copepod and Euphausiid Biomass: Seward Line. 671 

In B. Ferriss (Ed.), Ecosystem Status Report 2023: Gulf of Alaska, Stock Assessment and 672 

Fishery Evaluation Report,. North Pacific Fishery Management Council. 673 

Jurado-Molina, J., Livingston, P. A., & Ianelli, J. N. (2005). Incorporating predation interactions 674 

in a statistical catch-at-age model for a predator-prey system in the eastern Bering Sea. 675 

Canadian Journal of Fisheries and Aquatic Sciences, 62(8), 1865–1873. 676 

Kimmel, D., Axler, K., Cormack, B., Crouser, D., Fennie, W., Keister, J., Lamb, J., Pinger, C., 677 

Rogers, L., & Suryan, R. (2023). Current and Historical Trends for Zooplankton in the 678 

Western Gulf of Alaska. In B. Ferris (Ed.), Ecosystem Status Report 2023: Gulf of 679 

Alaska, Stock Assessment and Fishery Evaluation Report. North Pacific Fishery 680 

Management Council. 681 

Kingsolver, J., & Huey, R. (2008). Size, temperature, and fitness: Three rules. Evolutionary 682 

Ecology Research, 10(2), 251–268. 683 

Kristensen, K. (2014). TMB: General random effect model builder tool inspired by ADMB. 684 

https://github.com/kaskr/adcomp 685 

Kristensen, K. (2024). RTMB: “R” Bindings for “TMB.” https://CRAN.R-686 

project.org/package=RTMB 687 

Lucey, S. M., Gaichas, S. K., & Aydin, K. Y. (2020). Conducting reproducible ecosystem 688 

modeling using the open source mass balance model Rpath. Ecological Modelling, 427, 689 

109057. https://doi.org/10.1016/j.ecolmodel.2020.109057 690 

Methot, R. D. (2009). Stock Assessment: Operational Models in Support of Fisheries 691 

Management. In R. J. Beamish & B. J. Rothschild (Eds.), The Future of Fisheries Science 692 

in North America (Vol. 31, pp. 137–165). Springer Netherlands. 693 



 

 

Methot, R. D., & Taylor, I. G. (2011). Adjusting for bias due to variability of estimated 694 

recruitments in fishery assessment models. Canadian Journal of Fisheries and Aquatic 695 

Sciences, 68(10), 1744–1760. 696 

Monnahan, C. C., Adams, Grant D., Ferriss, B. E., Shotwell, S. Kalei, McKelvey, D.R., & 697 

McGowan, David W. (2023). Assessment of the walleye pollock stock in the Gulf of 698 

Alaska (Stock Assessment and Fishery Evaluation Report for Groundfish Resources of 699 

the Gulf of Alaska). North Pacific Fishery Management Council. https://apps-700 

afsc.fisheries.noaa.gov/Plan_Team/2021/GOApollock.pdf 701 

Monnahan, C. C., & Kristensen, K. (2018). No-U-turn sampling for fast Bayesian inference in 702 

ADMB and TMB: Introducing the adnuts and tmbstan R packages. PLOS ONE, 13(5), 703 

e0197954. https://doi.org/10.1371/journal.pone.0197954 704 

Morita, K., Fukuwaka, M., Tanimata, N., & Yamamura, O. (2010). Size-dependent thermal 705 

preferences in a pelagic fish. Oikos, 119(8), 1265–1272. https://doi.org/10.1111/j.1600-706 

0706.2009.18125.x 707 

Neuenfeldt, S., Bartolino, V., Orio, A., Andersen, K. H., Andersen, N. G., Niiranen, S., 708 

Bergström, U., Ustups, D., Kulatska, N., & Casini, M. (2020). Feeding and growth of 709 

Atlantic cod (Gadus morhua L.) in the eastern Baltic Sea under environmental change. 710 

ICES Journal of Marine Science, 77(2), 624–632. https://doi.org/10.1093/icesjms/fsz224 711 

Oke, K. B., Cunningham, C. J., Westley, P. a. H., Baskett, M. L., Carlson, S. M., Clark, J., 712 

Hendry, A. P., Karatayev, V. A., Kendall, N. W., Kibele, J., Kindsvater, H. K., 713 

Kobayashi, K. M., Lewis, B., Munch, S., Reynolds, J. D., Vick, G. K., & Palkovacs, E. P. 714 

(2020). Recent declines in salmon body size impact ecosystems and fisheries. Nature 715 

Communications, 11(1), 4155. https://doi.org/10.1038/s41467-020-17726-z 716 



 

 

Oke, K. B., Mueter, F., & Litzow, M. A. (2022). Warming leads to opposite patterns in weight-717 

at-age for young versus old age classes of Bering Sea walleye pollock. Canadian Journal 718 

of Fisheries and Aquatic Sciences, 79(10), 1655–1666. https://doi.org/10.1139/cjfas-719 

2021-0315 720 

Polovina, J. J. (1984). Model of a coral reef ecosystem. Coral Reefs, 3(1), 1–11. 721 

https://doi.org/10.1007/BF00306135 722 

Scott, E., Serpetti, N., Steenbeek, J., & Heymans, J. J. (2016). A Stepwise Fitting Procedure for 723 

automated fitting of Ecopath with Ecosim models. SoftwareX, 5, 25–30. 724 

https://doi.org/10.1016/j.softx.2016.02.002 725 

Siple, M. C., von Szalay, P. G., Raring, N. W., Dowlin, A. N., & Riggle, B. C. (2024). Data 726 

Report: 2023 Gulf of Alaska bottom trawl survey. 727 

https://repository.library.noaa.gov/view/noaa/61491 728 

Stock, B. C., Xu, H., Miller, T. J., Thorson, J. T., & Nye, J. A. (2021). Implementing two-729 

dimensional autocorrelation in either survival or natural mortality improves a state-space 730 

assessment model for Southern New England-Mid Atlantic yellowtail flounder. Fisheries 731 

Research, 237, 105873. https://doi.org/10.1016/j.fishres.2021.105873 732 

Thorson, J. T., Arimitsu, M. L., Barnett, L. A. K., Cheng, W., Eisner, L. B., Haynie, A. C., 733 

Hermann, A. J., Holsman, K., Kimmel, D. G., Lomas, M. W., Richar, J., & Siddon, E. C. 734 

(2021). Forecasting community reassembly using climate-linked spatio-temporal 735 

ecosystem models. Ecography, 44(4), 612–625. https://doi.org/10.1111/ecog.05471 736 

Thorson, J. T., Johnson, K. F., Methot, R. D., & Taylor, I. G. (2017). Model-based estimates of 737 

effective sample size in stock assessment models using the Dirichlet-multinomial 738 



 

 

distribution. Fisheries Research, 192, 84–93. 739 

https://doi.org/10.1016/j.fishres.2016.06.005 740 

Thorson, J. T., Kristensen, K., Aydin, K. Y., Gaichas, S. K., Kimmel, D. G., McHuron, E. A., 741 

Nielsen, J. M., Townsend, H., & Whitehouse, G. A. (2024). The benefits of hierarchical 742 

ecosystem models: Demonstration using EcoState, a new state-space mass-balance 743 

model. Fish and Fisheries. https://doi.org/10.1111/faf.12874 744 

Thorson, J. T., Monnahan, C. C., & Cope, J. M. (2015). The potential impact of time-variation in 745 

vital rates on fisheries management targets for marine fishes. Fisheries Research, 169, 8–746 

17. https://doi.org/10.1016/j.fishres.2015.04.007 747 

Thorson, J. T., Monnahan, C. C., & Hulson, P.-J. F. (2023). Data weighting: An iterative process 748 

linking surveys, data synthesis, and population models to evaluate mis-specification. 749 

Fisheries Research, 266, 106762. https://doi.org/10.1016/j.fishres.2023.106762 750 

Trathan, P. N., Warwick-Evans, V., Young, E. F., Friedlaender, A., Kim, J. H., & Kokubun, N. 751 

(2022). The ecosystem approach to management of the Antarctic krill fishery—The 752 

‘devils are in the detail’ at small spatial and temporal scales. Journal of Marine Systems, 753 

225, 103598. https://doi.org/10.1016/j.jmarsys.2021.103598 754 

Von Bertalanffy, L. (1960). Principles and theory of growth. Fundamental Aspects of Normal 755 

and Malignant Growth, 493, 137–259. 756 

Walters, C., Christensen, V., & Pauly, D. (1997). Structuring dynamic models of exploited 757 

ecosystems from trophic mass-balance assessments. Reviews in Fish Biology and 758 

Fisheries, 7(2), 139–172. https://doi.org/10.1023/A:1018479526149 759 



 

 

Walters, C., & Kitchell, J. F. (2001). Cultivation/depensation effects on juvenile survival and 760 

recruitment: Implications for the theory of fishing. Canadian Journal of Fisheries and 761 

Aquatic Sciences, 58(1), 39–50. 762 

Walters, C., Pauly, D., Christensen, V., & Kitchell, J. F. (2000). Representing Density 763 

Dependent Consequences of Life History Strategies in Aquatic Ecosystems: EcoSim II. 764 

Ecosystems, 3(1), 70–83. https://doi.org/10.1007/s100210000011 765 

 766 

  767 



 

 

Fig. 1 – Proportion at age (y-axis) for ages 1-31+ (x-axis) for sablefish in each year with 768 

available age-composition data (panels), showing measurements (colored histograms) and 769 

estimated value (red dots and lines), where estimates are the product of predicted abundance-at-770 

age 𝜈𝑔2(𝑡) and selectivity-at-age.  Bars are color-coded to have a single color for a given cohort 771 

across years, to facilitate comparison across years.  Note that data are for ages 2-31+ (hence no 772 

bar for age-1), whereas the model predicts for ages 1-30+.   773 

 774 

  775 



 

 

Fig. 2 – Estimated biomass (y-axis in million tons, with log-scale axis) in each year (x-axis) with 776 

available biomass-index data (1990-2023) and for the six functional groups that are affected by 777 

biomass indices (panels), showing observed values divided by the estimated catchability 778 

coefficient (dots) as well as the estimated value (black line) +/- 1.96 standard errors (shaded 779 

polygon) 780 

 781 
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Fig. 3 – Proportion at age (y-axis) for ages 1-15+ (x-axis) for walleye pollock in each year with 783 

available age-composition data (see Fig. 2 caption for details) 784 

 785 

 786 



 

 

Fig. 4 – Estimated food web at equilibrium showing the proportion of pelagic production (x-axis) 787 

and the trophic level (y-axis) showing juvenile and adult sablefish (a and b), juvenile and adult 788 

pollock (d and e), and using alphabetical order for labelling taxa that are shown in Fig. S2.   789 

 790 

 791 
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Fig. 5 – Comparison of predicted weight-at-age (top row) and withheld measurements that are 793 

not fitted (bottom row) for walleye pollock (left column) and sablefish (right column), showing 794 

the weight (y-axis) relative to equilibrium for the expected value or in KG for the observed value 795 

for each year with available data (x-axis).  We compute the Spearman correlation over time for 796 

each age, and then the average correlation across ages for each species, and list that value in the 797 

top panels.   798 
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Fig. 6 – Retrospective peels for sablefish biomass (top row), pollock biomass (2nd row), sablefish 800 

recruitment deviation 𝜙(𝑡) (3rd row), or pollock recruitment deviation 𝜙(𝑡) (4th row) showing 801 

estimated values (y-axis) for 2011-2023 (x-axis) using data through 2023 (i.e., all data), 2022, 802 

2021, …, or 2013, i.e. for ten retrospective peals (see colorbar on right-hand side), showing the 803 

dot (line) and 95% confidence interval (+/- 1.96 standard errors, whiskers) for each run. 804 
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Table 1 – Equations from Ecostate prior to incorporating age-structured dynamics (i.e., summarizing Thorson et al., 2024).  Note that 807 

Eq. T1.1 is replaced when estimating annual variation in consumption.   808 

Eq. Description Equation 

T1.1 Consumption 

rate 
𝑐𝑖,𝑗(𝑡) = 𝑐�̅�,𝑗⏟

equilibrium
consumption rate

×

𝑥𝑖,𝑗
𝛽𝑗(𝑡)

�̅�𝑗

𝑥𝑖,𝑗 − 1 +
𝛽𝑗(𝑡)

�̅�𝑗⏟          
predator functional

response

×
𝛽𝑖(𝑡)

�̅�𝑖⏟
prey functional 

response

 

T1.2 Population 

mortality rate 
𝑚𝑠(𝑡) =

∑ 𝑐𝑠,𝑗(𝑡)
𝑆
𝑗=1

𝛽𝑠(𝑡)⏟      
Predation rate

+

{
 
 

 
 𝑝𝑠(1 − 𝑒𝑠)⏟      
Residual natural
mortality rate

if 𝑠 is autotroph or heterotroph

𝑣𝑠⏟
Export rate

if 𝑠 is detritus
 

T1.3 Detritus 

turnover rate 𝛽�̅�𝑣𝑠 =∑∑𝑢𝑗𝑐�̅�,𝑗(𝑡)

𝑆

𝑗=1

𝑆

𝑖=1

+∑�̅�𝑗𝑝𝑠(1 − 𝑒𝑠)

𝑆

𝑗=1⏟                      
Detritus accumulation

− ∑𝑐�̅�,𝑗(𝑡)

𝑆

𝑗=1⏟      
Detritus

consumption

 

T1.4 Population 

growth rate 

𝑔𝑠(𝑡) =

{
 
 
 
 

 
 
 
 

𝑝𝑠
𝑤𝑠
×
∑ 𝑐𝑖,𝑠(𝑡)
𝑆
𝑖=1

𝛽𝑠(𝑡)
if 𝑠 is heterotroph

𝑝𝑠�̅�𝑠
𝛽𝑠(𝑡)

×

𝑥𝑠,𝑠
𝛽𝑠(𝑡)

�̅�𝑠

𝑥𝑠,𝑠 − 1 +
𝛽𝑠(𝑡)

�̅�𝑠

if 𝑠 is autotroph

∑ ∑ 𝑢𝑗𝑐𝑖,𝑗(𝑡)
𝑆
𝑗=1

𝑆
𝑖=1 + ∑ 𝛽𝑗(𝑡)𝑝𝑗(1 − 𝑒𝑗)

𝑆
𝑗=1

𝛽𝑠(𝑡)
if 𝑠 is detritus

 

T1.5 Measurement 

error for 

biomass index 

log(𝑏𝑠(𝑡))~Normal(log(𝑞𝑠𝛽𝑠(𝑡)) , 𝜎𝑠
2) 



 

 

T1.6 Measurement 

error for fishery 

catch 

log(ℎ𝑠(𝑡))~Normal(log(𝜂𝑠(𝑡)) , 𝜈𝑠
2) 

T1.7 Process error 

for biomass 

rates 

𝜖𝑠(𝑡)~Normal(0, 𝜏𝑠
2) 

809 



 

 

Table 2 – List of estimated parameters for the two age-structured populations (sablefish and walleye pollock) in the Gulf of Alaska 810 

case study, where juveniles are ages [0-2) and adults are ages [2,15+] for pollock and [2,31+] for sablefish, where equilibrium values 811 

refer to unfished equilibrium.  For estimated parameters, we show the estimate with standard error in parentheses (note that the 812 

standard error for predicted trophic level is small because forage species have biomass that is fixed at Rpath values).  For values fixed 813 

a priori, we show the fixed value without standard error.  At age 50% maturity for walleye pollock is calculated as an average from 814 

1983-2023 based on annual regression estimates (see Fig 1.18 of Monnahan et al. (2023) for original data). Uncertainty about 815 

equilibrium biomass is not typically calculated for age-structured stock assessments and not included here.  Pollock age-maturity from 816 

the stock assessment is calculated as the average of an annual value; pther values for assessment are listed as “-“ when not available.   817 

 Ecostate estimate (standard error) Stock assessments 

Parameter Sablefish Pollock Sablefish Pollock 

Equilibrium juvenile biomass (million tons) 0.014 (0.003) 0.192 (0.059) - 0.252 

Equilibrium adult biomass (million tons) 0.361 (0.049) 1.609 (0.415) 0.716 2.333 

Equilibrium juvenile natural mortality rate (𝑦𝑟−1) 1.65 1.96 - 1.39 

Equilibrium adult natural mortality rate (𝑦𝑟−1) 0.095 (0.029) 0.408 (0.106) 0.114 0.3 

Equilibrium juvenile trophic level (unitless) 3.563 (<0.001) 3.55 (<0.001) - - 

Equilibrium adult trophic level (unitless) 4.164 (<0.001) 3.594 (<0.001) - - 

Steepness (unitless) 0.999 0.999 1 1 

Equilibrium age at maturity (𝑦𝑟) 6 4 7 4.742 

Equilibrium von Bertalanffy growth (𝑦𝑟−1) 0.14 0.2 0.202 - 

Allometric consumption by weight (unitless) 0.5 0.667 - - 

Catchability coefficient (unitless) 10.191 (3.226) 1.025 (0.312) 6.359 0.800  

Age at 50% survey selectivity (𝑦𝑟) 3.917 (0.09) 5.944 (0.42) 3.004 4.00  

Slope for logistic survey selectivity (𝑦𝑟−1) 0.559 (0.042) 1.365 (0.08) 2.418 0.637  

Vulnerability 𝑥𝑖𝑗 = 𝑥𝑗  for predator 𝑗 (unitless) 1.595 (0.362) 3.259 (1.334) - - 

 818 



 

 

Supplementary Materials 1:  Additional figures 819 

 820 

Table S1 – Notation used in the model presentation and results, including the symbol, units, a 821 

brief description, and the type.  See Thorson et al. (2024) Table S1 for notation related to 822 

biomass dynamics.   823 

Symbol Units Description Type 

𝑎∗ - Fractional age, discretized within integer age 𝑎 Index 

𝑡∗ - Fractional time, discretized within integer time 𝑡 Index 

𝑠 - Functional group Index 

𝑠2 - Stanza within an age-structured population Index 

𝑔2 - Age-structured population Index 

𝑛𝑎,𝑡 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 Age-composition samples for integer age and year Data 

𝑤𝑎,𝑡 𝑚𝑎𝑠𝑠
/𝑛𝑢𝑚𝑏𝑒𝑟 

Empirical weight-at-age data for integer age and year Data 

𝑏 𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠 Allometric scaling of individual mass to length Specified  

𝑛Δ 𝑛𝑢𝑚𝑏𝑒𝑟 Number of fractional per integer time Specified  

𝜔𝑎∗,𝑡∗ 𝑚𝑎𝑠𝑠
/𝑛𝑢𝑚𝑏𝑒𝑟 

Average weight for fractional age 𝑎∗ and fractional time 𝑡∗ Estimated  

𝜔𝑎,𝑡 𝑚𝑎𝑠𝑠
/𝑛𝑢𝑚𝑏𝑒𝑟 

Average weight for integer age 𝑎 and time integer time 𝑡 Estimated 

𝜈𝑎∗,𝑡∗  𝑛𝑢𝑚𝑏𝑒𝑟𝑠 Abundance for fractional age 𝑎∗ and fractional time 𝑡∗ Estimated 

𝜈𝑎,𝑡 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 Abundance for integer age 𝑎 and time integer time 𝑡 Estimated 

𝑘 𝑡𝑖𝑚𝑒−1 Specialized Von Bertalanffy growth rate for length Estimated 

𝑑 𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠 Allometric scaling of consumption to animal mass Estimated 

(𝜃1, 𝜃2) 𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠 Logistic selectivity-at-age parameters Estimated 

𝜃3 𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠 Optional logit-ratio of effective to input sample size Estimated 

𝜎𝑤
2  𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠 Residual variance in weight-at-age data Estimated 

𝜙𝑔2(𝑡) 𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠 Recruitment deviations Estimated 

𝜎ϕ
2 𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠 Variance of recruitment deviations Estimated 

𝜈𝑗(𝑡) 𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠 Consumption deviations Estimated 

𝜎ν,𝑗
2  𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠 Variance of consumption deviations Estimated 

𝐻 𝑚𝑎𝑠𝑠
/𝑚𝑎𝑠𝑠𝑑 

Anabolic rate Derived 

𝐾 𝑡𝑖𝑚𝑒−1 Generalized von Bertalanffy growth rate for mass Derived 

𝐿∞ 𝑙𝑒𝑛𝑔𝑡ℎ Asymptotic maximum body length Derived 

𝛽𝑠,𝑡 𝑚𝑎𝑠𝑠 Estimated biomass for functional group 𝑠 in time 𝑡 Derived  

𝜔∞ 𝑚𝑎𝑠𝑠
/𝑛𝑢𝑚𝑏𝑒𝑟 

Asymptotic maximum body mass  

�̅�𝑎 𝑚𝑎𝑠𝑠
/𝑛𝑢𝑚𝑏𝑒𝑟 

Equilibrium weight-at-integer age Derived  



 

 

�̅�𝑎 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 Equilibrium abundance-at-integer-age Derived 

�̅�𝑠 𝑚𝑎𝑠𝑠 Equilibrium unfished biomass for functional group 𝑠  Derived 

�̅�𝑎∗  𝑚𝑎𝑠𝑠
/𝑛𝑢𝑚𝑏𝑒𝑟 

Equilibrium weight-at-fractional age Derived 

�̅�𝑎∗  𝑛𝑢𝑚𝑏𝑒𝑟𝑠 Equilibrium abundance-at- fractional -age Derived 

�̅�𝑎∗  𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠 Convert consumption per biomass for a stanza to individual 

growth per fractional age 

Derived 

𝑔𝑠,𝑡    

 824 

 825 

  826 



 

 

Fig. S1 – Comparison of biomass (left column with log-scale y-axis) over 70 years (x-axis) for 827 

two stanzas of walleye pollock (juv: ages [0-2) year;  adult: ages [2,11+]), abundance-at-age 828 

(middle column with log-scale y-axis), and weight-at-age (right column with natural-scale y-829 

axis) when (1) projecting without catch to demonstrate that the model stays in equilibrium (top 830 

row), and (2) when projecting as fishing mortality increases from 0 to 0.2 𝑦𝑟−1 to demonstrate 831 

the density-dependent increase in weight-at-age (bottom right) and recruitment (bottom-left) as 832 

abundance-at-age decreases (bottom middle) over time.  833 

 834 

  835 



 

 

Fig. S2 – Estimated biomass relative to average unfished equilibrium (y-axis) in each modeled 836 

year (x-axis, 1960-2040), showing the estimated value (black line) +/- 1.96 standard errors 837 

(shaded polygon), and indicating the forecast period with a dotted vertical line at 2023.5 838 

  839 



 

 

Fig. S3 – Estimated weight relative to asymptotic maximum (y-axis) in each year (x-axis) for 840 

each modeled age (colored lines, top row on log-scale), consumption relative to equilibrium (2nd 841 

row on log-scale) for juveniles (red line) and adults (blue line), as well as juvenile (3rd row) and 842 

adult (bottom row) diet proportions relative to equilibrium (with code legend in panels) for 843 

sablefish (left column) and walleye pollock (right column), where the diet proportions (3rd and 844 

4th rows) have total that matches relative consumption (2nd row).  In the first row, we show 845 

weight relative to asymptotic maximum weight (𝜔∞), and in other rows we show consumption 846 

relative the equilibrium unfished level of consumption, with a horizontal dashed line at the 847 

equilibrium of 1.0.   848 

 849 



 

 

  850 



 

 

Fig. S4 – Comparison of expected weight-at-age (top row), observed weight-at-age (middle 851 

row), and smoothed weight-at-age including year, age, and cohort effects for walleye pollock 852 

(left column) and sablefish (right column).  See Fig. 5 caption for more details. 853 

  854 



 

 

Fig. S5 – Estimated biomass (y-axis in million tons, with log-scale axis) in each year (x-axis) 855 

with available biomass-index data (1990-2023) and for the six functional groups (see Fig. 2 856 

caption for details) when removing indices for copepods and euphausiids 857 

  858 



 

 

Fig. S6 -- Comparison of expected weight-at-age (top row) and observed weight-at-age (bottom 859 

row) for walleye pollock (left column) and sablefish (see Fig. 5 caption for details), in a model 860 

identical to the base case but without fitting to biomass indices for euphausiids and large 861 

copepods. 862 

 863 

  864 



 

 

Supplementary Materials 2:  Detailed notation for an age-structured model with bottom-up 865 

and top-down control 866 

 867 

Having introduce the theory that connects population to individual mortality and growth rates, 868 

we now discuss the model implementation in detail.  Each age-structured population requires 869 

specifying or estimating the von Bertalanffy growth rate 𝑘, weight-at-maturity 𝑤mat and stock-870 

recruit parameter 𝑥spawn and each stanza-group 𝑠2 has a maximum-age 𝑎max,𝑠2 such that it 871 

represents a range of ages 𝑎min,𝑠2 ≤ 𝑎 < 𝑎max,𝑠2, where 𝑎min,𝑠2 = 0 for the stanza-group with 872 

the youngest maximum age, or otherwise 𝑎min,𝑠2 = 𝑎max,𝑠2−1 where 𝑠2 − 1 is the stanza-group 873 

with the next-youngest maximum age.  Diet proportions are specified for each functional group 874 

𝑠, such that all ages in a given stanza-group are assumed to have the same diet.  It is therefore 875 

customary to break an age-structured population into multiple stanzas at ages that correspond to 876 

shifts in diet.  However, we note that it is possible to specify an age-structured population with a 877 

single stanza-group, and proceed with fitting age-composition and/or weight-at-age data for that 878 

single stanza.  In this case, the age-composition data might be informative about natural 879 

mortality rates and/or the catchability coefficient.   880 

Specifying dynamics for an age-structured population requires tracking abundance-at-age 881 

𝜈𝑎(𝑡) and weight-at-age 𝜔𝑎(𝑡) (using Greek letters for “n” and “w” for abundance and weight).  882 

Biomass 𝛃(𝑡) is still integrated for every 𝑡 ∈ {1,2, … , 𝑇} (applying an ODE solver to using Eq. 883 

2), but we also integrate abundance-at-age and weight-at-age in parallel using a separate Euler 884 

approximation with 𝑛Δ sub-intervals. After projecting abundance for 𝑛Δ sub-intervals, we then 885 

increase the calendar age of all fishes, calculate the total biomass for each stanza-group after 886 

increasing ages, and replace 𝛃(𝑡) from integrating Eq. 2 with biomass from integrating age-887 



 

 

structured dynamics (where these two will closely match prior to increasing calendar age for 888 

each fish).   889 

To implement the Euler approximation for age-structured dynamics using Δ ∈890 

{1,2, … , 𝑛Δ} sub-intervals, we therefore track abundance-at-age 𝜈𝑎∗,𝑔2
∗ (𝑡∗) and weight-at-age 891 

𝜔𝑎∗,𝑔2
∗ (𝑡∗) using fractional age 𝑎∗ = 𝑛Δ𝑎 + Δ and fractional time 𝑡∗ = 𝑛Δ𝑡 + Δ, where calendar 892 

age 𝑎 =
𝑎∗

𝑛Δ
 and calendar year 𝑡 =

𝑡∗

𝑛Δ
, and where biomass for a given stanza-group 𝑠2 matches 893 

𝛽𝑠[𝑠2] at each integer calendar year 𝑡: 894 

𝛽𝑠[𝑠2](𝑡) = ∑ 𝜈𝑎∗,𝑔2
∗ (𝑡)𝜔𝑎∗,𝑔2

∗ (𝑡)

𝑛Δ𝑎max,𝑠2

𝑎∗=𝑛Δ𝑎min,𝑠2

 

(3) 

We first calculate equilibrium abundance-at-age �̅�∗𝑎∗,𝑔2, equilibrium weight-at-age �̅�∗𝑎∗,𝑔2, and 895 

consumptive demand 𝛼𝑎∗,𝑔2.  As overview for doing so, we start with the value for production-896 

per-biomass 𝑝𝑠[𝑠2] for all stanza-groups 𝑠2, and both equilibrium biomass �̅�𝑠[𝑠2] and 897 

consumption per biomass 𝑤𝑠[𝑠2] for a single “leading” stanza.  These values can either be fixed a 898 

priori, or subsequently estimated by maximizing the log-likelihood of available data.  899 

Equilibrium biomass and consumption per biomass for non-leading stanzas are then calculated 900 

from values for the leading stanza, such that equilibrium consumption and biomass (Eq. 1) are 901 

satisfied.   902 

In particular, we specify that equilibrium weight-at-age follows a generalized von 903 

Bertalanffy growth function (and defined relative to asymptotic maximum weight for 904 

computational efficiency), noting that fractional calendar age during subinterval Δ is 
𝑎∗

𝑛Δ
: 905 

�̅�∗𝑎∗,𝑔2 = (1 − 𝑒
−3𝑘𝑔2(1−𝑑)

𝑎∗

𝑛Δ)

1
1−𝑑

 

(4) 



 

 

Similarly, we specify the stable age-distribution: 906 

�̅�∗𝑎∗,𝑔2 =

{
  
 

  
 

�̅�𝑔2 if 𝑎∗ = 0

�̅�∗𝑎∗−1,𝑔2𝑒
−
𝑍𝑠2
𝑛Δ if 0 < 𝑎∗ < 𝑛Δ𝑎max,𝑔2

�̅�∗𝑎∗−1,𝑔2
𝑒
−
𝑍𝑠2
𝑛Δ

1 − 𝑒
−
𝑍𝑠2
𝑛Δ

if 𝑎∗ = 𝑛Δ𝑎max,𝑔2

 

(5) 

Where mortality rate 𝑍𝑠2 = 𝑝𝑠2 is equal to production per biomass rate at equilibrium for each 907 

stanza, and we treat the maximum fractional age 𝑛Δ𝑎max,𝑔2 for the oldest stanza-group as a plus-908 

group.  We then calculate the proportion mature at age, which is used to calculate spawning 909 

biomass.  For consistency with EwE, the user can specify the weight 𝜔mat,𝑔2 of a knife-edged 910 

maturation ogive, where fecundity is 𝜔 − 𝜔mat,𝑔2 for weight 𝜔 above 𝜔mat,𝑔2 and zero 911 

otherwise.  Alternatively, we allow the user to specify either: 912 

1. Age at maturity 𝑎mat,𝑔2, where the model solves for weight-at-maturity 𝜔mat,𝑔2 given the 913 

values for 𝑑 and 𝑘; and/or 914 

2. Logistic maturity at age with logistic slope 𝜔matslope,𝑔2 (representing a logistic maturity 915 

ogive) where fecundity is 𝜔(1 + 𝑒−𝜔matslope,𝑔2(𝜔−𝜔mat,𝑔2))
−1

; 916 

Model exploration suggests that a logistic maturity ogive is more numerically stable, i.e., avoids 917 

𝛽𝑠(𝑡) for recruits in years when consumption is low and all age-classes have body size lower 918 

than 𝜔mat,𝑔2.   919 

Given this equilibrium abundance, weight, and maturity-at-age, we then calculate 920 

equilibrium spawning biomass per recruit, use this to solve for the equilibrium recruitment �̅�𝑔2 921 

per interval Δ that results in 𝛽𝑠[𝑠2] = �̅�𝑠[𝑠2] for the leading stanza, and then use �̅�𝑔2 and the 922 

equilibrium survival-at-age and weight-at-age to calculate equilibrium biomass �̅�𝑠[𝑠2] for the 923 



 

 

other (nonleading) stanzas.  Finally, we calculate equilibrium spawning biomass, where this and 924 

�̅�𝑔2 contribute to the stock-recruit relationship.    925 

Given these equilibrium calculations, we project abundance-at-age and weight-at-age 926 

using the Euler approximation involving fractional ages and time.  Specifically, abundance-at-927 

age decreases based on instantaneous natural and fishing mortality rates: 928 

𝜈𝑎∗+1,𝑔2
∗ (𝑡∗ + 1)

= {
𝑒
−𝑚𝑠[𝑠2](𝑡

∗)−𝑓𝑠[𝑠2](𝑡
∗)

𝑛Δ 𝜈𝑎∗,𝑔2
∗ (𝑡∗) if a + 1 < 𝑛Δ𝑎max,𝑔2

𝑒
−𝑚𝑠[𝑠2](𝑡

∗)−𝑓𝑠[𝑠2](𝑡
∗)

𝑛Δ (𝜈𝑎∗,𝑔2
∗ (𝑡∗) + 𝜈𝑎∗+1,𝑔2

∗ (𝑡∗)) otherwise

 

(6A) 

Where 𝑚𝑠[𝑠2](𝑡
∗) is the population mortality rate from the ODE solver for biomass dynamics 929 

(i.e., when numerically solving Eq. 2).  Similarly, weight-at-age changes based on estimated 930 

growth increments (Eq. 4-5), where consumption 𝑄𝑠 is again extracted from the numerical 931 

solution for the biomass ODE.  These projections result in a decrease in average age and 932 

(typically) an increase in weight-at-age as fishing mortality increases for a targeted species (Fig. 933 

S1), where the latter arises due to the predicted increase in per-capita consumption.    934 

 Following Ecosim, we assume that recruitment occurs continuously, i.e., evenly in each 935 

fractional time Δ.  To model recruitment, we first calculate mature biomass 𝛽mat(𝑡
∗): 936 

𝛽mat(𝑡
∗) = ∑ 𝜈𝑎∗

∗ (𝑡∗)

𝑎max,𝑔2

𝑎=0

× 𝑓(𝜔𝑎∗
∗ (𝑡∗), 𝜔mat, 𝜔matslope) 937 

Where 𝑓(𝜔,𝜔mat, 𝜔matslope) is the maturity ogive.  We then calculate recruitment from mature 938 

biomass relative to its equilibrium level 
𝛽mat(𝑡

∗)

�̅�mat
: 939 



 

 

𝜈1
∗(𝑡∗) = �̅�𝑔2 ×

𝑥spawn

𝑥spawn − 1 +
𝛽mat(𝑡∗)

�̅�mat⏟              
Beverton−Holt
relationship

× 𝑒𝜙(𝑡)⏟
recruitment 
deviation

 940 

Where 𝑥spawn is the magnitude of compensatory recruitment, which can be calculated from the 941 

proportion of equilibrium recruitment expected at 20% of equilibrium spawning biomass (termed 942 

“steepness” ℎ) using the expression ℎ =
0.2𝑥spawn

𝑥spawn−1+0.2
 or equivalently 𝑥spawn =

4

5−ℎ−1
.  Similarly, 943 

𝜙(𝑡) represents otherwise unexplained variation in cohort strength (a “recruitment deviation”). 944 

 After projecting fractional abundance 𝜈𝑎∗,𝑔2
∗ (𝑡∗) and weight-at-age 𝜔𝑎,𝑔2

∗ (𝑡∗) for 𝑛Δ steps 945 

(i.e., a full integer time 𝑡), we then calculate average abundance and weight for integer ages: 946 

𝜈𝑎,𝑔2(𝑡 + 1) =
1

𝑛Δ
∑ 𝜈𝑎∗,𝑔2

∗ (𝑛Δ(𝑡 + 1))

𝑛Δ(𝑎+1)−1

𝑎∗=𝑛Δ𝑎

 947 

𝜔𝑎,𝑔2(𝑡 + 1) =
1

𝑛Δ
∑ 𝜔𝑎∗,𝑔2

∗ (𝑛Δ(𝑡 + 1))

𝑛Δ(𝑎+1)−1

𝑎∗=𝑛Δ𝑎

 948 

We can then compare these predictions with observations, as a component of a model likelihood.   949 

 950 

 951 

 952 


