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Abstract 14 

Human activities have caused rapid decline in biodiversity, with accelerating species extinction. 15 

Simultaneously, recent advancements in artificial intelligence and autonomous systems offer 16 

transformative potential for biodiversity research. Unmanned vehicles—such as drones, 17 

ground robots, and underwater robots—equipped with high-resolution sensors enhance our 18 

ability to monitor ecosystems with unprecedented efficiency and scale. Here, we review studies 19 

published in Web of Science (1930–2023) using unmanned vehicles for ecological monitoring 20 

and explore how it could be done more broadly to further biodiversity research. Drones are 21 

most commonly used for vegetation mapping, species monitoring, and habitat assessment in 22 

terrestrial ecosystems; ground and underwater robots focus on aquatic environments, 23 

supporting benthic surveys, water quality monitoring, and sample collection. Still, we identify 24 

key gaps: this growing body of research predominantly addresses plants (46%) and animals 25 

(44%), with minimal focus on microbes (10%). Additionally, key biodiversity hotspots—such 26 

as South Africa, Central America, and South America—are underrepresented. Our findings 27 

emphasise the need for expanded taxonomic and biogeographic efforts to maximise the impact 28 

of these technologies. We argue that, by incorporating innovative combination of unmanned 29 

vehicles, payloads, AI and in novel application scenarios, researchers could achieve cost-30 

effective, accurate, and multi-scale ecological monitoring. Strengthening collaborations 31 

between ecologists and roboticists will advance biodiversity conservation and address pressing 32 

knowledge gaps in the Anthropocene. 33 
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Main 37 

The Anthropocene, a geological era characterised by the profound environmental impacts of 38 

humans, poses key challenges for biodiversity. The extent of our footprint in this new era is 39 

already staggering: in 2020, the global mass of human-made materials exceeded the mass of 40 

all living organisms on Earth1. Indeed, human infrastructure has encroached upon at least 80% 41 

of the 15,150 terrestrial key biodiversity areas2. These and other human activities have 42 

accelerated species loss, driving modern human-induced extinction rates to 100-fold above the 43 

background rates for mammals3 and 80-fold for birds4. Despite this alarming reality, ~80% of 44 

living species remain unknown to science, and their extinction rate is estimated to be higher 45 

than that of already known species5. The scale of this human footprint and global change6 46 

demands urgent, cost-effective biodiversity monitoring solutions, as species may have gone 47 

extinct before we even know of their existence7. 48 

Against global change1,8,9 and biodiversity loss3,6, significant technological 49 

advancements have emerged in computer science10 and autonomous navigation11 in the past 50 

decades, which offer unique opportunities for biodiversity research. For instance, progress in 51 

deep learning has revolutionised ecology in species identification, animal behaviour, and 52 

biodiversity estimation12. Concurrently, advancements in autonomous navigation systems13,14, 53 

sensors15,16, and intelligent robotics17 have facilitated the use of unmanned aerial21, ground, 54 

and underwater vehicles21 in biodiversity monitoring and ecological conservation. These 55 

technologies are greatly expanding the spatial range accessible to ecologists cost-effectively, 56 

and significantly enhancing our ability to monitor diverse ecosystems now that we need it the 57 

most.  58 

<Fig. 1> 59 



Given these unprecedented challenges and opportunities, ecologists are impelled to 60 

examine how these technological advancements can be used to monitor, understand, and 61 

protect ecosystems more effectively. Here, we review the current application of unmanned 62 

vehicles in ecological monitoring, and highlight how it could be done more broadly to further 63 

biodiversity research. Specifically, we: 1) systematically review the application of unmanned 64 

vehicles in biodiversity studies; 2) identify gaps for biodiversity study for future research; and 65 

3) point out potential future efforts in bridging these gaps. To address both goals, we conduct 66 

a literature review of publications from 1930 to 2023 in Web of Science, and identify 769 67 

papers using unmanned aircraft systems (i.e., drones) and 386 papers employing unmanned 68 

ground/underwater vehicles in biodiversity studies (details of the search in Appendix S1). 69 

Country, ecosystem, taxonomy, spatial scale (i.e., subdiscipline of ecology) of the applications 70 

were automatically extracted from each abstract via scraping algorithms in R (Appendix S2), 71 

which performed at a high precision (78-92% accuracy; Appendix S1: Table S1). From the 72 

total of 1,155 papers, 20% (232 papers) were randomly selected for a full-text review to extract 73 

the remotely operated platform, payload, and application scenarios, which we used to assess 74 

their broader applicability in biodiversity research. 75 

Current applications of drones and robots in biodiversity studies 76 

Timeline and ecosystem biases in drone and robotic applications 77 

The first applications of drones in biodiversity research took place two decades later than that 78 

of ground and aquatic robots (e.g., Remotely Operated Vehicles-ROV25, drifters26). However, 79 

the application of drones in biodiversity research has surged exponentially since the 2010s (Fig. 80 

1c). This increase is driven by more affordable commercial drone models equipped with 81 

advanced sensor systems, user-friendly operation methods, and highly efficient data collection 82 

capabilities. Indeed, the release timeline of some of the groundbreaking built-in sensors and 83 

functions in DJI drone models (a primary maker, with 80% of the market worldwide27) took 84 



place right before and during the rapid increase in their usage in ecology. Importantly, said 85 

sensors range from $100s (e.g., RGB cameras) to ~$10,000s (e.g., multispectral, LiDAR; 86 

https://www.dronenerds.com/collections/cameras-sensors?page=1&count=24), depending on 87 

sensor type and resolution. In comparison, ground/underwater robots remain more specialised, 88 

often less commercially available to the ecological community, and are priced much higher. 89 

For instance, due to the outdoor nature of ecological monitoring deployments, these platforms 90 

may be expensive to design and implement. In particular, marine applications require 91 

specialised waterproofing118, etc. (Fig. 1b).  92 

Nevertheless, drones and robots have found multiple ‘ecological niches’ due to their 93 

diverse applications and versatility across ecosystems. Drone applications span terrestrial and 94 

marine environments, but to date their usage has been biased towards terrestrial ecosystems 95 

(20% since the 2020s; Fig. 1c). This terrestrial bias in drone applications is likely due to the 96 

availability of advanced sensors like LiDAR and hyperspectral cameras as well as structure-97 

from-motion (SfM) technology. These sensors facilitate monitoring of vegetation structure and 98 

plant physiology in structurally complex ecosystems, like forests or savannas28,29. There is less 99 

application of ground robots than underwater robots in biodiversity studies (Fig. 2c), which 100 

serve specialised roles in monitoring benthic communities, marine fauna, and physical 101 

conditions (Appendix S2: Table S1). 102 

Typical sensors and their functions 103 

In our review, optical sensors make up to 94% of drone payloads. These optical sensors include 104 

RGB cameras (54%), multispectral (18%), hyperspectral (6%), LiDAR (8%), and 105 

thermal/near-infrared camera (8%) (Fig. 2c). RGB cameras are typically used to monitor land 106 

cover and habitat quality30-33, detect environmental hazards (e.g., fire, green tide)34,35, conduct 107 

post-disaster assessments36-38, and track populations of megafauna, and birds39-42 (Appendix 108 

S3: Table S1). In aquatic systems, the usage of drones includes applications such as monitoring 109 



water quality43 and macroalga44, surveying benthic communities in shallow waters45, and 110 

tracking the behaviour of marine megafauna, like whales46,47 (Box 1). Advanced sensors in 111 

drones, including multispectral and hyperspectral cameras, enable researchers to detect subtle 112 

spectral differences, which have facilitated applications such as species classification and 113 

mapping48-51, estimation of plant biomass52-54 and monitoring of physiological traits55-57, as 114 

well as monitoring of water and soil quality58-60. Thermal infrared sensors are applied in 115 

population surveys40,61-63 and behaviour monitoring64 of large animals, as well as in mapping 116 

temperature distributions across landscapes65-67. LiDAR-equipped drones are particularly 117 

valuable for applications such as canopy structure analysis68-70, habitat classification47, carbon 118 

stock estimation, disturbance detection, and recovery monitoring. Additionally, RGB sensors, 119 

combined with SfM algorithms, can generate 3D models of objects, offering a cost-effective 120 

alternative to LiDAR to estimate changes in biomass and structural attributes and, when 121 

repeated through time, ecosystem-level changes70-72. 122 

<Box 1> 123 

Compared with drones, ground/underwater robots have lower diversity in optical sensor 124 

types, but a higher diversity in non-optical sensor types. Indeed, in our review, optical sensors 125 

only make up to 57% of payloads of ground/underwater robots, while these were found in 94% 126 

of drones. Physical and chemical sensors make up to 18% of the payloads of robots while only 127 

1% for drones. Similarly, robots carry devices to sample, collect, or release materials in 17% 128 

of studies, but drones in 3% (Fig. 2, Appendix 2: Table S1). Ground/underwater robots 129 

typically rely on RGB sensors (which make up to 96% of all optical sensors) for video 130 

documentation of benthic community composition73,74, habitat surveys75,76, and behaviour 131 

monitoring of marine species77,78. Other optical sensors used by ground and underwater robots 132 

like hyperspectral, near-infrared, and thermal infrared cameras are occasionally (4% of all 133 

optical sensors) used in monitoring ship wreck79, air temperature, relative humidity, and leaf 134 



wetness80. Physical and chemical sensors monitor variables such as dissolved oxygen, salinity, 135 

temperature, chlorophyll-a, and pressure81,82. Specialised samplers also enable these robots to 136 

collect specimens and samples from aquatic environments, such as sediments83, eDNA84, or 137 

vent fluids85. Furthermore, autonomous gliders and drifters equipped with diverse sensors 138 

contribute to monitoring ocean currents, biogeochemical parameters, and other physical 139 

oceanographic variables86,87. 140 

<Fig. 2> 141 

 142 

Applications beyond just monitoring biodiversity 143 

Drones and robots are being used in increasingly innovative ways to support biodiversity 144 

management and conservation. In addition to carrying optical, physical, and chemical sensors, 145 

these technologies are now actively sampling gases, liquids, and sediments from the 146 

environment88,89 and releasing biotic and abiotic materials to aid conservation efforts90. For 147 

example, recently, drones have been deployed to release insects in Pennsylvania (USA) as 148 

biological control agents to combat invasive plants90. Furthermore, new developments in 149 

bioinspired robots allow direct interaction with ecosystems91, as in biorobots used in cognitive 150 

ecology to study species responses92. This new generation of robots can pave the way for 151 

conservation applications by actively interacting or interfering with wildlife to alleviate 152 

human-wildlife conflicts. Examples include bio-inspired robots to deter wild animals from 153 

artificial constructions, e.g. birds from airports93. 154 

 155 

Knowledge gaps 156 

Based on our review of the literature, we identify data gaps in the application of drones and 157 

robots in biodiversity studies along four main dimensions: (1) geographic distribution, (2) 158 

taxonomic coverage, (3) spatial scale, and (4) targeted biome. 159 



Drones have been predominantly used in China (31% as per our review), North 160 

America (17%), and Australia (6%). Robots follow a similar pattern, though their applications 161 

are more frequent in the United States (Fig. 3 a, b) than China. It is worth noting that this 162 

geographic distribution does not align with the location of global biodiversity hotspots (Fig. 163 

3c) nor with regions most at risk under climate change (Fig. 3d). Specifically, tropical regions 164 

like Central and Latin America, Africa, and Southeast Asia, which contain a high concentration 165 

of biodiversity hotspots94 and are highly vulnerable to climate change impacts8, have to date 166 

experienced limited use of drones and robots for biodiversity monitoring, sampling, and 167 

conservation. Notably, our review found no applications of these technologies in biodiversity 168 

hotspots across parts of Latin America and Africa such as Mesoamerica (Guatemala, Honduras, 169 

Nicaragua), West Africa (Benin, Togo, Cote d’Ivoire, Liberia, Sierra Leone, Guinea) and the 170 

Horn of Africa (Ethiopia, Somalia) (Fig. 3). The geographic mismatch between drone and robot 171 

deployment and regions needing urgent biodiversity monitoring underscores the need for 172 

greater automation efforts in these biodiverse yet highly endangered regions of the world. 173 

<Fig. 3> 174 

Most studies using drones and robots monitor plants and animals but neglect microbes. 175 

Indeed, 90% of studies in our review using drones and robots target plants or animals 176 

(particularly macrovertebrates, Appendix S2: Table S1), while studies targeting bacteria and 177 

protists represent only 4.7% and 3.4% of our review, respectively (Fig. 4a). This taxonomic 178 

bias likely reflects the long-standing tendency in biodiversity studies to focus on larger 179 

organisms in accessible regions, often overlooking the diversity and ecological functions of 180 

microbes24. Drones and robots equipped with novel sensors like fluorescence imaging 181 

cameras80 or samplers hold the promise to balance such a bias by detecting and monitoring 182 

microbial diversity in previously unreachable habitats. Examples of relevant studies, though 183 



few, can be found in Antarctica, glaciers, deserts, and even at deep sea (see limited studies in 184 

these extreme ecosystems in Appendix S2: Table S1).   185 

<Fig. 4> 186 

For application of drones and robots in plants and animals specifically, drones and 187 

robots showed great capability in bridging multiple spatial scales in various ecosystems. 188 

Drones are primarily used in plant studies at the population to landscape scale in terrestrial and 189 

coastal ecosystems. At the same time, robots have become more specialised in animal studies 190 

at the behavioural to community scale in marine ecosystems (Fig. 4b). As noted by E. O. 191 

Wilson24, biodiversity research is often polarised towards molecular studies of a few model 192 

species or broad ecosystem-level investigations. The flexibility of drones and robots in 193 

collecting data at multiple scales holds great potential to bridge the spatial-scale gap between 194 

the broad-scale data collected by satellite and more localised, point-based studies95,96.  195 

Nevertheless, unique niche of advanced optical sensors and ground robots are awaiting 196 

to be applied in studying plant physiology and exploring challenging terrains respectively. 197 

Application of drones in plants revealed despite advanced optical sensors, e.g. multispectral 198 

and hyperspectral sensors, making plant physiology monitoring feasible (Box 1), physiological 199 

studies of plants using them remain limited (Fig. 4b). Comparatively, drones used in animal 200 

studies span various ecosystems and biological levels of organisation/scales, except for coral 201 

reefs (Fig. 4b), where animals remain below the water surface and thus out of drones’ detection 202 

range (but see Bennett et al97). In contrast, robots are more commonly used in marine 203 

ecosystems, largely because most are underwater robots, other than ground robots (Fig. 2). 204 

While drones offer valuable data taken above the tree canopy, ground robots hold key 205 

advantages such as easier environment-proofing (e.g., waterproofing), longer battery 206 

endurance, higher payload capacity, and enhanced obstacle avoidance capabilities98. These 207 

advantages contribute to the unique niche of ground robots in studying ground flora/fauna in 208 



remote and challenging terrains—such as dense forests99, deserts80, rocky topography100 etc., 209 

though relevant application is still limited (Appendix S3: Table S1).  210 

 211 

Pathways towards bridging current data gaps in biodiversity monitoring 212 

The geographic mismatch between drone and robot applications with biodiversity hotspots and 213 

regions most vulnerable to climate change (Fig. 3), especially in tropical regions, highlights 214 

the need for targeted research funding and technical training. Cross-country collaborations 215 

between technologically advanced nations and those with high biodiversity could help bridge 216 

this gap. Such meaningful collaboration could replace helicopter science and be stimulated by 217 

better involvement of local scientists in grants, publications, and student mentoring101. We urge 218 

tech-oriented research in developing countries to be prioritised by research funding 219 

programmes on biodiversity conservation, such as the Critical Ecosystem Partnership Fund 220 

(CEPF), Darwin Initiative, Global Biodiversity Framework Fund (GBFF), or JRS Biodiversity 221 

Foundation. 222 

The size bias of organisms could be reduced by expanding the capabilities of drones 223 

and robots beyond monitoring platforms to include innovative sampling tools like samplers, 224 

grabbers, and diggers (Fig. 2). These additions would enable sampling of smaller organisms 225 

across a wide range of environments from desserts80 to deep sea85, thus promoting greater 226 

exploration of microbial and smaller organism biodiversity. Currently, many commercial 227 

drones and robots are oriented toward monitoring (Fig. 2). However, ecologists and engineers 228 

could benefit from collaborating in the design and incorporation of specialised functions, e.g. 229 

deploying loggers102 or tracking individuals103, that could greatly benefit biodiversity studies. 230 

Potential technology transfer of biosignature detection from space mission1 might boost such 231 

collaboration in the most extreme environments on earth, e.g. volcanos, Antarctica etc.   232 



Physiological studies of plants and animals using drones and robots make up to a small 233 

portion (3%) of the current research (Fig. 5). Such bias away from physiological studies may 234 

be alleviated by wider application of advanced optical sensors, such as multi/hyperspectral 235 

sensors. Currently, there are limited application of hyperspectral sensors in physiological 236 

studies due to several factors: (1) the restricted civilian adoption of these sensors has impeded 237 

their miniaturisation and cost reduction, preventing them from achieving the widespread use 238 

in ecological research that RGB cameras have attained (Fig. 1); (2) their lower stability and 239 

precision in material detection compared to contact-based methods, such as physical and 240 

chemical analyses (Fig. 2); and (3) insufficient exploration of the potential and feasibility of 241 

multispectral and hyperspectral sensors in physiological studies. However, with the availability 242 

of lightweight hyperspectral sensors that are compatible with commercial platforms like the 243 

DJI M60057 and Aerialtronics Altura AT8104, we expect more physiological studies to benefit 244 

from these cost-effective approaches. 245 

 Overcoming technical and cost barriers is essential to facilitate the widespread 246 

adoption of ground robots.  Though drones have been widely applied in terrestrial ecosystems 247 

with complex vertical structures, such as forests, drones may struggle to capture data from 248 

beneath the canopy or within dense vegetation. Terrestrial robots could complement aerial 249 

monitoring by gathering ground-level data, enabling a multi-layered approach to biodiversity 250 

monitoring. However, challenges with navigation, stability on rugged terrain (but see 251 

quadruped robots), and the high cost of terrestrial robots which are custom-designed to mitigate 252 

these issues but only at tiny production scales119 will continue to limit their widespread use in 253 

these ecosystems. The successful popularization of drones, driven by advancements in 254 

technical solutions and cost reductions, offers valuable lessons for the commercialization of 255 

ground robots. 256 

 257 



The coalition of drones and robots for effective ecological monitoring 258 

Environmental and ecological processes occur across multiple spatial and temporal scales105,106. 259 

Understanding these cross-scale interactions remains a key challenge for effective biodiversity 260 

research106,107. Drones and robots (Fig. 1b), combined with satellite and aerial remote sensing 261 

as well as traditional monitoring methods like ground-based surveys (Fig. 1a), offer invaluable, 262 

cross-validated, and complementary data across a wide range of spatial resolutions, from 263 

kilometers to millimeters. This capability facilitates a deeper understanding of how processes 264 

at one scale relate to those at another, contributing to a comprehensive, multi-scale perspective 265 

on ecosystem dynamics. Successful cross scale studies have been implemented in 266 

hydrodynamic monitoring96,108 and vegetation mapping95,109.  267 

Beyond their role as remote sensing platforms, drones and robots hold promise in 268 

conservation work. Similar to their use in agriculture for applying chemicals and planting 269 

seeds110,111, drones and robots could also release environmental sensors into remote and hard-270 

to-access regions for automatic ecological monitoring112, or collect biotic or abiotic samples85. 271 

Of significant promise in the future are biorobots (Fig. 1b) as a conservation tool for 272 

exploration, data collection, intervention, and maintenance tasks113. For example, once 273 

bioethical issues are appropriately addressed114, biorobots could be programmed to engage 274 

directly with organisms to influence their behaviour. Such interference of population behaviour 275 

can aid the decision-making of wild populations for conservation purposes, thus avoiding the 276 

hazards from artificial structures, e.g. dams or airports113. Expanding the use of drones and 277 

robots in such applications could significantly broaden their utility beyond traditional 278 

monitoring. 279 

Finally, integrating AI technologies directly into drones and robots could enhance their 280 

adaptability and efficiency. Current AI focuses on post-processing tasks like species 281 

classification, but embedding AI onboard drones and robots could enable real-time navigation, 282 



exploration, and target tracking, improving data collection and task efficiency. For example, 283 

some drones equipped with on-board processing capabilities are already capable of using 284 

computer vision methods to recognise and detect forest fire115 based on the still images or the 285 

video input from the drone cameras. When integrating sensor-based target detection with 286 

autonomous navigation control, drones/robots are capable of dynamically identifying and 287 

tracking the targets. Successful applications include boundary detection of hazardous aerial 288 

plumes in real time116 and deepwater animal tracking117. By integrating robust robotic 289 

platforms with cutting-edge payloads, AI, and autonomous navigation, these technologies have 290 

the potential to extend human capabilities, enabling unprecedented exploration and monitoring 291 

in otherwise inaccessible regions. Realising this potential requires a solid collaborative alliance 292 

among ecologists, biologists, conservationists, roboticists, and computer scientists to develop 293 

purpose-built robotic systems that address the challenges of biodiversity conservation, 294 

safeguarding Earth's biological heritage amid the uncertainties of global change.  295 
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Box 1.  Drones and robots offer a wide range of applications in biodiversity monitoring. 652 

Some application areas include: habitat structure analysis, species classification, biomass 653 

estimation (RGB, LiDAR), plant physiological and water quality monitoring (multi- and 654 

hyperspectral), water physical/chemical monitoring (physical/chemical sensor), and organism 655 

sampling (sampler/releaser). Word clouds were created by manually extracting application 656 

scenarios from 209 randomly selected publications from a total of 1,154 publications 657 

examined in our review. Word size represents usage frequency in these publications (source 658 

data: Appendix S2: Table S1). Word colour has no further meaning than to distinguish 659 

adjacent words. 660 

 661 

RGB Physical/Chemical sensor 

  
Multispectral Sampler/Releaser 

 
 

Hyperspectral LiDAR 

  
662 



Figure captions 663 

Figure 1. Drones and robots are revolutionising traditional ecological monitoring methods.  (a) 664 

Traditional ecological monitoring methods. From left to right: quadrat survey of grassland 665 

biodiversity at Wytham Woods, UK (photo credit: Erola Fenollosa); field survey of understory 666 

invasive reed at Black Water Refuge, MD, USA (photo credit: Man Qi); Body mass of 667 

pinnipeds weighed by hand using anaesthetic and a sling; benthic survey by divers (data source: 668 

https://www.benthicecology.org/prospective-students). (b) Novel ecological monitoring 669 

methods based on drones and robots. Front left to right: grassland biodiversity monitoring with 670 

a autonomous navigated robots; invasive reed detection (red) under forest canopy (green) by 671 

airborne LiDAR; body size measurement of pinniped from point cloud of drone images; 672 

automatic classification of benthic species from video/image taken by underwater robots.(c) 673 

Timeline of application and development of key innovations in drones and ground/underwater 674 

robots across different ecosystems suggest a fast uptake of payloads on drones contributing to 675 

increasing popularity of drones across various ecosystems. The stacked area chart shows the 676 

number of publications applying drones and ground/underwater robots in different ecosystems 677 

over time. Dots and vertical dashed line represent the timeline when built-in groundbreaking 678 

functionalities became available in commercial drones from DJI, a leading manufacturer of 679 

drones that holds 80% of the global market share27. Below is a list of DJI drones with the year 680 

they were released with built-in functionality: DJI Phantom 1 (2013) GPS, DJI Phantom 2 681 

Vision (2013) Real time live-view, DJI Zenmuse XT (2015) Thermal, DJI P4 (2019) 682 

Multispectral, DJI Zenmuse L1 (2020)-LiDAR. Shrub_Grassland -683 

Shrubland/Grassland/Savanna/Woodlands. 684 

 685 

Figure 2. The payloads utilised on different robotic platforms across various ecosystems 686 

indicate that optical remote sensing is popular for drones, while robots are more specialised in 687 



sampling and environmental physical/chemical monitoring. Results are based on a 20% 688 

random sample of the total of 1,154 examined publications where drones and robots were 689 

explicitly used to monitor biodiversity (See Appendix S3). ROVs - Remotely Operated 690 

Vehicles, AOVs - Autonomous Underwater Vehicles. 691 

 692 

Figure 3. Geographic mismatch between distribution of drone and robot applications and 693 

biodiversity rich but vulnerable regions. Geographic distribution of case studies using (a) 694 

drones and (b) robots in biodiversity research, showing a clear geographic mismatch with 695 

respect to (c) biodiversity hotspots and (d) climate-vulnerable ecological areas. (c) Biodiversity 696 

hotspots map made by Critical Ecosystem Partnership Fund 94. The highlighted 36 biodiversity 697 

hotspots comprise 2% of the land surface of the Earth, but together contain 50% of the world’s 698 

vascular plants and 42% of land vertebrates found nowhere else on Earth. The colours assigned 699 

to the hotspots are only used to distinguish adjacent hotspots and have no further meaning. (d) 700 

Climate-vulnerable ecological areas are indicated by the percentage of species in 100-km2 701 

resolution grid cells exposed to temperature beyond the realised niche of each species by 2100 702 

under RCP 8.58. Studies spanning multiple countries credit each nation involved. Marine 703 

studies that are difficult to geolocate from abstracts are excluded, including 16 cases from the 704 

Atlantic Ocean (4 from the north, 1 from the northeast, 1 from the south-central), 705 

Mediterranean Sea (3 from the northwest), Pacific Ocean (2 from the north, 1 from the east), 706 

Indian Ocean (1 from the southwest), North Sea (1 from central), and Philippine Sea (1 from 707 

central). 708 

 709 

Figure 4. Taxonomic bias of drone- and robot-based biodiversity studies towards plants and 710 

animals at spatial scales, ranging from behaviour, population, to landscape level. (a) 711 

Proportion of examined 1,154 publications using drones and robots to study species from 712 



different taxonomic kingdoms, with plants and animals representing the majority. (b) 713 

Percentage of the 1,154 drone and robot applications in plant and animal studies, categorised 714 

by scale and ecosystem type.  715 
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