
 

1 

The implementation of network meta-analysis in Ecology; a case study using 1 

crop yield data 2 

https://github.com/maxanochirim/network-meta-analysis-using-crop.yield.data.git 3 

  4 

Maximus Anochirima, Matthew Graingerb, Gavin Stewartc, Elina Takolaa 5 

  6 

aDepartment of Computational Landscape Ecology, UFZ – Helmholtz Centre for Environmental 7 

Research, Permoserstrasse 15, Leipzig, 04318, Germany 8 

bNorwegian Institute for Nature Research, Trondheim, Norway – NINA 9 

cEvidence Synthesis Lab, School of Natural and Environmental Science, University of Newcastle, 10 

Newcastle-upon-Tyne, UK 11 

 12 

ORCiD 13 

MA: 0000-0002-1366-5488 14 

MG: 0000-0001-8426-6495 15 

GS: 0000-0001-5684-1544 16 

ET: 0000-0003-1268-5513 17 

 18 

https://github.com/maxanochirim/network-meta-analysis-using-crop.yield.data.git


 

2 

ABSTRACT 19 

Network meta-analysis (NMA) is a method commonly used in medical research that allows for the 20 

comparison of multiple interventions in a single, coherent analysis. In this study, we explore how 21 

NMA can be applied in ecological studies – specifically, in comparing the effectiveness of multiple 22 

interventions in field experiments. Our study aims to provide a general and non-technical 23 

introduction of network meta-analysis to ecologists, particularly on key assumptions and methods. 24 

Using an example, we demonstrate how NMA can serve as a tool to compare the effectiveness 25 

of different interventions used in enhancing crop yield. We conducted a systematic review and 26 

extracted data from meta-analytical studies that explored the response of yield to an intervention. 27 

Each study structured data as a pairwise comparison between an intervention and a control. 28 

Using yield as the measure of effectiveness, we evaluated four interventions – Liming, Straw 29 

return, Super Absorbent Polymers, and considered no intervention as the control. All 30 

measurements came from field experiments, and we analyzed data from 3733 independent 31 

studies that were included in these meta-analytical reviews. The results of our analysis 32 

demonstrate the potential of NMA as a valuable statistical method in ecological research, 33 

providing more precise comparisons of multiple interventions. However, we emphasize the need 34 

for careful consideration of important assumptions such as transitivity and consistency when 35 

implementing NMA in ecological studies. This study offers a novel approach to synthesizing 36 

ecological data, contributing to improved decision-making in agriculture, ecology, and 37 

environmental sciences. 38 

  39 
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1. INTRODUCTION 43 

1.1. What is Network Meta-Analysis (NMA) 44 

The advent of meta-analysis in ecology in the early nineties (Arnqvist & Wooster, 1995; 45 

Fernandez‐ Duque & Valeggia, 1994; Jarvinen, 1991) provided researchers with a statistical 46 

method that helped to systematically synthesize empirical findings (Bilotta et al., 2014; H. M. 47 

Cooper et al., 2019). In contrast to narrative reviews and other qualitative methods that were 48 

previously used to summarize study findings (Gurevitch et al., 2018; Slavin, 1995), the 49 

quantitative synthesis of empirical findings allowed for data from multiple studies to be drawn 50 

together. Additionally, and since the former did not require a clear formulation of research 51 

questions nor a quantitative synthesis of the data (Vetter et al., 2013), meta-analysis proved 52 

extremely useful and was considered a powerful statistical method for summarizing research 53 

findings. Furthermore, the quantitative synthesis of results across studies offers better precision 54 

as well as a higher statistical power as it helps in identifying sources of variation in study outcomes 55 

(Gurevitch et al., 2018). Subsequently, the use of meta-analysis (which is a part of the larger field 56 

of research synthesis) became widely accepted (Figure S1) and adapted across many scientific 57 

disciplines despite its initial skepticism (Cadotte et al., 2012; Gurevitch et al., 2018; Hillebrand & 58 

Cardinale, 2010; Hunt, 1997; Whittaker, 2010). It offered many advantages including 59 

transparency, replicability, generalizability, and the ability to better quantify effect size by 60 

analyzing the result from multiple independent studies (Conn et al., 2012; Hernandez et al., 2020). 61 

In ecological and environmental contexts, the application of these methods has not only helped 62 

in the identification of research gaps (Thomsen et al., 2012), but has also allowed for the 63 

estimation of the direct effects of major environmental drivers – including climate change, invasive 64 

species, and habitat fragmentation (Aguilar et al., 2006; Clewley et al., 2012; Jactel et al., 2012). 65 

Additionally, these approaches have allowed for comparisons of these effects across different 66 

scales, taxa, and ecosystems (Powell et al., 2011; Rodríguez-Castañeda, 2013), thus helping to 67 
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enhance the reliability and generalization of ecological conclusions (Cadotte et al., 2012; Maki et 68 

al., 2018; Nakagawa et al., 2023). Likewise in the field of plant ecology, the quantitative synthesis 69 

of research results has had a tremendous impact, proving extremely useful in objectively 70 

summarizing findings from numerous studies (Koricheva & Gurevitch, 2014). This has led to the 71 

development of standardized protocols, usage, and organizations such as the Collaboration for 72 

Environmental Evidence – CEE that guide both scientists and policymakers in providing the best 73 

evidence for high quality environmental decision-making processes (Koricheva & Gurevitch, 74 

2014; Nakagawa et al., 2023; Pullin & Stewart, 2007; Vetter et al., 2013), a move similar to already 75 

established standards like The Cochrane Collaboration in the field of medical sciences. 76 

Despite all of this, meta-analysis still has its limitations. For example, when one would like to make 77 

inferences about all the indicated treatments for the same condition and sample characteristics, 78 

the standard meta-analytic methodology experiences a significant drawback. Furthermore, since 79 

meta-analysis is focused on comparing only two interventions at the same time, the use of this 80 

method implies that all studies must have a common treatment. Likewise, the growing multiplicity 81 

of available scientific literature on a topic, particularly in ecology produces a plethora of 82 

information/interventions which could unfortunately complicate decision-making processes (Dias 83 

& Caldwell, 2019; Koricheva et al., 2013; Roberts et al., 2006). Additionally, ecological systems 84 

are oftentimes highly interconnected, with multiple drivers of change acting simultaneously. The 85 

limiting ability of meta-analytical methods to adequately mirror the complexity of natural 86 

ecosystems allows room for the desire of a statistical method that can optimally address questions 87 

about how different environmental factors/interventions interact and compare in their effects. 88 

There is therefore growing a new perspective to make inferences about competing treatments for 89 

the same condition, one such as the network meta-analysis. 90 

First coined by Lumley (2002), the methodology of network meta-analysis, (sometimes called 91 

multi-treatment analysis or mixed-treatment comparison, and hereafter referred to as NMA) 92 

https://environmentalevidence.org/
https://environmentalevidence.org/
http://www.cochrane.org/
http://www.cochrane.org/
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focuses on combining both the direct and indirect information across a network of randomized 93 

studies to infer about the relative effectiveness of multiple interventions (Dias, 2018; Lumley, 94 

2002; Madden et al., 2016). In a scenario with multiple interventions, as is the case with most 95 

ecological data, it is clear that not all possible pairwise comparisons will have been 96 

separately/directly carried out. The method of NMA solves this issue by combining in a single 97 

coherent analysis, the result of those studies/interventions where a direct comparison has been 98 

made (direct evidence) together with those studies/interventions where there is no pairwise 99 

comparison (indirect evidence). The term ‘indirect’ is used because it relies on evidence against 100 

the common comparator or other all relevant comparators of interest, and not on ‘direct’ head-to-101 

head evidence. Thus, with NMA, all interventions can be compared with one another, including 102 

comparisons not evaluated within any of the primary studies further strengthening inferences 103 

concerning the relative efficacy of treatments (Lu & Ades, 2004). This type of method incorporates 104 

all available evidence into a general statistical framework for the comparison of all available 105 

treatments thus resolving the limitations of traditional pairwise meta-analyses” (Tu, 2014). 106 

With NMA, it becomes possible to statistically analyze the result from multiple independent studies 107 

with different treatments (Higgins & Whitehead, 1996; Salanti, 2012; Salanti & Schmid, 2012); 108 

thus providing a more effective comparative review method and subsequently forming the basis 109 

for coherent, evidence‐ based treatment decisions. A major advantage of NMA is that correlations 110 

of estimated treatment effects are automatically considered when an appropriate model is used 111 

thus improving the precision for the estimated effect sizes. It facilitates simultaneous inference 112 

regarding all treatments in order to select the best possible treatment for example (Lu & Ades, 113 

2004; Figure 1). Additionally, NMA makes it possible for the comparisons of interventions that 114 

are not possible in a single study because all treatments of interest may not be included in any 115 

given study. Other advantages of a network meta-analysis include; (i) the preservation of 116 

randomization: Because a network meta-analysis does not directly compare treatment arms 117 
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across studies but rather the relative differences between treatment comparisons, it preserves 118 

randomization (i.e., takes into consideration the fact that samples were randomized to 119 

interventions within studies but not across studies), (ii) the maximization of all available evidence. 120 

(iii) the production of treatment ranking which is useful in decision-making processes or in 121 

revealing the most effective components of complex interventions. 122 

 123 
Figure 1. A hypothetical scenario where NMA combines all available evidence including those that have 124 

not previously been compared to each other. 125 

 126 

By focusing on the use of network meta-analytic approaches in ecological studies, we argue that 127 

this relatively new approach and subsequent improvements will aid both researchers and 128 

policymakers in their ability to promptly and effectively craft policies that address pressing 129 

environmental issues. The development of user-friendly software, protocols, and guidelines such 130 

as the PRISMA-NMA extension (Preferred Reporting Items for Systematic Reviews and Meta-131 

Analyses; Hutton et al. (2015); http://www.prisma-statement.org/nma) is evidence that the method 132 

of NMA is growing in acceptance and popularity. Already, it is being embraced by national and 133 

international policy-making bodies as a tool to best answer complex policy-relevant questions 134 

(Salanti & Schmid, 2012). 135 
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When conducting a network meta-analysis, it is however important to note that analytical methods 136 

are more complex and can be quite challenging (Tu, 2014). In addition, confusion about how to 137 

choose models, fit them to the data, or interpret the results can be expected for users who are 138 

not yet familiar with the different statistical models (Dias, 2018; Madden et al., 2016). 139 

1.2. Research Objectives 140 

While studies comparing more than two competing interventions are quite common in several 141 

research fields including medicine, pharmacology, social psychology, and education, the 142 

implementation of the NMA methodology is not yet common practice in ecological studies. A 143 

search for published literature on NMA using the keyword “network meta-analysis” in the literature 144 

database ISI Web of Science revealed that the field of ecology contributed less than 1% out of 145 

the approximately 27 thousand entries (Figure S2). Our main research objective therefore was 146 

to investigate the feasibility of applying the methodology of indirect comparisons (network meta-147 

analysis) in the scientific field of ecology as a way of further improving the precision of results that 148 

could be obtained from ecological studies. We aim to provide a general and non-technical 149 

introduction of network meta-analysis to ecologists, and the general research community in the 150 

field of environmental management.  151 

We showed an example of how NMA works by developing a research question that seeks to find 152 

out if we could implement a multi-treatment meta-analysis to uncover the effects of different 153 

interventions used in the yield production of croplands. To the best of our knowledge, we believe 154 

this is the first detailed guideline on the application of NMA in ecology, particularly in how this 155 

method can be utilized to assess the efficacy of interventions used in improving crop yield. 156 

 157 
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2. METHODS 158 

2.1. Basic Concepts and Assumptions of a Network Meta-Analysis 159 

2.1.1. Concepts and terminology 160 

The methodological advantage behind a network meta-analysis is a very simple one: “indirect 161 

comparisons”. Assuming we have two independent studies (study 1: directly comparing treatment 162 

A versus C [µD
AC], and study 2 directly comparing treatment B versus C [µD

BC] but no studies 163 

directly comparing A versus B [µD
AB]), we can indirectly compare treatment A to treatment B via 164 

the common comparator C. This is done by statistically combining the information from all A 165 

versus C (AC) and B versus C (BC) studies represented here as: µI
AB = µD

AC – µD
BC (Figure 2). 166 

With a network meta-analysis, it is also possible to further improve the precision of treatment 167 

estimates assuming a scenario exists where both the direct [µD
AB] and indirect estimates [µI

AB] are 168 

available for the same comparison. In this situation, a ‘mixed’ effect size [µM
AB] is calculated by 169 

taking the weighted average of µD
AB and µI

AB (Bucher et al., 1997). 170 

       171 

 172 
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Figure 2. An example of a network of three treatments (ABC) compared in two studies (solid black lines), 173 

where an indirect comparison can be made (dashed grey line).  174 

2.1.2. Statistical assumptions 175 

Since indirect and mixed comparisons are generally considered observational in nature (Catalá-176 

López et al., 2014), two major assumptions need to be considered and where possible, met, 177 

before a network meta-analysis study can be considered as valid. 178 

1. Assumption of transitivity: The main assumptions that underpin the validity of indirect and 179 

mixed comparisons is that there are no significant differences between the studies making 180 

different comparisons other than the treatments that are being compared (Cipriani et al., 181 

2013). Since the aim of a network meta-analytical study is to compare two treatments via a 182 

third one, it assumes that indirect comparison validly estimates unobserved head-to-head 183 

comparison (Salanti, 2012). With our earlier example comparing treatment A versus treatment 184 

B via treatment C, our common comparator which is C is regarded as ‘transitive’. This is 185 

because it allows a valid comparison of the treatment to which it is linked (Salanti, 2012). With 186 

transitivity, similarity is not required for all characteristics of studies and samples across the 187 

evidence base i.e., valid indirect comparisons can be obtained even when studies are 188 

dissimilar in characteristics which are not effect modifiers (Dias, 2018). In technical terms, 189 

what this means is that indirect comparisons can still be made between a study conducted in 190 

pot experiments and another study that was conducted in field conditions provided that the 191 

study samples were not shown to have a modifying effect on the result from any of the study. 192 

Additionally, this assumption requires that treatments/interventions should be comparable 193 

among themselves in practice. For example, assuming we were comparing two treatments A 194 

and B for plant yield. If treatment A needs a precondition before it can be implemented (e.g. 195 

only as a second-line treatment or perhaps only to samples with certain conditions) and 196 

Treatment B doesn’t need these preconditions, then the law of transitivity is violated because 197 

in practice, the observational samples would be different for each treatment (we would not be 198 
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able to randomly assign the samples to just any treatment in a fresh study). Furthermore, 199 

samples that are included in a network should be able to be randomized (sample 200 

randomization) to any of the treatments/interventions. i.e. (in principle), one should be able to 201 

apply any of the treatments/interventions randomly to all participants in the network. The 202 

assumption of transitivity could be violated if interventions have different indications. 203 

Questions to be asked regarding the assumption of transitivity: 204 

i. In the planned (ecological) study, can the two treatments that want to be compared 205 

indirectly form a common node? 206 

ii. Are the missing treatments ‘missing at random’ or is it directly associated with the true 207 

relative effectiveness of the interventions (intervention effectiveness bias)? 208 

iii. Is the choice of the comparator random? If the choice of the comparison is associated, 209 

directly or indirectly, with the relative effectiveness of the interventions, then the 210 

assumption of transitivity is violated. 211 

2. Assumption of consistency: Consistency is the extension of transitivity over a loop of evidence 212 

(Cipriani et al., 2013). With consistency, the major assumption is that the direct and indirect 213 

estimates/sources of evidence agree i.e., both the direct and indirect evidence are estimating 214 

the same underlying treatment effect. This assumption can be measured/evaluated 215 

statistically with the use of a simple z-test, often called the Bucher method (Bucher et al., 216 

1997). It can be evaluated only when there is direct and indirect evidence existing in the 217 

evidence network for a particular comparison of interventions (Dias et al., 2010; Dias & 218 

Caldwell, 2019; Higgins et al., 2012). When the direct comparisons of means are different 219 

from indirect comparisons, then the network is said to be inconsistent (Cipriani et al., 2013; 220 

Lu & Ades, 2004, 2006). The assumption of consistency is a prerequisite in calculating a valid 221 

mixed estimate. A significant f-test for the design and treatment interaction is an indication of 222 

inconsistency. 223 

Questions to be asked regarding the assumption of consistency: 224 
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i. Do the ecological studies use comparable methodologies (e.g., measurement of 225 

species abundance, or habitat quality) to ensure consistency in effect estimates? 226 

ii. Is there significant variability in ecological contexts that might lead to inconsistent 227 

results between direct and indirect comparisons? 228 

iii. Do studies reporting direct comparisons conflict with indirect evidence due to context-229 

specific factors? 230 

3. Exchangeability assumption: This assumes that the distribution of effect modifiers (variables 231 

that influence treatment effects) is balanced across studies. i.e., that two sets of studies e.g. 232 

AC and BC, do not differ with respect to the distribution of effect modifiers. For example: if 233 

‘site’ was an effect modifier in all AC studies (irrespective of their distribution – heterogeneous 234 

studies), then in order to make a valid indirect comparison of AB; ‘site’ should also be an effect 235 

modifier (distributed in a similar proportion) in all BC studies - AC and BC studies should 236 

therefore cover the entire spectrum of the observed effect modifier. It is therefore important to 237 

identify apriori possible effect modifiers and compare their distributions across comparisons 238 

when synthesizing evidence from many comparisons. Adjustments can be used to improve 239 

transitivity (through network meta-regression or a subgroup analysis) if an imbalanced 240 

distribution of effect modifiers is identified. Adjustment should take place only for study or 241 

sample characteristics that are categorized as effect modifiers. 242 

Questions to be asked regarding the assumption of exchangeability: 243 

i. Are key ecological variables (e.g., temperature, precipitation, soil) influencing the 244 

treatment effects similarly distributed across the studies in the network? 245 

ii. Are the interventions or treatments implemented in similar ecological settings, or 246 

are there systematic differences? 247 

iii. Are there outliers among the studies (e.g., studies conducted in extreme 248 

environments or with highly specialized species) that might bias the overall effect 249 

estimate? 250 
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2.1.3. Statistical approaches to fitting a network meta-analysis 251 

Both Bayesian and frequentist approaches can be used in fitting a network meta-analysis model 252 

(Dias & Caldwell, 2019; Hong et al., 2013). Bayesian methods for NMA require selecting a prior 253 

probability distribution that describes the range and probability of plausible values for the 254 

parameters of interest (e.g., treatment effect). Using Bayes theorem, this is then combined with a 255 

likelihood statement that provides information on the collected data (Dias & Caldwell, 2019). On 256 

the other hand, the frequentist approach to network meta-analysis does not require prior 257 

knowledge or beliefs. Relying solely on the data collected, the frequentist approach calculates 258 

probabilities and estimates based on how likely the observed data would be under different 259 

assumptions about the parameter of interest (e.g., treatment effect) (Rücker, 2012). The results 260 

from both analyses however are quite similar (Dias & Caldwell, 2019; Hong et al., 2013) with the 261 

main difference being the way results are presented. Results from a frequentist approach are 262 

presented as estimated relative effects and a corresponding 95% Confidence Interval (CI), while 263 

results from a Bayesian NMA analysis are presented as summaries of the effect (typically, mean 264 

or median) and a 95% credible interval (CrI) (Dias & Caldwell, 2019). Both approaches can be 265 

implemented in commonly used statistical software such as R. Bayesian approaches to network 266 

meta-analysis are conducted with packages such as; “gemtc”, “bnma”, “pcnetmeta”, “multinma”, 267 

“nmaINLA”, “bayesmeta”, “BUGSnet” while the package “netmeta” developed by Balduzzi et al. 268 

(2023) is used for frequentist methods. 269 

2.2. An example of network meta-analysis in ecology: a case study using crop yield data 270 

2.2.1. Data collection 271 

In this systematic review and network analysis, we searched the database used in Takola et al. 272 

(unpublished) to identify published studies of interventions applied in the production of various 273 

crop yields. We compiled a dataset of meta-analytical studies from around the globe that had 274 

investigated the response of yield production to an agricultural intervention (Figure 3). These 275 
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strategies – ranging from; straw return, liming, super absorbent polymers, alternative fertilization 276 

options, substitution of mineral fertilizers with manure nitrogen, removal of topsoil, etc. are among 277 

some of the most common agricultural management strategies for balancing yield increase (a full 278 

list of interventions can be found in Table S1). Our initial dataset (from Takola et al., unpublished) 279 

consisted of 11 meta-analytical studies, with 13 interventions and 8814 yield data (Figure 4). 280 

Study information extracted include (i) study identifiers (e.g. title, abstract, authors, publication 281 

year); (ii) study characteristics (e.g. study design, study location); (iii) participant characteristics 282 

(e.g. sample size, standard deviation); (iv) intervention details; and (v) outcome data (e.g. effect 283 

sizes of intervention and control). Our primary outcome of interest was yield production measured 284 

in kilogram per hectare (kg/ha). 285 

 286 
Figure 3. Locations of sites included in the network meta-analysis. (see Appendix for a complete list of 287 

references) 288 
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 289 
Figure 4. A PRISMA flow diagram showing the systematic review process (‘identification’, ‘screening’, 290 

‘eligibility’, and ‘included’) of selecting publications relevant to our network meta-analysis. 291 

2.2.2. Inclusion criteria 292 

To help ensure consistency in our analysis, we defined a set of criteria to screen out irrelevant 293 

studies and only included studies that (i) were randomized controlled trials (ii) were paired i.e., 294 

compared an active intervention with a control (iii) had no missing data e.g. SD, sample size (n), 295 

effect sizes, etc. (iv) used interventions not applied as a second-line treatment. 296 

After applying our selection criteria (Table 1), we extracted data from 3 meta-analytical studies of 297 

interest (Table 2). These studies comprising of 3 paired interventions and 3733 yield data met all 298 

inclusion criteria and were then used for the network meta-analysis. 299 

Table 1. Summary of eligibility criteria 300 

  Inclusion criteria Exclusion criteria 
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Population Studies with no missing data. E.g. SD, sample 

size (n). 

No SD 

Studies that were open-access   

Studies that had supplementary datasets 

available 

  

Intervention Interventions for improving yield   

Study design Randomized controlled trials   

Comparison Paired. i.e., Intervention vs Control group (no 

intervention) 

Interventions not 

paired 

Outcome Yield values  

  301 

Table 2. Interventions of Interest 302 

No. Intervention Dataset 

1.    Straw return D331 

2.    Liming D973 

3.    Super Absorbent Polymer 

(SAP) 

D652 

4.    No Intervention (Control) D331, D973, D652 
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 2.2.3. Data analysis 303 

To make a comparison of these selected interventions on yield production, we conducted a 304 

network meta-analysis in R (version 4.3.2) using the netmeta package. This approach adopts 305 

frequentist methods and calculates point estimates and their corresponding confidence intervals 306 

based on weighted least squares regression (Rücker, 2012). We calculated the effect of the 307 

different agricultural interventions on yield production. As a summary measure of effect size, we 308 

estimated standardized mean differences (SMD) of each intervention relative to the control group 309 

using pairwise and a random effects meta-analytical model. In choosing a random-effects model 310 

for our network meta-analysis, we assume that heterogeneity exists among studies and that all 311 

effect sizes did not come from one population i.e., each study has different overall means and 312 

they don’t have one true overall mean. By choosing a random-effects model, our analysis further 313 

accounts for variability both within and between studies. The alternative to this is the ‘fixed-effect’ 314 

model commonly referred to as the ‘common-effect’ model which assumes that all effect sizes 315 

(from different studies) come from one population (Nakagawa et al., 2023). From the generated 316 

estimates and confidence intervals, probability scores (P-scores) were calculated and these were 317 

used to hierarchically rank each intervention according to their effects on yield using methods 318 

developed by Rücker & Schwarzer, 2015. Estimates, confidence intervals, and P-scores then 319 

allowed us to construct, forest plots and league tables which are useful in visualizing the 320 

comparisons. 321 

Our data input was based on a wide-arm format with 3733 rows (where each row corresponds to 322 

a single study with multiple or double comparisons) and it was subsequently transformed during 323 

the analytical process into the standard contrast-based format using the auxiliary pairwise function 324 

of the netmeta package. Our dataset has a continuous outcome wherein all variables containing 325 

information on group sample sizes (argument n), means (mean), and standard deviations (SD) 326 

are provided – hence the reason why we chose the SMD as an effect size. SMD is used as a 327 
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summary statistic when studies assess the same outcome but use different measurement 328 

methods (9.2.3.2 The Standardized Mean Difference, n.d.). In such cases, it becomes necessary 329 

to standardize the results of the studies to a common scale before combining them. SMD (often 330 

times referred to as Hedges’ g or Cohen’s d) is considered a comparative measure because it is 331 

typically used when comparing two groups (Nakagawa et al., 2023). In the netmeta package, the 332 

method by Crippa & Orsini, (2016) is used to guarantee consistent SMDs and standard errors for 333 

multi-arm studies (Balduzzi et al., 2023). 334 

SMD = 
𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝑚𝑒𝑎𝑛 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑔𝑟𝑜𝑢𝑝𝑠

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑎𝑚𝑜𝑛𝑔 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠
 335 

Similarly, a workflow detailing the steps involved in performing a network meta-analysis, along 336 

with the related functions of netmeta in R is provided in Figure S3. All codes used in our study 337 

are also provided in the supplement section. 338 

3. RESULTS 339 

3.1. Data summary 340 

This dataset contains cleaned data extracted from a systematic review assessing the effect of 341 

different interventions on yield production in different crop farms (maize, wheat, cotton, oat, etc.). 342 

They are a combination of three pairwise meta-analyses comparing the effects of "Straw return“, 343 

“Super Absorbent Polymer“, and "Liming“ respectively, with a Control (no treatment). The primary 344 

outcome was “Yield production”. Relative treatment effects were expressed as SMD. Data on this 345 

outcome were available for 3733 (total number of samples) from 3733 single pairwise comparison 346 

studies; all of which are two-arm studies comparing an active treatment against the absence of a 347 

treatment (control), thus providing information for two means (y1, y2), two standard deviations 348 

(sd1, sd2), two group sample sizes (n1, n2), along with two treatment labels (t1, t2). 349 
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3.2. Summary of Networks 350 

The number of treatments of interest in our network (also called nodes or vertices) is 4 (n=4) and 351 

d which is the number of designs is 3. Additionally, each study contributes a number of pairwise 352 

comparisons (m) and the total sum of all pairwise comparisons across studies in our network is 353 

3732. K (which is the number of independent studies) simultaneously corresponds to m and this 354 

is because there are only two-arm studies in our network. Assuming there was at the least, one 355 

study evaluating more than two treatments, then m will be greater than k. 356 

3.3. Net graph 357 

 In the network graph (Figure 5), we get a graphical presentation of the network structure with 358 

each treatment represented as a point (node) in the plane. It shows a network of interventions 359 

compared in a yield production study. Furthermore, treatments are connected by a line (edge) if 360 

at least one direct pairwise comparison exists with the thickness of the edges being proportional 361 

to the number of studies directly comparing treatments. There are 3 edges in the plot, suggesting 362 

that 3 of the 6 pairwise comparisons had direct evidence, while the remaining 3 (SAP versus 363 

Straw return, SAP versus Liming, and Liming versus Straw return) had only indirect evidence. 364 

Our network graph also visualizes the number of studies contributing to each pairwise 365 

comparison. From the net graph, we immediately see from the line width that the comparison of 366 

Super Absorbent Polymer (SAP) versus Control has the largest number of studies (1424). 367 

Furthermore, all studies were two-armed and only had direct comparisons. 368 
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 369 
Figure 5. Network graph without crossings for yield production network meta-analysis. Line widths are 370 

proportional to the number of studies directly comparing treatments 371 

3.4. Forest plot 372 

Forest plots provide a graphical display of the observed effect, confidence interval, and often 373 

times the weight of each study (Harrer et al., 2021). It can also be used as a way to better visualize 374 

the uncertainty in our network. With “Control” as the comparison group and from the forest plot 375 

that was produced, we visually see that the intervention “Super Absorbent Polymer” works better 376 

in comparison with the other interventions in improving crop yield, while the intervention “Straw 377 

return” does not have a strong impact on yield (Figure 6 and 7). 378 
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 379 
Figure 6. Forest plot for yield production network meta-analysis; with control as reference. 380 

 381 
Figure 7. Forest plot for yield production network meta-analysis (active intervention versus all other 382 

treatments).          383 
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3.5. Treatment estimates (SMD) – Assessment of interventions on yield 384 

The network estimates for the random effects models are provided, using Control as the reference 385 

group. We produced network estimates, lower and upper confidence limits for all observed and 386 

unobserved pairwise comparisons. The results in Table 4 below summarizes the standardized 387 

mean differences (SMDs) of Yield (in kg/ha) for each treatment compared to the "Control" along 388 

with their 95% Confidence Intervals. 389 

Table 4. Summary of standardized mean differences of yield 390 

  SMD 95%-CI z p-value 

Control . . . . 

Liming 1.24 [1.12; 1.37] 18.89 < 0.0001 

Straw return 1.07 [0.94; 1.21] 15.88 < 0.0001 

Super Absorbent Polymer 

(SAP) 

6.19 [5.98; 6.41] 55.72 0 

The random effects NMA shows strong evidence that all treatments have a significant positive 391 

effect on yield production compared to the control, as indicated by p-values < 0.0001. Liming 392 

(SMD = 1.24, 95% CI [1.12, 1.37]) had a moderate positive effect compared to the control, with a 393 

statistically significant result (p < 0.0001). The intervention - liming, increases crop yield by 1.24 394 

kg/ha, compared with an absence of it. In addition, we can also say that there is a 95% probability 395 

that this increase is between 1.12 and 1.37 kg/ha. Straw return (SMD = 1.07, 95% CI [0.94, 1.21]) 396 

also showed a moderate positive effect relative to the control, and the result was statistically 397 

significant (p < 0.0001). SAP showed the largest effect size (SMD = 6.19), indicating a very strong 398 

impact compared to the other treatments. 399 
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3.6.   Assessing heterogeneity (within designs) and inconsistency (between designs) 400 

tau2 = 4.1014; tau = 2.0252; I2 = 78.2% [77.6%; 78.9%] 401 

I² measures the proportion of total variation in effect estimates that is due to heterogeneity rather 402 

than chance. An I² of 78.2% suggests substantial heterogeneity, indicating that the treatment 403 

effects vary considerably across studies. 404 

Table 5. Quantifying heterogeneity and inconsistency 405 

  Q d. f. p-value 

Total 17123.15 3729 0 

Within designs 17123.15 3729 0 

Between designs 0.00 0 -- 

The results of the Q statistic tests for heterogeneity among studies (Total Q) show a p-value of < 406 

0.0001, thus indicating significant heterogeneity. Additionally, the significant p-value of the Q 407 

statistic examining heterogeneity within the groups of studies that share the same design (within 408 

designs) indicates substantial variability even within these groups. The tests of inconsistency 409 

(Between designs) typically assess differences between groups of studies with different designs. 410 

The results of our study suggest that all heterogeneity is captured within designs since there are 411 

no degrees of freedom provided for this test. 412 

Based on the results of the tests for heterogeneity and inconsistency (Table 5), we can deduce 413 

that there is significant variation among studies (this is supported by the high value of I² and the 414 

significance of the Q value. Given this, we performed the following recommended steps as 415 

recommended by N. J. Cooper et al., 2009. 416 
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 Investigating sources of Heterogeneity: With the use of (i) Subgroup Analysis, there is 417 

the possibility of conducting analyses within subgroups of studies to explore whether 418 

certain study characteristics would account for the observed heterogeneity, and (ii) the 419 

use of meta-regression techniques to identify factors that might explain the variability in 420 

effect sizes across studies. In this study however, we did not explore the causes of 421 

heterogeneity due to limitations of time, resource, and available information on important 422 

covariates at a global scale (such as field size, management history, management 423 

intensity, etc.). 424 

3.7. Hierarchy/Ranking of competing treatments 425 

Table 6 shows treatment rankings and the probability that each intervention is the ‘best’ or ‘worst’ 426 

in improving crop yield. Here ranks are reported for effectiveness, such that rank 1 means that 427 

the intervention is most effective. Control/No Intervention has a rank of 4 (P-score = 1.0000). That 428 

is, on average, the absence of no intervention was ranked approximately fourth out of the four 429 

available treatments (i.e., worst) for improving crop yield. Conversely, Super Absorbent Polymer 430 

(SAP) was ranked first out of all four treatments and had a higher probability of being the most 431 

effective treatment to improve crop yield. The area under the cumulative ranking curve (SUCRA), 432 

a summarization method that gives an index of the overall performance of the treatments (Salanti 433 

et al., 2011) can then be derived from the ranking probability of each treatment. SUCRA ranges 434 

from 0 to 1 and the higher the SUCRA value, the greater the likelihood that a treatment is better 435 

than the other treatments in the network. On the other hand, the closer the SUCRA value to 0, 436 

the greater the likelihood that a treatment is worse than the other treatments. 437 

Table 6. Treatment ranking based on P-scores and SUCRA values 438 

Intervention P-score SUCRA values 
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Control 1.0000 1.0000 

Straw return 0.6548 0.6543 

Liming 0.3452 0.3457 

Super Absorbent Polymer 

(SAP) 

0.0000 0.0000 

-        SUCRA values based on 1000 simulations 439 

4. DISCUSSION 440 

As experimental evidence in Ecology increases, so does the need for methodologies and 441 

statistical models to analyze them. Meta-analyses are powerful tools that synthesize evidence 442 

and help decision-making (Bilotta et al., 2014). Currently, pairwise meta-analyses are the most 443 

commonly used statistical technique to quantitatively synthesize research findings and to 444 

compare treatments. However, they have limitations as they can only compare two treatment 445 

options at a time. Network meta-analyses are a tool to compare multiple treatments because they 446 

combine in a single coherent analysis, studies where a direct comparison has been made (direct 447 

evidence) together with studies where there is no pairwise comparison (indirect evidence). In 448 

addition, they provide a helpful framework to present a comprehensive, and reproducible 449 

synthesis of the evidence (Bilotta et al., 2014). However, the uptake of this method by ecological 450 

research has been rather slow.  451 

In this study, we present a network meta-analysis and implement it on data from agricultural field 452 

experiments. We provide a general introduction to network meta-analysis (including its 453 

advantages over the traditional pairwise meta-analysis), showcase the steps involved in 454 

conducting/correctly reporting one, and discuss the major assumptions that guide a standard 455 

NMA, such as consistency and transitivity. In this NMA, we were able to compare different 456 
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interventions used in improving crop yield. Doing so also helped us make comparisons of 457 

interventions that had not been previously addressed in any individual primary study (indirect 458 

evidence). The dataset we used contains experiments with the following treatments: Super 459 

Absorbent Polymer, straw return, liming, and a control group (no intervention). Our results show 460 

that the most effective treatment for yield enhancement is the Super Absorbent Polymer. The 461 

hierarchy of the treatments was as follows:  Super Absorbent Polymer, liming, straw return, and 462 

control. 463 

The benefits of Super Absorbent Polymer on crop yield have already been summarized in 464 

previous reviews by Zheng et al. (2023). When compared to a control group (no intervention), the 465 

addition of SAP significantly increased (p < 0.01) crop yields by 12.8% (CIs: 12.1 - 13.4%). The 466 

effect sizes of crop yield under liming in comparison to control treatments (no liming) showed that 467 

liming similarly had a positive influence on crop yield (Enesi et al., 2023; Li et al., 2019; Liao et 468 

al., 2021; average of 12.9%). Likewise, Wang et al. (2021) reported an annual increase of 5.83% 469 

in the yield of agricultural products like corn when an optimal scheme of straw return was 470 

implemented relative to straw removal. Assuming we were to look at the result of our NMA 471 

individually (i.e. Treatment vs Control), these pairwise meta-analyses comparisons confirm our 472 

results that all interventions significantly contribute to improving crop yield. Additionally, they could 473 

offer some insight into the validity of the treatment rankings obtained during our network meta-474 

analysis. To the best of our knowledge, the global network meta-analysis study published by 475 

Herrmann et al. (2022) on the promotion of crop growth, yield, and quality by bioeffectors is the 476 

first study that utilizes NMA methods on agricultural field experiments. We however recommend 477 

that subsequent studies that plan on implementing this method follow reporting protocols and 478 

already established guidelines such as the one suggested by Hutton et al. (2015) when 479 

conducting or reporting the results of an NMA. 480 

Network meta-analysis (NMA) can be a valuable tool for ecologists when synthesizing evidence 481 

from studies that compare multiple interventions or management strategies in controlled 482 
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experimental settings. For example, lattice square agricultural experiments, where different 483 

combinations of crops, fertilizers, or farming methods are systematically tested across multiple 484 

plots, provide structured data suitable for NMA. Similarly, controlled field experiments designed 485 

to evaluate different ecological restoration techniques, pest management strategies, or habitat 486 

interventions often involve overlapping comparisons that align well with NMA assumptions, such 487 

as transitivity and consistency. On the other hand, the applicability of NMA is more limited in 488 

monitoring or impact studies, as these often lack the controlled settings and standardized 489 

comparisons needed for a robust analysis. Monitoring studies frequently involve highly variable 490 

contexts, such as natural ecosystems with diverse species interactions or long-term impacts 491 

influenced by unmeasured confounders (e.g., climate variability, historical land use). These 492 

complexities make it challenging to meet the assumptions of exchangeability and consistency, 493 

reducing the reliability of indirect comparisons in such cases. 494 

A common criticism of the implementation of network meta-analyses in ecological contexts is that 495 

experiments are not randomized because the researcher is not typically blind to the control and 496 

treatment groups. Randomization is essential in medical studies because it helps to make causal 497 

inferences between the treatment and the effect. Although the ecologist cannot be blind to field 498 

treatments, we argue that causal inference is facilitated from the variation of the contexts in which 499 

each treatment is applied (i.e. temporal and spatial contexts). Regarding the assumption of 500 

transitivity which essentially seeks to ensure that studies are comparable to each other with 501 

respect to any potential effect-modifying characteristics, we emphasize the need to carefully 502 

assess the quality of studies to ensure they are comparable before they are included in a network 503 

meta-analysis. Violating this crucial assumption can lead to inconsistencies in a network, which 504 

can lead to inaccuracies in the result of the analysis. 505 

In conclusion, the use of NMA has continued to grow over the last decades with expansions into 506 

different research fields. We showcase with our study, how this method can be implemented on 507 

data from agro-ecological experiments, but there is a plethora of other contexts in which this 508 
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method can be applied: for example, (i) in the estimation of the effects of environmental drivers – 509 

including climate change, invasive species, and habitat fragmentation, (ii) in the comparison of 510 

interventions used in nature conservation or forest management (iii) long-term experiments in 511 

grassland ecosystems (such as The Jena Experiment). More importantly, the resulting hierarchy 512 

of treatments, based on their effectiveness, is a very valuable and important tool to inform 513 

decision-making. For example, policy-makers can evaluate specific conservation measures as 514 

well as their interactions, to effectively design protected areas. Overall, network meta-analysis is 515 

a novel tool at the disposal of ecologists, in their effort to find the best nature-based solutions. 516 

 517 

 518 
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https://the-jena-experiment.de/
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SUPPLEMENT SECTION 744 

1. Figures 745 

 746 
Figure S1. Number of publications on meta-analysis (search web of science using string “meta-analysis” 747 

until March 2024). The number of papers using meta-analytical methods has increased exponentially over 748 

the years. 749 

 750 

 751 
Figure S2. Pie chart showing the percentages of scientific contributions/articles on network meta-analysis 752 

according to research area (search web of science using string “network meta-analysis” until March 2024) 753 
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 754 

 755 

Figure S3. Workflow to perform a (component) network meta-analysis with the R package netmeta. Adapted 756 

from (Balduzzi et al., 2023) 757 

  758 

 759 
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2. Tables 760 

Table S1. Summary of retrieved datasets with accompanying interventions 761 

Dataset 

ID 

Title of the meta-analytical 

study paper 

Intervention Citation 

D331 Agricultural management 

strategies for balancing yield 

increase, carbon 

sequestration, and emission 

reduction after straw return 

for three major grain crops in 

China: A meta-analysis 

Straw return Liu, D., Song, C., Xin, Z., Fang, C., Liu, Z., & 

Xu, Y. (2023). Agricultural management 

strategies for balancing yield increase, 

carbon sequestration, and emission 

reduction after straw return for three major 

grain crops in China: A meta-analysis. 

Journal of Environmental Management, 340, 

117965. 

https://doi.org/10.1016/j.jenvman.2023.1179

65 

https://doi.org/10.1016/j.jenvman.2023.117965
https://doi.org/10.1016/j.jenvman.2023.117965


 

41 

D973 Potential benefits of liming to 

acid soils on climate change 

mitigation and food security 

Liming Wang, Y., Yao, Z., Zhan, Y., Zheng, X., 

Zhou, M., Yan, G., Wang, L., Werner, C., & 

Butterbach-Bahl, K. (2021). Potential 

benefits of liming to acid soils on climate 

change mitigation and food security. Global 

Change Biology, 27(12), 2807–2821. 

https://doi.org/10.1111/gcb.15607 

D1120 The adaptive capacity of 

maize-based conservation 

agriculture systems to 

climate stress in tropical and 

subtropical environments: A 

meta-regression of yields 

Straw addition Steward, P. R., Dougill, A. J., Thierfelder, C., 

Pittelkow, C. M., Stringer, L. C., Kudzala, M., 

& Shackelford, G. E. (2018). The adaptive 

capacity of maize-based conservation 

agriculture systems to climate stress in 

tropical and subtropical environments: A 

meta-regression of yields. Agriculture, 

Ecosystems & Environment, 251, 194–202. 

https://doi.org/10.1016/j.agee.2017.09.019 

https://doi.org/10.1111/gcb.15607
https://doi.org/10.1016/j.agee.2017.09.019


 

42 

D921A 

& 

D921B 

Integrated biochar solutions 

can achieve carbon-neutral 

staple crop production 

Integrated 

biochar 

solutions, 

Straw addition 

Xia, L., Cao, L., Yang, Y., Ti, C., Liu, Y., 

Smith, P., van Groenigen, K. J., Lehmann, 

J., Lal, R., Butterbach-Bahl, K., Kiese, R., 

Zhuang, M., Lu, X., & Yan, X. (2023). 

Integrated biochar solutions can achieve 

carbon-neutral staple crop production. 

Nature Food, 4(3), 236–246. 

https://doi.org/10.1038/s43016-023-00694-0 

D309 Improving yield and nitrogen 

use efficiency through 

alternative fertilization 

options for rice in China: A 

meta-analysis. 

Green 

manure, 

Organic 

fertilizer, 

Secondary 

and 

micronutrient 

fertilizer, Slow 

release 

fertilizer, Straw 

return 

Ding, W., Xu, X., He, P., Ullah, S., Zhang, J., 

Cui, Z., & Zhou, W. (2018). Improving yield 

and nitrogen use efficiency through 

alternative fertilization options for rice in 

China: A meta-analysis. Field Crops 

Research, 227, 11–18. 

https://doi.org/10.1016/j.fcr.2018.08.001 

https://doi.org/10.1038/s43016-023-00694-0
https://doi.org/10.1016/j.fcr.2018.08.001
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D669 Effects of the Ratio of 

Substituting Mineral 

Fertilizers with Manure 

Nitrogen on Soil Properties 

and Vegetable Yields in 

China: A Meta-Analysis 

Substituting 

mineral 

fertilizers with 

manure 

nitrogen 

Wang, S., Lv, R., Yin, X., Feng, P., & Hu, K. 

(2023). Effects of the Ratio of Substituting 

Mineral Fertilizers with Manure Nitrogen on 

Soil Properties and Vegetable Yields in 

China: A Meta-Analysis. Plants, 12(4), 

Article 4. 

https://doi.org/10.3390/plants12040964 

D473 A global meta-analysis of 

cover crop response on soil 

carbon storage within a corn 

production system 

Cover crops Joshi, D. R., Sieverding, H. L., Xu, H., Kwon, 

H., Wang, M., Clay, S. A., Johnson, J. M., 

Thapa, R., Westhoff, S., & Clay, D. E. 

(2023). A global meta-analysis of cover crop 

response on soil carbon storage within a 

corn production system. Agronomy Journal, 

115(4), 1543–1556. 

https://doi.org/10.1002/agj2.21340 

https://doi.org/10.3390/plants12040964
https://doi.org/10.1002/agj2.21340
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D652 Effects of super absorbent 

polymer on crop yield, water 

productivity and soil 

properties: A global meta-

analysis 

Super 

absorbent 

polymer (SAP) 

Zheng, H., Mei, P., Wang, W., Yin, Y., Li, H., 

Zheng, M., Ou, X., & Cui, Z. (2023). Effects 

of super absorbent polymer on crop yield, 

water productivity and soil properties: A 

global meta-analysis. Agricultural Water 

Management, 282, 108290. 

https://doi.org/10.1016/j.agwat.2023.108290 

D906 Assessment of drainage 

nitrogen losses on a yield-

scaled basis 

Drainage 

nitrogen 

losses 

Zhao, X., Christianson, L. E., Harmel, D., & 

Pittelkow, C. M. (2016). Assessment of 

drainage nitrogen losses on a yield-scaled 

basis. Field Crops Research, 199, 156–166. 

https://doi.org/10.1016/j.fcr.2016.07.015 

D352 Effect of soil erosion depth 

on crop yield based on 

topsoil removal method: a 

meta‐ analysis 

Topsoil 

removal 

experiment 

Zhang, L., Huang, Y., Rong, L., Duan, X., 

Zhang, R., Li, Y., & Guan, J. (2021). Effect of 

soil erosion depth on crop yield based on 

topsoil removal method: A meta-analysis. 

Agronomy for Sustainable Development, 

41(5), 63. https://doi.org/10.1007/s13593-

021-00718-8 

https://doi.org/10.1016/j.agwat.2023.108290
https://doi.org/10.1016/j.fcr.2016.07.015
https://doi.org/10.1007/s13593-021-00718-8
https://doi.org/10.1007/s13593-021-00718-8


 

45 

 762 


