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Abstract

The discharge of bilge water from ships, regulated under MARPOL regulations, presents

significant environmental and operational challenges. Despite stringent regulations, com-

pliance remains inconsistent due to economic pressures and the limitations of current

monitoring technologies, which rely heavily on rudimentary automation that, in turn, de-

pends largely on human intervention and interpretation. This paper explores the applica-

tion of artificial intelligence (AI) and machine learning (ML) in water level management

and related fields, drawing parallels to their potential application in bilge water manage-

ment. A novel concept for a Smart Autonomous Bilge Management System (SABIMS)

is introduced.
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1. Introduction

The International Convention for the Prevention of Pollution from Ships (MARPOL),

adopted by the International Maritime Organization (IMO), sets mandatory regulations

to reduce ship-induced pollution, addressing oil, hazardous substances, sewage, garbage,

and air emissions.

Drainage, leakages, and maintenance in merchant ship engine rooms result in water

mixed with oil traces, to collect in bilges. MARPOL requires that Bilge water, containing

oil traces from ship engine room operations, must be discharged only in non-restricted

areas via an Oily Water Separator (OWS) with oil content below 15 ppm, monitored by an

Oil Alarm Monitor (OAM). Alternatively, it must be stored in bilge tanks or discharged

to authorized shore reception facilities, with all activities recorded in the Oil Record Book

(ORB). Emergency discharges are permitted at the Master’s discretion for securing the

safety of life at sea[1].

Violating MARPOL regulations can lead to severe penalties, including ship detentions,

fines, and criminal charges, with many violations linked to false ORB entries and evidence

of improper discharges[2].MARPOL Compliance is challenging due to economic pressures,

high maintenance costs, and operational demands, often leading to circumvention of

regulations[3].

Artificial Intelligence (AI) and Machine Learning (ML) are revolutionizing the mar-

itime industry enhancing efficiency and safety. Autonomous ships, such as Yara Birke-

land, use AI for navigation, collision avoidance, and decision-making, reducing the need

for human intervention [4].AI/ML has also been widely used in the field of water level

management, including flood forecasting, reservoir control, rainfall prediction, and water

quality monitoring and so on.

Despite these advancements, application of AI in shipboard bilge water management

systems remains largely unexplored. To bridge this gap, the author proposes a Smart

Autonomous Bilge Management System (SABIMS) that leverages AI/ML for real-time

monitoring, predictive analytics, and autonomous compliance with MARPOL regulations.

SABIMS with AI integration provides a promising solution to improve compliance rates

and reduce reliance on human intervention.
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2. Regulatory Landscape and Compliance Challenges

2.1. Overview of MARPOL Requirements

MARPOL provides a global framework for minimizing ship-induced pollution. It includes

six annexes addressing various types of pollution, with Annex I specifically focusing on

oil pollution prevention. MARPOL requires that bilge water discharges occur only under

strict conditions:

1. Ship is proceeding on a voyage

2. Bilge water is being pumped through an OWS

3. Oil concentration in discharged water is not more than 15 ppm

4. Discharges to be monitored via an Oil Alarm Monitor (OAM) to provide alarm and

automatic shutdown in case of oil content exceeding 15 ppm

5. Bilge water must have originated from within Engine Room

In addition to above conditions, there maybe restriction to discharges in special areas,

territorial waters and Particularly Sensitive sea Areas (PSSAs).Bilge water generation,

internal transfers, overboard discharges, Equipment malfunction or breakdown and emer-

gency overboard discharges need to be meticulously recorded in an Oil Record Book

(ORB). Emergency discharges are permitted only to secure the safety of the vessel and

crew, at the discretion of the Master. Digital record of OWS operational data is required

to be maintained for a period of 18 months[1].

2.2. Illegal Discharges: Motivation and Incentives

Despite the stringent regulatory framework for environmental compliance, adherence re-

mains a persistent challenge due to economic pressures and practical constraints, often

resulting in violations.

2.2.1 Economic Incentives and Cost Savings

The OECD 2003 report highlights significant cost-saving opportunities that continue to

drive non-compliance with MARPOL regulations:
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2.2.1.1 Avoidance of Waste Management Costs

Disposing of bilge water to port reception facilities costs USD 20/m³ to USD 115/m³,

translating to annual savings of USD 50,000–400,000 for medium-sized ships avoiding

these expenses [5].

2.2.1.2 Reduced Maintenance Costs

The annual maintenance of oily water separators (OWS) costs USD 3,000–5,000, but

non-compliant operators bypass these expenses entirely [5].

2.2.1.3 Savings on Equipment and Training

With OWS systems costing USD 10,000–100,000 and additional crew training expenses,

operators cutting these costs achieve significant savings [5].

2.2.1.4 Operating Cost Reductions

Avoiding regulatory compliance eliminates the operational downtime and labor costs

required for proper bilge water treatment [5].

2.2.1.5 Avoidance of Equipment Replacement

Skipping replacement of worn-out OWS membranes (USD 10,000 per set) adds further

financial incentives for violators [5].

These cost-driven motivations, first documented in 2003, persist in the industry even

today.

2.2.2 Case Study: Carnival Corporation

Jonathon Brun’s Jan. 2023 report illustrates ongoing compliance failures among major

players like Carnival Corporation:

2.2.2.1 Minimal Deterrence

Carnival fines of USD 60 million in 2019, represented just 0.3% of Carnival’s USD 20.8

billion revenue, failing to deter non-compliance [6].

2.2.2.2 Cost-Saving Practices Carnival circumvented waste management protocols

and engaged in illegal discharges to save operational expenses, despite repeated penalties
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[6].

2.2.2.3 Lax Oversight

Despite a USD 40 million fine and a probation for illegal discharges in 2016, Carnival

continued to violate environmental laws, leading to an additional USD 20 million fine in

2019 [6].

2.2.2.4 Corporate Culture Issues

Carnival Corporate Culture did not pay much attention to alter their unlawful practices.

The lack of prioritization for environmental compliance within corporate governance per-

petuated violations [6].

This persistence of violations over two decades underscores the ineffectiveness of penalties

and enforcement measures.

2.2.3 Broader Motivations Behind Illegal Discharges

Illegal discharges persist globally primarily due to economic and operational incentives:

2.2.3.1 Economic Advantage

Compliance costs account for 3.5–6.5% of daily operating expenses, while fines remain

negligible in comparison; for instance, Carnival’s penalties were only 0.4% of its revenue

[7].

Table 1: OECD Report Cost Savings (2003 vs. 2025)

Incentive/Cost Saving
Savings in 2003
(USD, Per Year)

Equiv. Savings in 2025
(USD, Per Year)

Avoidance of Waste
Management Costs

50,000–400,000 75,000–600,000

Reduced Maintenance
Costs

3,000–5,000 4,500–7,500

Savings on Equipment and
Training

10,000–100,000 (one-time) 15,000–150,000 (one-time)

Avoidance of Equipment
Replacement

10,000 per set (one-time) 15,000 per set (one-time)
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Table1, based on the OECD 2003 report, estimates that Carnival Cruise saved approx-

imately USD 52 million fleet-wide in 2003, with an average fleet size of 100 ships. By

2025, this figure is projected to reach roughly USD 77 million annually, highlighting the

significant financial benefits of deliberate non-compliance. Over 25 years, fleet-wide sav-

ings are estimated at approximately USD 1.6 billion. The fines imposed on Carnival

Cruise to date are negligible compared to the massive financial gains achieved through

non-compliance.

2.2.3.2 Inadequate Enforcement

Weak regulatory frameworks and limited enforcement mechanisms allow violators to op-

erate with minimal risk of prosecution.

2.2.3.3 Low Risk of Detection

Discharges often occur in international waters, where jurisdictional and logistical chal-

lenges reduce the likelihood of detection.

2.2.3.4 Operational and Maintenance Shortcomings

Poor maintenance of OWS equipment and insufficient crew training continue to exacer-

bate violations as operators prioritize cost-cutting over compliance.

3. Existing ’Intelligent’ OWS Control Systems

3.1. Overview

Several Oily Water Separator (OWS) systems currently available in the market claim to

possess “Smart” or “Intelligent” functionalities. Examples include the CBM-LINK Intel-

ligent System by RWO-VEOLIA, Bluebox SA by Alfa Laval, and Whitebox System with

Enviropilot by Marinefloc, among others. These systems incorporate certain advanced

features designed to enhance operational efficiency and regulatory compliance. However,

despite their marketed sophistication, a detailed analysis reveals a critical limitation:

none of these systems integrate Artificial Intelligence (AI) or Machine Learning (ML),

which restricts their ability to operate autonomously or make independent decisions.
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3.2. Smart Features in Existing ’Intelligent’ Systems

While lacking true autonomy, these systems do incorporate a range of advanced features

that elevate their functionality beyond standard OWS operations. Key smart features

include:[8–11]

1. Port Switch Mode (CBM-LINK): Automatically locks the system in recircu-

lation mode when the vessel is in port or restricted areas, preventing unauthorized

discharge.

2. Real-Time Visualization (CBM-LINK): Provides real-time data visualization

for system status and discharge parameters, ensuring better monitoring and control.

3. Maintenance Prediction (CBM-LINK): Predicts maintenance requirements,

such as filter changes, by analyzing operational data, thus optimizing maintenance

schedules.

4. GPS Integration for Compliance (All Systems): Logs vessel position during

discharge operations for regulatory reporting and compliance verification.

5. Stand-Alone Operation (BlueBox SA): Operates independently and integrates

with any OWS setup, providing enhanced flexibility for various configurations.

6. Clean Drain Monitoring (BlueBox SA): Monitors clean drain tanks to avoid

unnecessary processing, thereby improving system efficiency.

7. Two-Point Oil Content Measurement (CBM-LINK): Measures oil content

at two different points for enhanced accuracy and compliance assurance.

8. Connectivity to Ship’s AMS (CBM-LINK): Enables integration with the ves-

sel’s Alarm Monitoring System (AMS) for centralized control and real-time alerts.

9. Automatic Three-Way Overboard Valve (BlueBox SA): Prevents overboard

discharge unless specific monitored parameters are met, ensuring regulatory com-

pliance.

10. Tamper-Proof Logging (All Systems): Includes secure logging features to

record unauthorized access and ensure data integrity for compliance audits.
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11. Extended Data Storage (All Systems): Stores operational data for extended

periods (e.g., 18 months) to facilitate detailed historical analysis and reporting.

Table 2: Overview of Existing Intelligent OWS Control Systems

Trade Name Maker Smart Capabilities AI Integration Market Status

CBM LINK VEOLIA Yes No Available in Market

Whitebox Marinefloc Yes No Available in Market

BlueBox SA Alfa Laval Yes No Available in Market

Bilge-Guard Wartsila Limited No Available in Market

Table 2 provides an overview of existing intelligent OWS systems, highlighting their

capabilities and limitations.

4. Literature Review

4.1. Introduction to AI and ML

Artificial Intelligence (AI) refers to the simulation of human intelligence in machines,

enabling them to perform tasks such as learning, reasoning, and decision-making. Ma-

chine Learning (ML), a subset of AI, allows systems to learn and improve from data

autonomously without explicit programming. Together, AI and ML are transforming

industries and solving complex challenges by automating tasks, analysing large datasets,

and delivering predictive insights.[12]

AI and ML are extensively applied across diverse domains, including natural language

processing, robotics, environmental monitoring, maritime operations, transportation, dis-

ease diagnosis and drug discovery, agriculture, autonomous drones, threat detection, fraud

detection, predictive maintenance, energy optimization, renewable energy optimization,

personalized learning, automated grading, sports analytics, flood control, water level

management, wildlife conservation, urban planning, cultural heritage preservation, sup-

port for learning disabilities, satellite monitoring, call analysis, remote sensing, weather

prediction, energy demand forecasting, supply chain optimization, autonomous vehicles,

cybersecurity, virtual assistants, sentiment analysis, language translation, climate mod-

elling, social media analytics, human-computer interaction and so on. The application of
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AI and ML is ever expanding in all domains and spheres of life.[13, 14]

4.2. History of AI and ML

The historical evolution of ML underpins its current capabilities and applications. Thomas

Bayes introduced the Bayes theorem in 1763, later formalized by Pierre-Simon Laplace

in 1812 [15]. The method of least squares (1805) [16] and Markov chains (1913) [17]laid

the groundwork for statistical learning.

Alan Turing’s 1950 proposal for machine intelligence marked a critical milestone [18].

Subsequent breakthroughs include Arthur Samuel’s Checkers-playing program (1952) [19],

Frank Rosenblatt’s neural network (1957), and foundational algorithms such as recurrent

neural networks (1982), support vector machines (1995), and random forests (1995) [20].

Modern achievements like Google’s AlphaGo (2016) [21] and generative AI models such

as OpenAI’s ChatGPT and Google’s Gemini [21, 22] demonstrate the exponential growth

and applicability of AI/ML in diverse and complex domains.

AI / ML models analyze oceanic patterns, pollutant levels, and underwater ecosystems,

while at the same time they help monitor the health of marine environments, predict po-

tential threats, and provide early warnings related to environmental degradation. Other

notable applications of AI/ML in the maritime sector are the development of intelli-

gent fleet management systems, predictive maintenance and repair, maritime traffic fore-

casting, vessel routing automation, navigation, docking management, enhancement of

maritime security, optimal port operations, enhancing search and rescue missions, and

enabling autonomous underwater vehicles (AUVs) for exploration and environmental as-

sessments.

4.3. AI and ML Applications in Water Level Management

Research and application of AI/ML techniques in various fields of environmental and

water management have made significant strides in recent years. However, research

specifically focused on the application of AI/ML in bilge water management remains

nonexistent. However, parallels can be drawn from studies on dam water level predic-

tions, flood control, rainwater runoff, and groundwater level management, which have

successfully employed AI/ML methodologies to address similar challenges.

The review of the literature revealed that no research has been done in the field of bilge
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water management using AI / ML. However, there are many similar research studies done

and parallels were drawn mainly from AI/ML application for Dam water level predictions,

flood control, rain water run off, ground water level control and such similar works.

Mosavi et al. [23] reviewed various ML models with wide-ranging applications for predict-

ing water levels, river floods, soil moisture, rainfall discharge, precipitation, river inflow,

peak flow, river flow, rainfall runoff, flash floods, streamflow, seasonal streamflow, urban

floods, plains floods, groundwater levels, etc. These models can be applied for short and

long-term predictions.

German et al.(2024) [24] studied flood level predictions with Gradient Boosted Tree

(GBT), SVM, Decision Tree (DT) and NN and found that NN model gave a better

accuracy over GBT which in turn yielded better accuracy than the rest of the algorithms.

Hanh et al.(2024) [25] studied river water level with Support Vector Regression (SVR),

DT, Random Forest (RF), Light Gradient Boosting Machine Regressor (LGBM) and

Linear Regression (LR), using 20-year water level historical and found that SVR out-

performed other models consistently followed by RF, DT and LGBM. Nash Sutcliffe

efficiency (NSE), coefficient of determination (COD) Root-Mean Square Error (RMSE)

and Mean Absolute Error (MAE) were the metrics used for comparison.

Wang et al.(2020) [26] predicted 5 minutes forecast of water level using previous 10 min-

utes data using Support Vector Machine (SVM) based model. Computation cost of SVM

is high while the least-square SVM (LS-SVM) method highly improves performance with

acceptable computation efficiency [27]. SVMs were applied in numerous flood prediction

cases with better results and better performance when compared to ANN and Multi-Layer

Regressor (MLR) [28–30].

Alvisi et al. (2006) [31] compared Artificial Neural Networks (ANN) and Fuzzy Logic

(FL) for short-term water level forecasting. FL-Mamdani (FL-M) and FL-Takagi-Sugeno

(FL-TS) outperformed ANN with Aggregated Rainfall Information (ARI) but were less

reliable. With Distributed Rainfall Information (DRI), ANN showed significantly im-

proved accuracy. ANN excels with large datasets, while FL performs better with limited

data.

Adamowski et al.(2012) [32] demonstrated that the Wavelet-ANN (WA-ANN) method

outperforms traditional methods like ANN, Autoregressive Integrated Moving Average

(ARIMA), Multiple Linear Regression (MLR) and Multiple Non-Linear Regression (MNLR)
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when used in short-term urban water demand forecasting.Valipour et al.(2013) [33] com-

pared Autoregressive Moving Average (ARMA), AIMA, static ANN, and dynamic ANN

to predict inflow in the Dez dam reservoir and found that dynamic ANN was the best

over all models.

Lin et al. (2020) [34] used a feed-forward neural network (FFNN) with resilient backprop-

agation (RP) and conjugate gradient training algorithms (CGF) on a synthetic dataset

and found that RP outperformed CGF based on the mean square error (MSE) metric.

Xiong et al. (2021) [35] found that incorporating Ada-Boost optimization into a Back-

Propagation Neural Network (BPNN) improved flood predictions for the Three-Gorges

reservoir basin compared to traditional BPNN, Generalized Regression NN (GRNN), and

Genetic BPNN.Yaseen et al.(2016) [36] found that streamflow forecasting using Extreme

Learning Machine(ELM), which is an easy FFNN with only a single hidden layer, outper-

formed both the Support Vector Machine (SVM) and GRNN, with better computational

efficiency.

Sahoo et al. (2005) [37] found that while radial basis function networks (RBFN) are

easier to optimize for well-structured datasets, a well-optimized Back-Propagation Neural

Network (BPNN) achieves higher prediction accuracy for Hawaiian stream forecasts.

The Adaptive Neuro-Fuzzy Inference System (ANFIS), based on the Takagi-Sugeno (T-S)

Fuzzy Inference System (FIS), is a highly reliable estimator for complex systems, com-

bining Artificial Neural Networks (ANN) and Fuzzy Logic (FL) with enhanced learning

capabilities[38–40].Lafdani et al. (2013) [41] demonstrated its high accuracy in short-term

rainfall forecasting, while Shu et al. (2008) [38] highlighted its ease of implementation

and superior generalization ability.

The literature review highlights the potential of machine learning algorithms for water

level prediction and their integration into bilge water management systems. These al-

gorithms offer predictive accuracy, adaptability, and enhanced decision-making, essential

for achieving autonomy. However, the absence of research specifically addressing their

application in bilge water management presents a significant gap, offering opportunities

for innovation to improve regulatory compliance and operational efficiency.
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5. AI in the Maritime Domain: Current Landscape, Gaps, and

Opportunities

5.1. Review of AI and ML Applications in Maritime Sector

The literature review highlights advancements in AI/ML across various domains but

reveals limited applications in the maritime sector. Although these studies did not focus

on bilge water management, related maritime studies were reviewed and summarized.

AI/ML has significantly transformed the maritime industry, enhancing efficiency, cost

savings, and impproving operational capabilities such as navigation, route optimization,

anomaly detection, and predictive maintenance. Vu et al. (2024) [42] ehighlighted

advancements in predictive maintenance, ship routing, and port logistics, noting that

Random Forest outperformed Tweedie regression in fuel consumption prediction. Au-

tonomous ships leveraging advanced ML algorithms optimize routing, enhance safety,

reduce fuel consumption, and ensure regulatory compliance,contributing to sustainabil-

ity and cost efficiency. Despite these achievements, gaps remain in AI adoption for

autonomous ports and the development of hybrid models. However, gaps persist in AI

adoption for autonomous ports and hybrid model development.

Popescu et al. (2024) [43] reviewed AI and IoT applications in pollution monitoring

across air, water, and soil, focusing on AI-powered sensors, UAVs, and remote sensing.

They identified gaps in standardization, integration with legacy systems, and data privacy

concerns.

Panda et al. (2021) [44] investigated ML applications in wave forecasting, Autonomous

Underwater Vehicle (AUV) control, docking, offshore structure analysis, and turbulence

modeling in CFD. They identified gaps in physics-informed constraints, validation meth-

ods, and robustness in untested environments.

Singh et al. (2022)[45] examined AI applications in oil spill detection using satellite and

radar imaging with ML models such as ANN, SVM, and Random Forest. They identified

gaps in classification standardization, noisy data handling, and model robustness.

Karakostas et al. (2024) [46] investigated digital twin technologies for decarboniza-

tion and emissions reduction through real-time data and simulations, identifying gaps

in framework standardization, interoperability, and lifecycle modeling.

Xiao et al. (2024) [47] reviewed AI applications in shipping, emphasizing AIS data use for
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trajectory prediction and anomaly detection. Identified gaps include AIS data reliability,

real-time anomaly detection, and trajectory classification.

Statheros et al. (2008) [4] examined ship collision avoidance using neural networks, fuzzy

logic, and hybrid systems. Gaps include real-time environmental adaptation, system

integration, and model complexity.

Simion et al. (2024) [48] highlighted AI-driven predictive maintenance for maritime sys-

tems, reducing downtime and optimizing maintenance schedules. Gaps include challenges

in legacy system integration, installation complexity, and fault detection reliability.

Yoshioka et al. (2022) [49] evaluated AI-based collision avoidance using deep Q-learning

with Dangerous Area of Collision (DAC). Gaps include algorithm refinement, validation,

and real-world trials.

5.2. Research Gaps

As highlighted in the literature review, AI/ML has shown promising advancements in

maritime applications, yet their integration into bilge water management systems remains

unexplored. Existing ”Smart” OWS systems, discussed earlier, rely on predefined logic

and manual intervention, limiting their adaptability and autonomy. High maintenance

costs, inadequate real-time monitoring, and weak enforcement further hinder MARPOL

Annex I compliance. Integrating AI/ML can address these gaps by enabling predictive

analytics, real-time monitoring, and automated decision-making, enhancing efficiency and

ensuring robust regulatory compliance.

5.3. Technological Opportunities to Address Gaps

5.3.1 AI and ML Integration

AI/ML can provide predictive analytics to anticipate maintenance needs, detect anoma-

lies, and optimize bilge water discharge using historical and real-time data. These tech-

nologies can enable autonomous decision-making, reducing human intervention and en-

hancing real-time monitoring to prevent MARPOL violations. By improving compliance,

minimizing environmental violations, and optimizing operations, AI/ML can enhance

cost savings, operational efficiency, and regulatory adherence.
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5.3.2 IoT and Advanced Sensor Integration

IoT-enabled sensors monitor water quality, oil content, and discharge rates in real time,

ensuring continuous oversight and seamless data transmission for remote monitoring and

decision-making.

5.3.3 Enhanced Data Integration

Real-time integration with satellite and AIS data improves the detection of illegal dis-

charges, while historical data enhances predictive models, making bilge water manage-

ment more accurate and reliable.

The limitations of current bilge water management technologies underscore the need for

more intelligent, adaptive, and autonomous solutions. By leveraging advancements in AI,

IoT, and automation, these gaps can be bridged, paving the way for innovative systems

that address regulatory and environmental challenges effectively.

6. Smart Autonomous Bilge Management System (SABIMS):

Proposing A Step Toward Intelligent Sustainability

6.1. Overview

The Smart Autonomous Bilge Management System (SABIMS) is a novel solution pro-

posed to address the limitations of current bilge water management systems and Oily

Water Separator (OWS) control systems. SABIMS is made of hardware and control

components to autonomously and dynamically control the operations of Bilge Manage-

ment System. SABIMS Logic Operations Module (SLOM) acts as hardware while AI

Driven Decision Module (AIDDM) acts as its AI control unit.

SLOM integrates level, pressure and temperature sensors connected to various com-

ponents like bilge wells, tanks, pumps, valves, OWS, ship’s location(GPS), ship’s condi-

tion(List/trim), ship’s motion(rolling/pitching), enroute status (Port/Anchorage/Sailing)

providing real time data input to the AIDDM to analyse, predict and make autonomous

decisions.

The layout of the proposed SABIMS system components in the Engine Room of a
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Case ship (53100 DWT Bulk Carrier) is shown in Figure 1
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Figure 1: SABIMS Components Layout in Engine Room

6.2. Main Components of SABIMS

Figure 1 illustrates the main components of SABIMS, displayed in the plan view of the

engine room tank top of the case ship. Due to space constraints, all abbreviations used

in Figure 1 are expanded in Appendix 1. SABIMS consists of the SABIMS Logic

Operations Module (SLOM), which serves as the hardware module, and the AI-

Driven Decision Module (AIDDM) as the control unit. Its key components include

bilge wells, system-associated tanks such as bilge and sludge tanks, bilge system pumps,

the Oily Water Separator (OWS), and various sensors. These sensors monitor bilge well

and tank levels, oil content (ppm), pump discharge pressures, and ship parameters such

as GPS location, weather, speed, temperature, list, and trim. The system also includes

valves for controlling pumps and the OWS, enabling seamless and autonomous operation.
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6.2.1 SABIMS Logic Operations Module (SLOM)

The Smart Autonomous Bilge Management System (SABIMS) incorporates the

SABIMS Logic Operations Module (SLOM), a high-level automated control mod-

ule designed to integrate with AI capabilities for autonomous predictions and dynamic

decision-making. Figure 2 shows the Logic Diagram of SLOM operations. While SLOM

represents a deterministic control structure, its integration with AI transforms it into an

advanced solution for enhanced environmental compliance, efficient decision-making, and

operational optimization.

6.2.1.1 Core Functions of SLOM

1. Bilge Well and Tank Level Monitoring: SLOM uses high-level alarms in bilge wells

to trigger pumps, transferring water to the bilge tank when thresholds are exceeded.

Bilge tank levels are continuously monitored, initiating actions such as rerouting to

alternative tanks when critical levels (e.g., >75%) are reached.

2. Environmental Compliance Checks: The module performs automated checks to en-

sure adherence to MARPOL regulations, including verifying distance from shore

(e.g., beyond 12 Nm), avoiding restricted zones (e.g., Antarctic or Local Area Re-

strictions), and assessing ship status (e.g., in port or en route). These checks

determine whether bilge water should be discharged to shore reception facilities or

stored onboard.

3. Weather and Operational Adjustments: Operations are guided by predefined thresh-

olds that account for weather conditions (normal, moderate, extreme) to ensure safe

pump and Oily Water Separator (OWS) operations. The OWS activates only under

conditions such as oil content below 15 PPM and equipment readiness.

4. Fallback Mechanisms: In scenarios like high bilge tank levels or unavailable shore

reception facilities, SLOM reroutes bilge water to alternative storage tanks (e.g.,

sludge tank, waste oil tank, clean drain tank). Alarms and fail-safes ensure compli-

ance and system reliability.
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Figure 2: SABIMS Logic Operations Module (SLOM) Logic Diagram

This automated framework provides operational efficiency and regulatory compliance but

is inherently limited by its reliance on static thresholds and predefined rules.
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6.2.2 AI-Driven Decision Module (AIDDM)

AI integration into SLOM is done by AI-Driven Decision Module (AIDDM) which

acts as the brain of SABIMS. AIDDM elevates the SLOM from a deterministic automated

system to an adaptive, autonomous solution. By leveraging machine learning (ML),

AIDDM enhances SABIMS’ ability to analyze real-time data, predict outcomes, and

enable proactive, real-time decision-making.

6.2.2.1 How AIDDM Enhances SLOM

1. Dynamic Decision-Making:

� AIDDM analyzes real-time data (e.g., bilge levels, weather conditions, ship

motion) to dynamically adjust operational thresholds and actions.

� Predictive capabilities enable the AI to predict bilge well overfill, bilge tank

overfill, pump failures, Port reception facilities requirement, anticipate bilge

water generation and retention during a voyage, ,make adjustments for opera-

tional inefficiencies, alarms and unprecedented scenarios by ensuring proactive

interventions.

2. Prediction and Pattern Recognition:

� Using ML models trained on historical and synthetic data, AIDDM predicts:

– Bilge tank filling rates based on current inflow and pumping capacity.

– Weather-induced risks, such as extreme waves affecting pumping effi-

ciency.

– Environmental compliance risks, ensuring legal discharges.

� These predictions allow SABIMS to take proactive steps, such as initiating

bilge transfers earlier or rerouting discharge based on predicted delays.

3. Autonomous Adjustments:

� AIDDM makes real-time adjustments to operational parameters, such as:

– Modifying alarm thresholds based on ship motion (e.g., rolling and pitch-

ing).
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– Calibrating the OWS system autonomously for optimal performance.

– Adjusting pump schedules to balance bilge tank levels and maintain suc-

tion efficiency.

4. Feedback Loops and Retraining:

� AIDDM continuously improves its predictions and decision-making by inte-

grating live operational data into the retraining loop.

� Feedback mechanisms ensure that operational insights are incorporated into

model retraining, enhancing accuracy and adaptability over time.

5. Regulatory and Safety Compliance:

� While AIDDM autonomously manages operations, hardcoded regulatory

constraints (e.g., 15 PPM oil content alarm, legal discharge limits) ensure

compliance with MARPOL regulations.

� AIDDM validates and adjusts its decisions by comparing predictions against

these constraints.

6.3. AI Training and Operational Workflow

Figure 3 depicts the AI Model Development & Training Loop and the AI Oper-

ational Loop in SABIMS.

1. Training AIDDM: AIDDM is trained using historical or synthetic data divided

into training, validation, and test datasets. Continuous retraining incorporates

real-time operational data, improving prediction accuracy and adaptability.

2. Operational Integration: Real-time sensor data from system components feeds

into AIDDM, enabling dynamic decision-making and autonomous SABIMS control,

ensuring compliance, efficiency, and reliability.

This streamlined workflow combines continuous learning with real-time operations, opti-

mizing SABIMS performance over time.
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Figure 3: SABIMS Training & Operational Flowchart

6.4. Advantages of AI Integration in SABIMS

1. Enhanced Decision-Making: AI-powered predictions enable dynamic thresh-

olds, optimizing operations and minimizing risks.

2. Regulatory Compliance: The system ensures adherence to MARPOL regula-

tions by dynamically adjusting operations to meet environmental standards.

3. Violation Detection: Real-time anomaly detection prevents non-compliance through

instant alerts and proactive measures.

4. Predictive Maintenance: AI forecasts equipment failures, enabling condition-

based maintenance and reducing downtime.

5. Time Optimization: Efficient scheduling ensures bilge water discharge within

limited timeframes during voyages.

6. Cost Savings: Reduced fines, optimized operations, and minimal manual inter-

vention lower operational costs.

7. Autonomy: The system operates independently, reducing crew workload and en-

hancing safety.
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6.5. Objective of SABIMS

The primary objective of SABIMS is to enable better environmental compliance through

the use of AI. By seamlessly integrating deterministic automation and AI-driven adapt-

ability, SABIMS enables proactive measures that go beyond simple regulatory compli-

ance, enhancing MARPOL adherence, minimizing the risk of violations, and delivering

tangible benefits to all stakeholders. This cutting-edge approach establishes SABIMS as

a benchmark for smart, sustainable maritime operations.

7. Conclusion

This review has highlighted the significant challenges posed by existing bilge water man-

agement systems, including persistent MARPOL violations, operational inefficiencies,

and the lack of dynamic adaptability in current solutions. While AI and ML applications

are being implemented in the domain of water level management across various fields

and have found increasing use in maritime applications, this paper reviewed the current

landscape and identified a complete void in their application to engine room bilge man-

agement on ships. This gap presents a critical opportunity for innovation to address these

pressing issues.

The Smart Autonomous Bilge Management System (SABIMS) is proposed as a novel

solution to bridge this gap, integrating deterministic automation with advanced AI ca-

pabilities to deliver a transformative approach to bilge water management. SABIMS not

only addresses operational inefficiencies and compliance risks but also introduces dynamic

decision-making, ensuring strict regulatory adherence while enabling violation detection,

predictive maintenance, and time-optimized bilge discharges. The system’s ability to au-

tonomously monitor, predict, and adjust operations results in enhanced environmental

compliance, significant cost savings, and improved efficiency, all while functioning as a

completely autonomous framework.

By addressing this critical AI technology gap, SABIMS has the potential to be a game

changer for the maritime industry, setting a new standard for sustainable shipping prac-

tices. Its development offers a robust pathway toward smarter, more compliant maritime

operations, addressing current limitations while paving the way for future innovations.

Continued research and development will be essential to fully realize SABIMS’ potential
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as a cornerstone for achieving global environmental objectives in the shipping sector.

8. Scope for Further Research

While the development of SABIMS represents a significant step toward autonomous and

environmentally compliant bilge water management, several areas warrant further inves-

tigation to fully realize its potential. One critical aspect is the integration of advanced

machine learning (ML) models into the AI-Driven Decision Module (AIDDM). This in-

tegration requires robust datasets to train and optimize the predictive capabilities of the

system.

To address the challenges of limited real-world data availability and variability in oper-

ational conditions, future research should explore the generation of synthetic datasets.

Synthetic data can replicate diverse scenarios and edge cases, enabling the development

and fine-tuning of ML models to achieve highly accurate predictions under dynamic mar-

itime environments.

By advancing these areas, SABIMS can transition from a conceptual framework to a fully

functional system, equipped to handle complex real-world challenges with higher accu-

racy, adaptability, and compliance assurance. This evolution will contribute significantly

to the broader goal of integrating AI for sustainable and autonomous bilge water manage-

ment by enhancing environmental compliance, optimizing resource utilization, ensuring

effectiveness across diverse operational scenarios, and reinforcing its role in achieving

long-term sustainability in the maritime domain.
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S.NO. COMPONENT DESCRIPTION NAME USED IN DIAGRAMS ABBREVIATION ACTUAL LOCATION ON SHIP

1 E/R Bilge well level sensor aft BILGE WELL (A) BWA E/R Aft

2 E/R Bilge well level sensor forward port BILGE WELL (FP) BWFP E/R forward port

3 E/R Bilge well level sensor forward starboard BILGE WELL (FS) BWFS E/R forward starboard

4 M/E flywheel pit level sensor M/E FLYWHEEL PIT MEFP E/R Aft

5 E/R Tank top flood level sensor aft TANK TOP LEVEL (A) TTLA E/R Tank top aft

6 E/R Tank top flood level sensor forward port TANK TOP LEVEL  (FP) TTFP E/R Tank top forward port

7 E/R Tank top flood level sensor forward starboard TANK TOP LEVEL  (FS) TTFS E/R Tank top forward starboard

8 Bilge Tank Level Sensor BILGE TANK LEVEL BTL Bilge Tank

9 Sludge Tank Level Sensor SLUDGE TANK LEVEL STL Sludge Tank

10 Aft Peak Tank Level Sensor AFT PEAK TANK LEVEL APTL Aft Peak Tank

11 E/R Bilge Pump E/R BILGE PUMP RUN STATUS ERBP E/R Aft Port

12 Fire & Bilge Pump FIRE & G.S. PUMP  RUN STATUS FGSP E/R Forward port

13 Bilge & Ballast Pump BILGE & G.S. PUMP  RUN STATUS BGSP E/R Forward starboard

14 Main S.W. Pump MAIN S.W. PUMP  RUN STATUS MSWP E/R Forward starboard

15 Oily Water Separator OILY WATER SEPARATOR STATUS OWS E/R Aft Port

16 15 Ppm Oil Alarm Monitor 15 PPM OIL ALARM MONITOR STATUS OAM E/R Aft Port

17 3-Way Changeover Valve-OWS Overboard discharge 3-WAY CHANGEOVER VALVE POSITION STATUS COV E/R Aft Port

18 Oily Water Outflow Flow meter OILY WATER OUTFLOW MONITOR FM E/R Aft Port 

19 E/R Bilge Pump E/R BILGE PUMP AUTO/MANUAL STATUS ERBPAM @ ECR Console

20 Fire & Bilge Pump FIRE & G.S. PUMP  AUTO/MANUAL STATUS FGSPAM @ ECR Console

21 Bilge & Ballast Pump BILGE & G.S. PUMP  AUTO/MANUAL STATUS BGSPAM @ ECR Console

22 Main S.W. Pump MAIN S.W. PUMP  AUTO/MANUAL STATUS MSWPAM @ ECR Console

23 Oily Water Separator OWS AUTO/MANUAL STATUS OWSAM @ ECR Console

24 Programmable Geo-Fencing GPS monitor GEO-FENCE MONITOR GPSM Bridge ECDIS console

25 Main Engine Sub-Telegraph for ship condition EN-ROUTE MONITOR ERM Bridge and ECR console

26 List angle measurement LIST MONITOR LM Navigation Bridge/ECR

27 Trim value measurement TRIM MONITOR TM Navigation Bridge/ECR

28 E/R Bilge pump suction valve ---- ERBPSV @ E/R bilge pump

29 E/R Bilge pump priming valve ---- ERBPPV @ E/R bilge pump

30 Oily Water Separator inlet valve ---- OWSV @ OWS

31 Fire & G.S. Pump Direct Suction Valve (from BWFP) ---- FGSPDSV @BWFP

32 Fire & G.S. Pump Direct Suction Valve ---- FGSPBSV @FGSP

33 Fire & G.S. Pump priming Valve ---- FGSPPV @FGSP

34 Fire & G.S. Pump overboard discharge Valve ---- FGSPODV @ Ship's side

35 Fire & G.S. Pump ballast line discharge Valve ---- FGSPBV @FGSP

36 Bilge & G.S. Pump Direct Suction Valve (from BWFS) ---- BGSPDSV @BWFS

37 Bilge & G.S. Pump Direct Suction Valve ---- BGSPBSV @BGSP

38 Bilge & G.S. Pump priming Valve ---- BGSPPV @BGSP

39 Bilge & G.S. Pump overboard discharge Valve ---- BGSPODV @ Ship's side

40 Bilge & G.S. Pump ballast line discharge Valve ---- BGSPBV @BGSP

41 Main Sea Water pump suction valve ---- MSWPSV @ MSWP

42 Emergency Bilge Suction Valve ---- EBSV @ MSWP

43 Main Sea Water pump discharge valve ---- MSWPDV @ MSWP

44 Bilge Well Aft suction valve ---- BWASV @BWA

45 Main Engine Flywheel Pit suction valve ---- MEFPSV @ M/E Aft end, below flywheel

46 Bilge Well Forward Port suction valve ---- BWFPSV @BWFP

47 Bilge Well Forward Starboard suction valve ---- BWFSSV @BWFS

48 Aft Peak Tank suction valve ---- APTSV @Aft Peak Tank

49 Bilge Tank suction valve ---- BTSV @Bilge Tank

50 Bilge Tank filling valve ---- BTFV @Bilge Tank

51 Sludge tank filling valve from E/R bilge pump ---- STFV @Sludge Tank

52 E/R bilge pump discharge pressure ---- ERBPDP @ ERBP

53 Fire & G.S. pump discharge pressure ---- FGSPDP @ FGSP

54 Bilge & G.S. pump discharge pressure ---- BGSDP @ BGSD

55 Main sea Water pump discharge pressure ---- MSWPDP @ MSWP

PUMP DISCHARGE PRESSURE SENSORS

LEVEL SENSORS - INSIDE BILGE WELLS

LEVEL SENSORS - ON E/R TANK TOP

LEVEL SENSORS - INSIDE GIVEN TANKS

PUMP RUNNING STATUS

OWS & ANCILLARY EQUIPMENT STATUS

PUMPS AUTO/MANUAL MONITORING

OTHER COMPLIANCE MONITORING SENSORS

VALVES

Appendix A:SABIMS Component Description
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