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Abstract 

1. Ecological forecasting is essential for addressing climate change adaptation and mitigation. 

In reforestation and habitat restoration, seed production forecasting will support planning and 

resource allocation, providing benefits for wildlife management and public health. 

2. We hind- and forecast seed production using statistical models based on weekly weather 

and high-resolution seed data of six European tree species recorded in two Austrian old-

growth forest sites. Using a sliding-window approach and model selection, we model annual 

reproduction for three coniferous (Silver fir, European larch, Norway spruce) and three 

broadleaved species (Sycamore maple, European beech, European ash). We investigate the 

change of explained variance with decreasing time before seed rain and evaluate hindcasting 

proficiency as well as the potential forecast horizon based on quantitative and categorical 

measures useful to stakeholders in the tree seed sector. 
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3. Most models show unbiased but partly imprecise predictions with a broad range in 

explained variance (0.15 to 0.93) in the year prior to seed rain. Nevertheless, within this 

timeframe, hindcasting seed rain above 10% of the long-term maximum, a threshold relevant 

to practitioners, works well for all species. Previous seed rain explains a large proportion of 

the variation in seed rain of fir, ash, and maple. 

4. We forecast seed rain for 2022 to 2025 for all six species. Regarding categorical one-year-

out predictions, results for 2022 and 2023 were mostly correct for beech, maple and larch, 

mixed for spruce and fir, and incorrect for ash. 

5. Synthesis and Applications: Seed production is predictable with a promising degree of 

accuracy for most studied species one year in advance. This holds value for seed harvesters, 

nurseries, forest and wildlife managers, and may also inform seed orchard management and 

public health risk anticipation. Seed forecasts will help address seed scarcity and thus support 

climate change adaptation and mitigation. Future efforts should prioritise species based on 

seed storability and support the harvesting of rare species. Understanding reproductive 

strategies and their responses to climate change points the way forward. Further collaboration 

with user groups and implementing multi-level seed monitoring schemes will allow for 

tailoring further seed forecasts that transform the field. 
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seeding; forest reproductive material; tree seeds;   



 

3 

Introduction 1 

Ecological forecasting has the potential to become a critical tool in supporting climate 2 

change adaptation and mitigation (Dietze et al. 2024), for example in reforestation and 3 

habitat restoration where uncertainty about annual seed production of target species results in 4 

logistical challenges or even project failures (Whittet et al. 2016, Jalonen et al. 2018, Pearse 5 

et al. 2021). Such projects often require large amounts of seeds within a short time frame, 6 

which can pose a challenge since reproduction by many perennial plant species is strongly 7 

variable in time with high spatial synchrony (see Fig. 1). 8 

Figure 1: Standardised mean seed rain of Sycamore maple (Zöbelboden), European beech (Rothwald) and 9 

Norway spruce (Rothwald). Bars denote standard error. 10 

This reproductive strategy termed masting results in occasional high seed production 11 

years interspersed by years of low or absent seed crops (Kelly 1994, Pesendorfer et al. 2021). 12 

Combined with the varying capacity to store surplus seeds to meet future demand, this 13 

behaviour may result in seed scarcity for restoration and afforestation efforts - especially for 14 

recalcitrant species with a short viability period (Burkart 2018, Konrad et al. 2023). As seed 15 

harvesting is labour- and time-intensive, predicting seed crops would support planning and 16 

resource allocation within the seed, forestry and restoration sectors (Pearse et al. 2021, Kettle 17 
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et al. 2010). Furthermore, as climate change may lead to a breakdown in masting patterns 18 

(Foest et al. 2024) and an increase in the prevalence of biotic pests (Ciceu et al. 2024), the 19 

issue of seed (non-)availability has become a matter of urgency (Hazarika et al. 2021).  20 

Seed production also plays an important role in wildlife management (Elliott & Kemp 21 

2016) and public health risk anticipation (Rubel & Brugger 2020, Bregnard et al. 2021), as it 22 

drives interannual variation in a range of community and ecosystem-wide processes in forests 23 

(Jones et al. 1998, Levine & Murrell 2003, Nopp-Mayr et al. 2012, Michaud et al. 2024).  24 

For instance, forecasting acorn crops or failures could reduce the potential for human-bear 25 

conflicts in Japan (Oka et al. 2004), aid planning of release time for endangered seed-26 

dependent animals (Fidler et al. 2008), and provide earlier anticipation of peak infection risk 27 

for tick-borne diseases (Rubel & Brugger 2020). Therefore, improving our understanding of 28 

seed production patterns and developing short-term and long-term predictions of seed 29 

production represents a high priority in forest ecology and beyond (Journé et al. 2023). 30 

Forecasting of ecological time series relies on quantitative or mechanistic models that 31 

capture the intrinsic and extrinsic drivers of spatiotemporal variation in the phenomenon of 32 

interest, usually based on historical observations (Dietze et al. 2017, Lewis et al. 2022). In 33 

tree seed production, the strong relationship with weather before and during flowering and 34 

seed development provides a unique opportunity to develop anticipatory predictions of seed 35 

crop size months or even years in advance (Pearse et al. 2021). For example, summer 36 

temperatures two years before can act as a cue for synchronizing flowering effort in some 37 

Fagus species (Piovesan & Adams 2001, Vacchiano et al. 2017), while spring temperature 38 

and precipitation can influence pollination and acorn maturation processes in Quercus species 39 

(Perez-Ramos et al. 2010, Fleurot et al. 2023). Therefore, identifying key weather patterns 40 

that correlate with seed production allows for hindcasting and subsequent forecasting (Journé 41 

et al. 2023).  42 
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While several studies have identified specific time windows and weather patterns 43 

which correlate strongly with annual seed production in a given species (Poncet et al. 2009, 44 

Koenig et al. 2015, Bisi et al. 2016, Moreira et al. 2021), few have explored the cumulative 45 

effect of these time windows on the sequential processes that ultimately determine the extent 46 

of annual seed production, from bud initiation over flowering and pollination to seed 47 

development, fructification, and abscission. This sequential approach provides important 48 

information about the predictability of a system (Pennekamp et al. 2019) as well as the 49 

potential forecasting horizon, the time over which useful forecasts can be made (Petchey et 50 

al. 2015). Transforming earlier studies on correlations of weather and seed production into 51 

actual ecological forecasting is thus timely and promising.  52 

The utility of a forecast can only be determined from the perspective of potential 53 

users, i.e. whether a forecast is accurate, precise, and early enough to generate or modify 54 

actions within the tree seed sector. This threshold is typically based on an agreed measure of 55 

forecasting proficiency. For instance, the weather forecast horizon is typically a few days 56 

ahead, while the forecast horizon for tree seed production is still largely unknown (Journé et 57 

al. 2023). Within the Austrian seed sector, actors have identified the value of a reliable 58 

prediction the year before seed rain, but any reliable forecast before summer of the seed 59 

harvest year would improve their planning horizon (Gadermayer July 2024, pers. comm.). 60 

From a biological point of view, this seems realistic for those species that show a strong 61 

alternating pattern (e.g. Abies alba) or species that exhibit “flower masting”, i.e. those that 62 

regulate their seed production mainly by variation in the number of flowers, which is usually 63 

determined by cues in the previous growing season (Pearse et al. 2016). Conversely, fruit 64 

maturation masting species - where the variation in seed production is due to differences in 65 

the rate of flowers maturing into seeds - might have a shorter forecasting horizon, as driving 66 

factors for variation operate mainly within the seed maturation year. Furthermore, any 67 
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otherwise reliable prediction may be rendered incorrect by environmental vetoes that occur 68 

late in the fruit development cycle, such as extreme drought during the seed maturation phase 69 

which leads to fruit abortion (Nussbaumer et al. 2020).  70 

Recently, Journé et al. (2023) used a sequential modelling approach to build 71 

hindcasting models for reproduction across 94 European beech (Fagus sylvatica L.) 72 

populations, in which they investigated how much variance can be explained as the sequence 73 

of biologically-relevant weather time windows gets closer to the actual seed production 74 

event. They found that the amount of explained variation increases strongly about one year 75 

before seed rain, providing a first estimate of a potential forecasting horizon at which 76 

meaningful predictions may be formulated. For most tree species, however, the explanatory 77 

power of the statistical relationship between weather and seed production, based on additive, 78 

sequential models suitable for forecasting, has not been explored. 79 

Here, we use long-term, high-resolution data sets on annual seed production (hereafter 80 

“ASP”) in six European tree species recorded in two Austrian old-growth forest sites to hind- 81 

and forecast seed production based on weather data. In addition, we included temporal 82 

autocorrelation with previous ASP data, which is indicative of intrinsic drivers such as 83 

resource dynamics (Sork et al. 1993, Pearse et al. 2016). Specifically, we constructed 84 

sequential statistical ASP models for three coniferous species, Silver fir (Abies alba), 85 

European larch (Larix decidua), and Norway spruce (Picea abies), and three broadleaved 86 

species, Sycamore maple (Acer pseudoplatanus), European beech (Fagus sylvatica), and 87 

European ash (Fraxinus excelsior), for some of which the weather correlations with seed 88 

production are poorly understood. Using a sliding-window approach and model selection (R-89 

package climwin, van de Pol et al. 2016, Bailey & van de Pol 2016) based on weekly weather 90 

data, we investigate the change of explained variance with decreasing time horizon before 91 

seed rain. We developed our models using seed data until 2021 and forecast seed amount for 92 



 

7 

the following four years, including the fall of 2025. Thus, we demonstrate what is possible by 93 

using sequential statistical ASP models and explore unchartered terrain by forecasting the 94 

upcoming ASP for six temperate European tree species. We aim to lay the foundation for 95 

further development of ASP forecasts, including tools designed for use by practitioners, as 96 

well as providing a first benchmark for the field.   97 
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Methods 98 

Sites 99 

We used ASP data from two montane old-growth forest sites in the Northern 100 

Limestone Alps in Austria, covering 18 years (Rothwald) and 30 years (Zöbelboden). Despite 101 

their proximity (50 km), the sites differ slightly in species composition, climate, and soil 102 

properties. For detailed site descriptions, see Supplementary Information. 103 

Data 104 

Both study sites are equipped with rodent-safe seed traps (detailed description of 105 

Rothwald in Gratzer et al. 2022). At Zöbelboden, 56 traps are arranged across 14 locations 106 

throughout 90 ha. We used data from Zöbelboden covering ASP of Picea abies, Fagus 107 

sylvatica, Larix decidua, Acer pseudoplatanus and Fraxinus excelsior from 1994 to 2022, 108 

and data from Rothwald for ASP of Picea abies, Fagus sylvatica and Abies alba from 2006 109 

to 2023. 110 

We used downscaled weather data on air temperature and precipitation from existing 111 

datasets or interpolated data from nearby weather-stations using statistical methods in daily 112 

resolution. These high-resolution datasets provide more accurate results especially in such 113 

mountainous terrain with steep temperature gradients. A detailed description of the method 114 

can be found in Lehner et al. (2024) and Gadermaier et al. (2024). 115 

Data manipulation 116 

First, we calculated the mean annual seed rain/m2 per species and site. As the species 117 

distribution at Zöbelboden is uneven, we only included traps with cumulative seed rain values 118 

above the 10th percentile for each species, in order to exclude spurious seed dispersal events. 119 

For Rothwald, we used seed data of spruce and fir from the conifer-dominated basin, and 120 

beech seed data from the beech-dominated slopes.  121 
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We aggregated the daily weather data to mean weekly temperatures and weekly 122 

precipitation sums. To incorporate the combined effect of these two factors, we calculated the 123 

weekly climatic water balance (CWB) following the Penman-Monteith equation within the 124 

R-package Evapotranspiration (version 1.16, Guo et al. 2022). 125 

Data analysis 126 

To investigate the relationship between ASP and previous weather conditions, we 127 

used a sliding-window approach to model selection, namely the package climwin (version 128 

1.2.3; Bailey & van de Pol 2016), specifically the function slidingwin(), which was designed 129 

for investigating correlations of varying-length windows of a given time series to any 130 

biological variable of interest (Bailey & van de Pol 2016). Slidingwin() uses deltaAIC as 131 

measure of comparison to a previously constructed null model (Bailey & van de Pol 2016), 132 

with the AIC being a common criterion for the goodness of model fit (Burnham & Anderson 133 

2002). Assuming that autocorrelation would play a significant role in ASP variation, we 134 

constructed a null model using prior ASP (seedsT-1) as a fixed effect. 135 

Slidingwin() requires a fixed date for the biological variable in question; we chose the 136 

first day of week 36 (early September) as seed rain date, corresponding roughly with the time 137 

when seed harvest usually commences (Bailey & van de Pol 2016). Although climwin has 138 

been designed as a model selection tool, it does not allow for constructing sequential additive 139 

models. To implement this approach, we used slidingwin() to identify relevant time windows, 140 

and then modelled their sequential additive effects (Fig. 2). Based on literature, we 141 

considered prior ASP and weather windows up to two (three for Larix decidua, Haasemann 142 

1973) years before seed rain as predictors for subsequent ASP. Note that no prior knowledge 143 

of likely weather windows within this time frame was assumed. 144 
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Figure 2:  Schematic depiction of species- and site-specific model building: First, we used slidingwin() to identify 145 

the start and end of the candidate weather predictors (Temp = mean weekly temperature, Prec = weekly 146 

precipitation sum, CWB = climatic water balance). We used I) AIC-based stepwise regression for backward 147 

model selection, and II) conservative forward model selection by adding predictors in their natural sequence, 148 

keeping them only if they provided at least an improvement in AIC of -2 over the previous best model (null model: 149 

seeds ~1).  150 

To build species- and site-specific versions of the sequential models, we standardised 151 

mean ASP between 0 and 100. Within our ASP time series, assumptions of negative binomial 152 

distribution were verified (Zuur et al. 2009), so we fitted negative binomial generalized linear 153 

models using a log link (R-package MASS, v. 7.3-53, Venables & Ripley 2002).  154 
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For backward model selection, we built a full statistical model of all candidate 155 

windows for each species and site and then used stepAIC(). We allowed for overfitting and 156 

collinearity of predictors, as we were explicitly focused on site- and species-specific 157 

statistical modelling, rather than hypothesis testing (Dormann et al. 2012). Furthermore, to 158 

reflect the realistic availability of information for future forecasting application, we 159 

conducted a second, conservative approach of forward model selection. Here, we started with 160 

a null model of standardised mean ASP ~ 1 and then added the earliest weather predictor that 161 

would become available. We assessed whether it improved model fit (deltaAIC > 2), 162 

otherwise we dismissed it. We progressed through all predictors, and then used stepAIC() to 163 

check whether removal of any predictor would further improve the AIC. The resulting model 164 

was termed the “forward model”, as opposed to the “backward model” resulting from the 165 

backward model selection. 166 

We compared the results of both model selection approaches for hindcasting and used 167 

two novel approaches of investigating ASP model proficiency with regard to the forecast 168 

horizon. Finally, we predicted standardised mean ASP for 2022 to 2025. As the available 169 

high-resolution weather data was available until the end of 2023, we were limited in our 170 

forecasts to 2024 and 2025.  171 

All analyses were conducted in R version 2023.03.0+386 (Posit team 2023).   172 
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Results 173 

Overall hindcasting performance of models 174 

As the period between hindcast and seed rain narrows, the increase in explained 175 

variance along the temporal sequence of added model predictors (Fig. 3) reflects a decline in 176 

prediction uncertainty. The overall final model performance was higher for backward 177 

selected models than for forward selected models. For backward selection, the adjusted 178 

Kullback-Leibler R2 (Cameron & Windmeijer 1997, Zhang 2022) of final models ranged 179 

from 0.47 (Sycamore maple Zöbelboden = ZB) to 0.97 (Silver fir Rothwald = RW), while 180 

forward selection resulted in a wider range from 0.23 (European ash ZB) to 0.92 (Silver fir 181 

RW). Models derived from the shorter ASP time series (RW) resulted in higher R2, while 182 

model performance of ZB was more diverse. 183 

All models except one achieved an R2 of at least 0.3 [max. 0.93] within the year 184 

before seed rain (T-1), indicating sufficient information was available to explain a major part 185 

of the total seed rain variation. However, weather predictors of the seed rain year T0 further 186 

increased R2, especially for beech, spruce and larch (Fig. 3, Table 1).  187 



 

13 

 188 

Figure 3: Evolution of the adjusted K-L R2 per added predictor within the final models of the forward (turquoise) 189 

and backward (purple) selected models. The right end of the x-axis represents the time of seed rain in early 190 

September. Toward the left side of each plot, the dotted vertical lines delimit the previous two years (or three in 191 

the case of larch) with every third month abbreviated (first J = January, A = April, second J = June, O = October).  192 
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Model accuracy and bias 193 

Despite the high proportion of explained variance in most models, the RMSE 194 

remained high (from about 20 to 45, see SI). As all seed data are scaled between 0 and 100, 195 

this indicates continuous average prediction errors of 20% to 45%. To examine the 196 

development of model accuracy over time, we assessed the percentage of cases where the 197 

prediction interval (prediction ± SE) and the observation interval (observation ± SE) 198 

overlapped along the model sequence (prediction-observation interval coverage, POIC). 199 

Table 1 shows R2 and POIC of T-1 and T0. An increase in R2 from T-1 to T0 is mostly 200 

associated with an increase in POIC, and only rarely with a decrease in T0. Thus, we see an 201 

increase in model accuracy as the seed rain approaches that is reflected by the increase in R2 202 

in Figure 3. 203 

Table 1: R2 and prediction-observation interval coverage [%] of each final forward (“for”) and backward (“back”) 204 

selected model at the end of the year before seed rain (T-1) and at the end of the seed rain year (T0). The absence 205 

of further predictors added in T0 is marked by “-“.  206 

Species and Site T-1 T0 

 
R2 POI Coverage [%] R2 POI Coverage [%] 

Beech RW back 0.58 46.7 0.94 66.7 

Beech RW for 0.42 46.7 0.63 40 

Beech ZB back 0.59 40.7 0.78 37 

Beech ZB for 0.54 25.9 0.62 29.6 

Spruce RW back 0.75 73.3 0.96 80 

Spruce RW for 0.65 33.3 0.78 53.3 

Spruce ZB back 0.42 40.7 0.61 44.4 

Spruce ZB for 0.54 29.6 - - 

Fir RW back 0.93 80 0.97 86.7 
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Fir RW for 0.92 46.7 - - 

Larch ZB back 0.39 42.3 0.75 61.5 

Larch ZB for 0.3 28.5 - - 

Ash ZB back 0.49 55.6 0.57 63 

Ash ZB for 0.15 29.6 0.23 44.4 

Sycamore ZB back 0.47 63 - - 

Sycamore ZB for 0.41 55.6 0.43 55.6 

To clarify whether the remaining inaccuracies are biased in a particular direction, we 207 

used prediction-observation plots (Fig. 4) to visualise which models tend to over- or 208 

underpredict seed rain. The close alignment of the predicted vs. observed line with the 1:1 209 

line in Figure 4 indicates that most models show unbiased, but partly imprecise, predictions 210 

already in the year before seed rain (T-1). Some models tend to underpredict seed production 211 

in T-1 (forward models for larch, ash and beech). Overall, the most common bias is 212 

underprediction in T-1 and minor over- and underprediction in T0. Forward models also tend 213 

to have a slightly larger bias than backward models, consistent with Table 1. In T0 models for 214 

ash and spruce, the bias varies with model selection approach.  215 
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  216 

Figure 4: Linear models depicting the relationship of predictions vs. observations with a 95% confidence interval 217 

(shaded area) of the forward (turquoise) and backward (purple) selected models, once at the end of the year before 218 

seed rain (T-1) and once in the year of seed rain (T0). The dotted line represents the 1:1 line.  219 
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Model structure and components 220 

Previous ASP explains a large proportion of the variation in most models for fir, ash, 221 

and maple, and only a small proportion (< 0.15 R2) in most models for beech, spruce and 222 

larch. In the forward selected models for spruce and larch, as well as in all RW models for 223 

beech, the previous ASP is absent (see SI). Overall, forward selected models suffer less from 224 

multicollinearity and are more stable than backward selected models, which were deliberately 225 

allowed to be overfitted. Accordingly, forward selected models tend to have a much lower 226 

number of predictors. The final model weather predictor types are diverse, although most 227 

windows fall in the first half of the calendar years, between late winter and early summer.  228 

 229 

Exploring the potential forecasting horizon 230 

The potential forecasting horizon depends on the formulation of a measure of this 231 

“usefulness”, which will vary according to the user group.  By investigating the change in 232 

explained variance (R2) and prediction-observation interval coverage (POIC), we have 233 

provided initial estimates of the quantitative limits of potential forecast horizons for each 234 

species.  235 

To assess the categorical hindcasting capability of our models, we sorted seed rain 236 

data into 3 categories: <=10%, >10% and >50% of the seed rain maximum. These were 237 

informed by opinions from the Austrian tree seed sector, and might represent seed production 238 

failures, moderate and bumper seed crops. Most seed years fell into the lowest category and 239 

very few into the highest. We compared the T-1 and T0 year predictions of each model 240 

selection approach: Hindcasting above 10% of the maximum worked well for all species in 241 

the year prior to seed rain. Hindcasting “lows” in T-1 worked well for beech, spruce, fir and 242 

ash, while for larch and maple less than two third of the categorical predictions were accurate 243 
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(Table 2, Fig. 4). In line with R2 and prediction-observation interval coverage (Table 1), we 244 

see that model accuracy tends to be higher for backward selected models. 245 

Table 2: Proportion of correct (hindcast) predictions of seed amount categories in % of each final forward (“for”) 246 

and backward (“back”) selected model at the end of the year before seed rain (T-1) and at the end of the seed rain 247 

year (T0). 248 

 T-1 T0 

Category 0-10 >10 >50 0-10 >10 >50 

Beech RW back 100 88 100 100 100 100 

Beech RW for 29 75 50 57 75 100 

Beech ZB back 95 71 100 100 86 100 

Beech ZB for 95 71 100 95 71 100 

Spruce RW back 91 100 100 100 100 100 

Spruce RW for 82 100 67 91 100 33 

Spruce ZB back 82 80 67 88 80 100 

Spruce ZB for 94 90 67 - - - 

Fir RW back 100 100 100 100 100 100 

Fir RW for 100 100 80 - - - 

Larch ZB back 65 78 50 82 89 50 

Larch ZB for 65 78 50 - - - 

Ash ZB back 83 100 100 100 89 100 

Ash ZB for 44 100 0 78 89 0 

Sycamore ZB back 56 94 83 - - - 

Sycamore ZB for 56 94 83 67 94 83 

  249 
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Forecasting 250 

Using the most accurate hindcasting models, we forecast seed rain for 2022 to 2025 251 

for all six species (Fig. 5). Testing the envisioned forecast horizon, categorical predictions 252 

were correct for beech, maple and larch, mixed for spruce and fir, and incorrect for ash one 253 

year in advance. Notably, the model for Silver fir, which showed the best overall hindcasting 254 

performance, failed to correctly predict ASP when it encountered a pattern of consecutive 255 

high ASP years in 2021 and 2022, outside the variation in the training dataset (which 256 

contained no instances of consecutive high ASP). Final model predictions (including 257 

predictors of the seed year) were mostly categorised correctly in maple, ash and larch, with 258 

mixed performance in fir, beech and spruce (for further details, see SI). Forecasts for 2024 259 

onwards are currently limited both by seed and weather data and will thus be updated after 260 

seed sampling and availability of 2024 weather data. 261 
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262 

 263 

 264 

Figure 5: Sequential backward model predictions for European beech RW, Silver fir RW and Sycamore maple 265 

ZB. Empty circles represent predictions with standard error of prediction. Full circles represent actual 266 

observations with according standard error. The dotted vertical line marks the boundary between hind- and 267 

forecasting. Colours mark individual year predictions of the sequential models.  268 
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Discussion 269 

Annual seed production (“ASP”) in species with high interannual variability and 270 

spatial synchrony (masting) is predictable based on weather and previous ASP, with a 271 

forecast horizon that holds value for the tree seed sector. We explored the potential for 272 

forecasting ASP of six tree species, for only one of which forecasts have been developed 273 

previously. Furthermore, ASP of maple and ash has not been studied in relation to weather, to 274 

the best of our knowledge. Our results indicate that ASP of some species can be predicted 275 

already in the year prior to seed rain. The currently achieved model performance may be 276 

beneficial for seed harvesters, nurseries and forest and wildlife managers. 277 

Our models are based on correlations of weather and ASP data. While correlations do 278 

not imply causation, some may possess biological significance.  The majority of the final 279 

weather predictors within this study fall between late winter to early summer, consistent with 280 

previous studies (Matthews 1955, Moreira et al. 2021). However, limited understanding of 281 

species-specific physiological processes and their timing hinders the distinction of statistical 282 

artefacts and biologically meaningful periods. Here, close monitoring of the species-specific 283 

relationship of weather and reproductive phenology would allow for more advanced 284 

modelling, i.e. moving from a calendar-based approach to a standardised assignment of a 285 

phenological ID (“pheno-id”) to each week, i.e. dating weather windows according to the 286 

annual timing of key phenological events, rather than windows fixed to calendar dates. Such 287 

models may allow generalised models to be used in the absence of local training data and 288 

may help explain the site-specific weather windows we found for spruce and beech, 289 

potentially providing further insights into tree reproduction physiology. For our current 290 

undertaking, we relied on weekly calendar-id, as the calendar year aligns with the course of 291 

both light availability and key solar events to which plants appear to be sensitive, as was 292 

recently found for the summer solstice (Journé et al. 2024).  293 
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Previous ASP explains a large part of the variation in models for fir, ash and maple, 294 

and less for beech, spruce and larch. This fits previous work showing that high ASP 295 

correlates with reduced syrup yield in Acer saccharum (Rapp & Crone 2015) and decreased 296 

tree ring growth in ash (Bochenek & Eriksen 2010), suggesting that these species may 297 

alternately invest in growth and reproduction (resource-switching, Pearse et al. 2016). 298 

Regarding fir, the first attempt to predict seed rain in 2022 failed due to the previously 299 

unobserved occurrence of two consecutive high seed years.  300 

A strong dependence on previous ASP may fix the theoretically accomplishable 301 

forecasting horizon to 12 months. In reality, high-quality seed production monitoring 302 

typically requires several months for full sample measurement and validation, making data 303 

latency one of the fundamental challenges in predicting ASP. Combining seed sampling 304 

methods with different levels of accuracy to reduce latency is a promising way forward.  305 

Establishing new seed monitoring projects and ensuring the future of existing ones 306 

may be just in time to understand existing relationships between weather and seed 307 

production, and to anticipate their future development.  Trees may struggle to adapt to 308 

climate change, leading to disruptions in seed production and recruitment, either directly or 309 

indirectly (Bogdziewicz et al. 2024, Foest et al. 2024). The increasing occurrence of 310 

environmental vetoes, such as spring frosts or summer droughts (Nussbaumer et al. 2020), 311 

will inevitably disrupt forecasts. Monitoring these vetoes alongside forecasting and seed 312 

sampling is crucial for understanding future vulnerability and recovery, and for building trust 313 

with the communities concerned (Bodner et al. 2021). Within the tree seed sector, forecasts 314 

will mainly inform harvesting activities (in forest stands and orchards) but also seed orchard 315 

management actions like pruning, irrigation, and fertilisation. 316 

Current practices of observing flowering effort provide valid estimates before seed 317 

harvest for flower masting species (Pearse et al. 2016). Therefore, a forecast one year in 318 
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advance has the opportunity for major updates before seed rain: the actual observation of 319 

flowering and the weather conditions during flowering, seed formation and seed maturation. 320 

This can be incorporated into the forecast communication, both in terms of refining the 321 

prediction and its uncertainty. It must be clear what the forecasts are based on and how often 322 

they have been correct in the past at the given forecast horizon. Throughout spring, 323 

information on flowering effort should be incorporated, and it must be emphasised that rare 324 

and localised weather events can disrupt ASP in a particular forest area.  325 

Discussions with people working in the tree seed system indicate a preference for 326 

categorical forecasts, but we are still working to understand the needs of potential user 327 

groups. Different thresholds may determine the individual effort to harvest seed of a given 328 

species in a given year, depending on species (market) demand, storability, and seed stocks, 329 

individual strategies and economic constraints. For this study, besides exploring the 330 

forecasting horizon with a quantitative precision-oriented metric (POIC), we have assumed 331 

that the main difference is whether some (>10%) or none (<=10%) of the seeds will be 332 

available, and whether there is likely to be an exceptionally high seed year (>50%). It can be 333 

reasonably argued that each of these predictions would result in different actions and 334 

planning behaviour, although some highly demanded and subsidised species are likely to be 335 

harvested at similar intensities whether the yield is predicted to be "just above zero" or 336 

exceptionally high (Konrad et al. 2023). 337 

Despite natural limitations, ASP appears to be predictable with a promising, though 338 

imperfect, degree of accuracy for most studied species roughly one year in advance. Future 339 

forecasting efforts should prioritise species based on lack of storability, coupled with 340 

demand, which in turn should be driven by species resilience. Increased harvesting of rare 341 

species, regardless of seed storability, seems rational given the need to maintain and increase 342 
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biodiversity in forest landscapes. Here, seed forecasts will provide an essential part for 343 

addressing climate change adaptation and mitigation.  344 
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