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Abstract 21 

Human activities have accelerated species extinctions, causing a rapid biodiversity decline. 22 

Simultaneously, recent advancements in artificial intelligence and autonomous systems offer 23 

transformative potential for biodiversity research. Uncrewed vehicles—such as aerial drones, 24 

ground robots, and underwater vehicles—equipped with high-resolution sensors enhance 25 

ecosystem monitoring with unprecedented efficiency and scale. Here, we review studies 26 

published in Web of Science (1930–2023) using uncrewed vehicles for ecological monitoring 27 

and explore their broader potential to further biodiversity research. Drones are predominantly 28 

used for vegetation mapping, species monitoring, and habitat assessment; underwater vehicles 29 

focus on supporting benthic surveys, and water quality monitoring; and ground robots are used 30 

mostly for sample collection. Despite this breadth of existing applications, we identify key gaps: 31 

the growing body of research predominantly addresses plants (46%) and animals (44%), with 32 

minimal focus on microbes (10%). Additionally, key biodiversity hotspots are 33 

underrepresented, including South Africa, Central America, and South America. Our findings 34 

emphasise the need to expand taxonomic and biogeographic coverage to maximise the impact 35 

of these technologies. We argue that integrating uncrewed vehicles, payloads, and AI through 36 

collaborations between ecologists and roboticists can enable cost-effective, accurate ecological 37 

monitoring, advancing biodiversity conservation and addressing pressing knowledge gaps in 38 

the Anthropocene. 39 

Keywords: autonomous systems, biodiversity, conservation, drones, robots, ecological 40 

monitoring.  41 



Main 42 

The Anthropocene, a geological era characterised by the profound environmental impacts of 43 

humans, poses key challenges for biodiversity. The extent of our footprint in this new era is 44 

already staggering: in 2020, the global mass of human-made materials exceeded the mass of 45 

all living organisms on Earth1. Indeed, human infrastructure has encroached upon at least 80% 46 

of the 15,150 terrestrial key biodiversity areas2. These and other human activities have 47 

accelerated species loss, driving modern human-induced extinction rates to 100-fold above the 48 

background rates for mammals3 and 80-fold for birds4. Despite this alarming reality, an 49 

estimated 80% of living species remain unknown to science, and their extinction rate is 50 

appraised to be higher than that of already known species5. The scale of this human footprint 51 

and global change6 demands urgent, cost-effective biodiversity monitoring solutions, as 52 

species may have gone extinct before we even know of their existence7. 53 

In parallel to the on-going global change1,8,9 and biodiversity loss3,6, significant 54 

technological advancements have emerged in recent decades in computer science10 and 55 

autonomous robotics11 that offer unique opportunities for biodiversity research. For instance, 56 

progress in deep learning has revolutionised species identification, animal behaviour 57 

recognition, and biodiversity estimation12. Concurrently, advancements in autonomous 58 

navigation systems13,14, sensors15,16, and intelligent robotics17 have facilitated the use of 59 

uncrewed vehicles for air18, ground19, and water20 in biodiversity monitoring and conservation. 60 

These technologies are greatly expanding the spatial range accessible to ecologists cost-61 

effectively, and significantly enhancing our ability to monitor biodiversity.  62 

<Fig. 1> 63 

Given these unprecedented challenges and opportunities, ecologists must examine how 64 

these technological advancements can be used to monitor, understand, and protect ecosystems 65 



more effectively. Here, we review the current usage of uncrewed vehicles in ecological 66 

monitoring, and highlight how these applications could be extended to further biodiversity 67 

research. Specifically, we: 1) systematically review the application of uncrewed vehicles in 68 

biodiversity studies; 2) identify gaps for biodiversity study for future research; and 3) point out 69 

potential future efforts in bridging these gaps. To address both goals, we conduct a literature 70 

review of publications from 1930 to 2023 in Web of Science, and identify 769 papers using 71 

uncrewed aerial systems (i.e., drones) and 386 papers employing uncrewed ground/underwater 72 

vehicles in biodiversity studies (details of the search in Appendix S1). Given that drones 73 

account for the majority of existing applications, we present them separately from other 74 

uncrewed vehicles to better understand the factors driving their popularity and distinct roles in 75 

biodiversity research. These insights may also help identify key gaps—such as technological 76 

limitations, deployment constraints, and commercialisation challenges— in other robots that 77 

need to be addressed to facilitate their broader application in biodiversity studies.  The country, 78 

ecosystem, taxonomy, spatial scale (i.e., subdiscipline of ecology) of the applications were 79 

automatically extracted from each abstract via scraping algorithms in R (Appendix S2), which 80 

performed at a high precision (78-92% validation accuracy; Appendix S1: Table S1). From the 81 

total of 1,155 papers, 20% (232 papers) were randomly selected for a full-text review to extract 82 

the remotely operated platform, payload, and application scenarios, which we used to assess 83 

their broader applicability in biodiversity research. 84 

Current applications of robots in biodiversity studies 85 

Timeline and ecosystem biases in robotic applications 86 

The first applications of drones in biodiversity research took place two decades later than that 87 

of ground and aquatic robots (e.g., Remotely Operated Vehicles-ROV21, drifters22). However, 88 

the application of drones in biodiversity research has surged exponentially since the 2010s (Fig. 89 

1). This increase is driven by more affordable commercial drone models equipped with diverse 90 



sensor systems, user-friendly navigation and mission controls, and efficient data collection 91 

capabilities. Indeed, the release dates of particularly important built-in sensors and functions 92 

in DJI drone models (a primary drone maker, with 80% of the market worldwide23) appears to 93 

have triggered the rapid increase in their usage in ecology. Said sensors range from $100s (e.g., 94 

RGB cameras) to ~$10,000s (e.g., multispectral, LiDAR), depending on sensor type and 95 

resolution, offering a wide range of options for different project budgets.  96 

Ground/underwater robots remain more specialised than drones. Robots currently differ in 97 

commercial availability, costs, and the challenges associated with deployment and 98 

management. The commercial and consumer applications of drones align well with the needs 99 

of field ecologists, making commercial off-the-shelf (COTS) drones readily accessible for 100 

ecological research24. In contrast, although ground robots are technologically more mature than 101 

drones, the lack of consumer alignment has prevented the development of COTS options, 102 

resulting in limited availability and an absence of standardized controls and infrastructure24.  103 

Underwater gliders and other uncrewed vehicles are specially developed for ecological surveys 104 

and are not be significantly more expensive than top-end drones25,26. However, the deployment 105 

and management of ground and underwater vehicles remain considerably more challenging 106 

than that of drones, primarily due to the terrain complexities of operating in terrestrial and 107 

aquatic environments rather than due to limitation of the platforms themselves26,27(Fig. 1b).  108 

Nevertheless, robots have found multiple ‘ecological niches’ due to their diverse 109 

applications and versatility across ecosystems. Drone applications span terrestrial and marine 110 

environments, but to date their usage has been biased towards terrestrial ecosystems (20% since 111 

the 2020s; Fig. 1c). This terrestrial bias in drone applications is likely due to the availability of 112 

drone-mountable sensors like LiDAR and hyperspectral cameras that are well-suited to the 113 

survey of terrestrial ecosystems, as well as algorithms such as structure-from-motion (SfM) 114 

that can process the outputs of these sensors to yield useful digital artefacts28. This combination 115 



of technologies facilitates the monitoring of vegetation structure and plant physiology in 116 

structurally complex ecosystems, like forests or savannas28.  Ground robots are less frequently 117 

used than underwater robots in biodiversity studies (Fig. 2c). Underwater robots are often used 118 

in monitoring benthic communities, marine fauna, and physical conditions (Appendix S2: 119 

Table S1). 120 

Typical sensors and their functions 121 

In our review, optical sensors make up 94% of drone payloads. These optical sensors include 122 

RGB cameras (54%), multispectral (18%), hyperspectral (6%), LiDAR (8%), and 123 

thermal/near-infrared camera (8%) (Fig. 2c). RGB cameras are typically used to monitor land 124 

cover and habitat quality29, detect environmental hazards (e.g., fire30, green tide31), conduct 125 

post-disaster assessments32, and track populations of megafauna33, and birds34 (Appendix S3: 126 

Table S1). In aquatic systems, the usage of aerial drones includes monitoring water quality35 127 

and macroalga36, surveying benthic communities in shallow waters37, and tracking the 128 

behaviour of marine megafauna, like whales38(Box 1). Moving beyond the visible spectrum, 129 

drones with multispectral and hyperspectral cameras enable researchers to detect subtle 130 

spectral differences, which have facilitated applications such as species classification and 131 

mapping39, estimation of plant biomass40 and monitoring of physiological traits41, as well as 132 

monitoring of water and soil quality42,43. Thermal infrared sensors are often applied in 133 

population surveys44 and behaviour monitoring45 of large animals, as well as in mapping 134 

temperature distributions across landscapes46. LiDAR-equipped drones are particularly 135 

valuable for generating high-resolution topographical data, including forest structure 136 

mapping47 and morphological measurements of marine animals via digital surface models48. 137 

Additionally, RGB sensors, combined with SfM algorithms, can generate 3D reconstructions 138 

of objects, offering a cost-effective alternative to LiDAR to estimate changes in biomass and 139 

structural attributes and, when repeated through time, ecosystem-level changes47. 140 



<Box 1> 141 

Compared with drones, other robots used for biodiversity monitoring have lower 142 

diversity in optical sensor types, but a higher diversity in non-optical sensor types. Indeed, in 143 

our review, optical sensors only amount to 57% of payloads of ground or underwater robots, 144 

while these were found in 94% of drones. Physical and chemical sensors make up 18% of the 145 

payloads of these other robots while only 1% for drones. Similarly, ground or underwater 146 

robots carry devices to sample, collect, or release materials in 17% of studies, with drones only 147 

in 3% of the examined applications (Fig. 2, Appendix 2: Table S1). Ground/underwater robots 148 

typically rely on RGB sensors (accruing 96% of all optical sensors) for video documentation 149 

of benthic community composition49, habitat surveys49, and behaviour monitoring of marine 150 

species50. Other optical sensors used by ground and underwater robots like hyperspectral, near-151 

infrared, and thermal infrared cameras are occasionally (4% of all optical sensors) used to 152 

monitor ship wrecks51, air temperature, relative humidity, and leaf wetness52. Physical and 153 

chemical sensors monitor variables such as dissolved oxygen, salinity, temperature, 154 

chlorophyll-a, and pressure53,54. Specialised samplers also enable these robots to collect 155 

specimens and samples from aquatic environments, such as sediments55, eDNA56, or vent 156 

fluids57. Furthermore, autonomous gliders and drifters equipped with diverse sensors 157 

contribute to monitoring ocean currents, biogeochemical parameters, and other physical 158 

oceanographic variables58. 159 

<Fig. 2> 160 

 161 

Applications beyond just monitoring biodiversity 162 

Robots are being used in increasingly innovative ways to support biodiversity management and 163 

conservation. In addition to carrying optical, physical, and chemical sensors, robots are now 164 

being used to actively sample gases, liquids, and sediments from the environment59,60 and to 165 



release biotic and abiotic materials to aid conservation efforts61. For example, recently, drones 166 

have been deployed to release insects in Pennsylvania (USA) as biological control agents to 167 

combat invasive plants61. Furthermore, new developments in bioinspired robots allow direct 168 

interaction with ecosystems62, as in biorobots used in cognitive ecology to study species 169 

responses63. This new generation of robots can pave the way for conservation applications by 170 

actively interacting with wildlife to alleviate human-wildlife conflicts. Examples include bio-171 

inspired robots to deter wild animals from artificial constructions, e.g. discouraging birds from 172 

approaching airports64. 173 

 174 

Knowledge gaps 175 

Based on our review of the literature, we identify data gaps in the application of robots in 176 

biodiversity studies along four main dimensions: (1) geographic distribution, (2) taxonomic 177 

coverage, (3) spatial scale, and (4) targeted biome. 178 

Drones to date have been predominantly used in China (31% as per our review), United 179 

States (13%), and Australia (6%). Other robots follow a similar pattern, though their 180 

applications are more frequent in the United States (Fig. 3 a, b) than China. It is worth noting 181 

that this geographic distribution does not align with the location of global biodiversity hotspots 182 

(Fig. 3c) nor with regions most at risk under climate change (Fig. 3d). Specifically, tropical 183 

regions like Central and Latin America, Africa, and Southeast Asia, which contain a high 184 

concentration of biodiversity hotspots65 and are highly vulnerable to climate change impacts8, 185 

have to date experienced limited use of robots for biodiversity monitoring, sampling, and 186 

conservation. Notably, we found no applications of these technologies in biodiversity hotspots 187 

across parts of Latin America and Africa such as Mesoamerica (Guatemala, Honduras, 188 

Nicaragua), West Africa (Benin, Togo, Cote d’Ivoire, Liberia, Sierra Leone, Guinea) and the 189 

Horn of Africa (Ethiopia, Somalia) (Fig. 3). The geographic mismatch between robot 190 



deployments and regions needing urgent biodiversity monitoring underscores the need for 191 

greater automation efforts in these biodiverse yet highly endangered regions of the world. 192 

<Fig. 3> 193 

Most studies using robots monitor plants and animals but neglect microbes. Indeed, 90% 194 

of studies in our review target plants or animals (Appendix S2: Table S1). In contrast, studies 195 

using robots to examine bacteria and protists represent only 4.7% and 3.4% of our review, 196 

respectively (Fig. 4a). This taxonomic bias likely reflects the long-standing tendency in 197 

biodiversity studies to focus on larger organisms in accessible regions, often overlooking the 198 

diversity and ecological functions of microbes66. Robots equipped with novel sensors like 199 

fluorescence imaging cameras52 or samplers hold the promise to help counter-balance such a 200 

bias by detecting and monitoring microbial diversity in previously unreachable habitats. 201 

Examples of relevant studies, though few, can be found in Antarctica, glaciers, deserts, and 202 

even at deep sea (see limited studies in these extreme ecosystems in Appendix S2: Table S1).   203 

<Fig. 4> 204 

For applications addressing plants and animals specifically, robots bridge multiple 205 

spatial scales in various ecosystems. Drones are primarily used in plant studies at the 206 

population to landscape scale in terrestrial and coastal ecosystems. At the same time, 207 

ground/underwater robots have become more specialised in animal studies at the behavioural 208 

to community scale in marine ecosystems (Fig. 4b). As noted by the late E. O. Wilson66, 209 

biodiversity research is often polarised towards molecular studies of a few model species or 210 

broad ecosystem-level investigations. The flexibility of robots in collecting data at multiple 211 

scales holds great potential to bridge the spatial-scale gap between the broad-scale data 212 

collected by satellite and more localised, point-based studies52,67.  213 

Nevertheless, the powerful combination of beyond visible spectrum optical sensors and 214 

ground robots is yet to be exploited in the study of plant physiology within challenging terrains. 215 



The application of drones to plant surveys revealed that, despite multispectral and 216 

hyperspectral sensors making plant physiology monitoring feasible (Box 1), physiological 217 

studies of plants using them remain limited (Fig. 4b). Comparatively, drones used in animal 218 

studies span various ecosystems and biological levels of organisation/scales, except for coral 219 

reefs (Fig. 4b), where animals remain below the water surface and thus out of drones’ detection 220 

range (but see 68). While drones offer valuable data taken above the tree canopy, ground robots 221 

hold key advantages such as easier environment-proofing (e.g., waterproofing), longer battery 222 

endurance, and higher payload capacity69. These advantages contribute to the unique niche of 223 

ground robots in studying ground flora/fauna in remote and challenging terrains—such as 224 

dense forests70, deserts52, rocky topography71 etc., though relevant application is still limited 225 

(Appendix S3: Table S1).  226 

 227 

Pathways towards bridging current data gaps in biodiversity monitoring 228 

The geographic mismatch between the location of robot applications and the biodiversity 229 

hotspots and regions most vulnerable to climate change (Fig. 3), especially in tropical regions, 230 

highlights the need for targeted research funding and technical training. Cross-country 231 

collaborations between technologically advanced nations and those with high biodiversity 232 

could help bridge this gap. Such meaningful collaboration could replace helicopter science and 233 

be stimulated by better involvement of local scientists in grants, publications, and student 234 

mentoring72. We urge technology-oriented research in developing countries to be prioritised 235 

by research funding programmes on biodiversity conservation, such as the Critical Ecosystem 236 

Partnership Fund (CEPF), the Darwin Initiative, the Global Biodiversity Framework Fund 237 

(GBFF), or the JRS Biodiversity Foundation. 238 

The size bias of organisms could be reduced by expanding the capabilities of robots 239 

beyond monitoring platforms to include innovative mechanical tools like samplers, grabbers, 240 



and diggers (Fig. 2). These additions would enable sampling of smaller organisms across a 241 

wide range of environments from desserts52 to deep sea57, thus promoting greater exploration 242 

of microbial and smaller organism biodiversity. Currently, many commercial platforms are 243 

oriented toward monitoring (Fig. 2). However, ecologists and engineers could benefit from 244 

collaborating in the design and incorporation of specialised functions, e.g. deploying loggers73 245 

or tracking individuals74, that could greatly benefit biodiversity studies. The potential of 246 

biosignature detection from space75 might boost such collaboration in the most extreme 247 

environments on earth, e.g. volcanos, Antarctica, etc.   248 

Physiological studies of plants and animals make up a small portion (3%) of the current 249 

research that uses robots (Fig. 4b). Such a bias away from physiological studies may be 250 

alleviated by the wider application of sensors with high spectral resolution, like 251 

multi/hyperspectral sensors. Currently, there are limited application of hyperspectral sensors 252 

in physiological studies due to several factors: (1) the restricted commercial adoption of these 253 

sensors has impeded their miniaturisation and cost reduction, preventing them from achieving 254 

the widespread use in ecological research that RGB cameras have attained (Fig. 1); (2) their 255 

lower stability and precision in material detection compared to contact-based methods, such as 256 

physical and chemical analyses (Fig. 2); and (3) insufficient exploration of the potential and 257 

feasibility of multispectral and hyperspectral sensors in physiological studies. However, with 258 

the availability of lightweight hyperspectral sensors that are compatible with commercial 259 

platforms like the DJI M60041 and Aerialtronics Altura AT876 we expect more physiological 260 

studies to benefit from these cost-effective approaches. 261 

 Overcoming technical and cost barriers is essential to the widespread adoption of 262 

ground robots.  Though drones have been widely applied in terrestrial ecosystems with 263 

complex vertical structures, such as forests, drones may struggle to capture data from beneath 264 

the canopy or within dense vegetation. Terrestrial robots could complement aerial monitoring 265 



by gathering ground-level data, enabling a multi-layered approach to biodiversity monitoring. 266 

However, challenges with navigation, stability on rugged terrain (but see quadruped robots77), 267 

and the high cost of terrestrial robots which are custom-designed to mitigate these issues but 268 

only at tiny production scales78 will continue to limit their widespread use in these ecosystems. 269 

The successful popularisation of drones, driven by advancements in technical solutions and 270 

cost reductions, offers valuable lessons for the commercialisation of ground robots. 271 

 272 

The coalition of robotics, computer vision and ecology for effective biodiversity 273 

monitoring 274 

Environmental and ecological processes occur across multiple spatial and temporal scales79. 275 

Understanding these cross-scale interactions remains a key challenge for effective biodiversity 276 

research80. Drones and ground robots (Fig. 1b), combined with satellite and aerial remote 277 

sensing as well as traditional monitoring methods like ground-based surveys (Fig. 1a), offer 278 

invaluable, cross-validated, and complementary data across a wide range of spatial resolutions, 279 

from kilometers to millimeters. This integrative capability facilitates a deeper understanding 280 

of how processes at one scale relate to those at another, contributing to a comprehensive, multi-281 

scale perspective on ecosystem dynamics. Indeed, successful cross scale studies have been 282 

implemented in hydrodynamic monitoring67,81 and vegetation mapping82,83.  283 

Beyond their role as remote sensing platforms, robots hold promise in conservation. 284 

Similar to their use in agriculture for applying chemicals84 and planting seeds85, robots could 285 

also release environmental sensors into remote and hard-to-access regions for automatic 286 

ecological monitoring86, or collect biotic or abiotic samples57. Of significant promise in the 287 

future are biorobots (Fig. 1b) as a conservation tool for exploration, data collection, 288 

intervention, and maintenance tasks87. For example, once bioethical issues are appropriately 289 

addressed88, biorobots could be programmed to engage directly with organisms to influence 290 



their behaviour. Such interference in population behaviour can aid the decision-making of wild 291 

populations for conservation purposes, thus avoiding the hazards from artificial structures, e.g. 292 

dams or airports87. Expanding the use of robots in such applications could significantly broaden 293 

their utility beyond traditional monitoring. 294 

Finally, integrating AI technologies directly into robots could greaetly enhance their 295 

adaptability and efficiency in monitoring. Current AI approaches focus on post-processing 296 

tasks like species classification12. Embedding AI modules on robots could enable dynamic 297 

exploration, monitoring, and target tracking, improving data collection and task efficiency. For 298 

example, drones equipped with on-board processing capabilities are already capable of using 299 

computer vision methods to recognise and detect forest fire30 based on the still images or the 300 

video input from the drone cameras. When integrating sensor-based target detection with 301 

autonomous navigation control, robots are capable of dynamically identifying and tracking the 302 

targets. Successful applications in this regard include boundary detection of hazardous aerial 303 

plumes in real time89 and deepwater animal tracking90. By integrating robust robotic platforms 304 

with cutting-edge payloads, AI, and autonomous navigation, these technologies have the 305 

potential to extend human capabilities, enabling unprecedented exploration and monitoring in 306 

otherwise inaccessible regions. Realising this potential requires a solid collaborative alliance 307 

among ecologists, biologists, conservationists, roboticists, and computer scientists, to develop 308 

purpose-built robotic systems that address the challenges of biodiversity conservation, 309 

safeguarding Earth's biological heritage amid the uncertainties of global change.  310 



Box 1.  Robots offer a wide range of applications in biodiversity monitoring. Some applications 311 

include: habitat structure analysis, species classification, biomass estimation (RGB, LiDAR), 312 

plant physiological and water quality monitoring (multi- and hyperspectral), water 313 

physical/chemical monitoring (physical/chemical sensor), and organism sampling 314 

(sampler/releaser). Word clouds were created by manually extracting application scenarios 315 

from 209 randomly selected publications from a total of 1,154 publications examined in our 316 

review. Word size represents usage frequency in these publications (source data: Appendix S2: 317 

Table S1). Word colour has no further meaning than to distinguish adjacent words. 318 

 319 

RGB Physical/Chemical sensor 

  

Multispectral Sampler/Releaser 

 
 

Hyperspectral LiDAR 

  

320 



Figure captions 321 

Figure 1. Robots are revolutionising traditional ecological monitoring methods.  (a) 322 

Traditional ecological monitoring methods. From left to right: quadrat survey of grassland 323 

biodiversity at Wytham Woods, UK (photo credit: E. Fenollosa); field survey of understory 324 

invasive reed at Black Water Refuge, MD, USA (credit: M. Qi); Body mass of pinnipeds 325 

weighed by hand using anaesthetic and a sling91; benthic survey by divers (data source: 326 

https://www.benthicecology.org/prospective-students). (b) Novel ecological monitoring 327 

methods based on robots. Front left to right: grassland biodiversity monitoring with 328 

autonomous robots92; invasive reed detection (red) under forest canopy (green) by airborne 329 

LiDAR93; body size measurement of pinniped from point cloud of drone images94; automatic 330 

classification of benthic species from video/image taken by underwater robots95.(c) Timeline 331 

of application and development of key innovations in drones and ground/underwater robots 332 

across different ecosystems suggest a fast uptake of payloads on drones contributing to 333 

increasing popularity of drones across various ecosystems. The stacked area chart shows the 334 

number of publications applying drones and ground/underwater robots in different ecosystems 335 

over time. Dots and vertical dashed line represent the timeline when built-in groundbreaking 336 

functionalities became available in commercial drones from DJI, a leading manufacturer of 337 

drones that holds 80% of the global market share27. Below is a list of DJI drones with the year 338 

they were released with built-in functionality: DJI Phantom 1 (2013) GPS, DJI Phantom 2 339 

Vision (2013) Real time live-view, DJI Zenmuse XT (2015) Thermal, DJI P4 (2019) 340 

Multispectral, DJI Zenmuse L1 (2020)-LiDAR. Shrub_Grassland -341 

Shrubland/Grassland/Savanna/Woodlands. 342 

 343 

Figure 2. The payloads utilised on different robotic platforms across various ecosystems 344 

indicate that optical remote sensing is popular for drones, while robots are more specialised in 345 



sampling and environmental physical/chemical monitoring. Results are based on a 20% 346 

random sample of the total of 1,154 examined publications where robots were explicitly used 347 

to monitor biodiversity (See Appendix S3). ROVs - Remotely Operated Vehicles, AOVs - 348 

Autonomous Underwater Vehicles. 349 

 350 

Figure 3. Geographic mismatch between distribution of drone and robot applications and 351 

biodiversity rich but vulnerable regions. Geographic distribution of case studies using (a) 352 

drones and (b) robots in biodiversity research, showing a clear geographic mismatch with 353 

respect to (c) biodiversity hotspots and (d) climate-vulnerable ecological areas. (c) Biodiversity 354 

hotspots map made by Critical Ecosystem Partnership Fund 65. The highlighted 36 biodiversity 355 

hotspots comprise 2% of the land surface of the Earth, but together contain 50% of the world’s 356 

vascular plants and 42% of land vertebrates found nowhere else on Earth. The colours assigned 357 

to the hotspots are only used to distinguish adjacent hotspots and have no further meaning. (d) 358 

Climate-vulnerable ecological areas are indicated by the percentage of species in 100-km2 359 

resolution grid cells exposed to temperature beyond the realised niche of each species by 2100 360 

under RCP 8.58. Studies spanning multiple countries credit each nation involved. Marine 361 

studies that are difficult to geolocate from abstracts are excluded, including 16 cases from the 362 

Atlantic Ocean (4 from the North, 1 from the Northeast, 1 from the South-central), 363 

Mediterranean Sea (3 from the Northwest), Pacific Ocean (2 from the North, 1 from the East), 364 

Indian Ocean (1 from the Southwest), North Sea (1 from central), and Philippine Sea (1 from 365 

central). 366 

 367 

Figure 4. Taxonomic bias of drone- and robot-based biodiversity studies towards plants and 368 

animals at spatial scales, ranging from behaviour, population, to landscape level. (a) Proportion 369 

of examined 1,154 publications using robots to study species from different taxonomic 370 



kingdoms, with plants and animals representing the majority. (b) Percentage of the 1,154 drone 371 

and robot applications in plant and animal studies, categorised by scale and ecosystem type.  372 
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