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2Eawag, Department Fish Ecology & Evolution, Seestrasse 79, CH-6047 Kastanienbaum8
3Swiss Data Science Center, ETH Zurich, Andreasstrasse 5, CH-8050 Zürich9
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ABSTRACT13

Automated species detection in camera trap images with deep learning techniques has become
common in ecological monitoring. Camera trap image data sets are a challenging task, because
of modest data set size, high class imbalance owing to low prevalence of the species of interest,
and image backgrounds that vary within and between cameras. Strategies to tackle these
difficulties can be adopted at the data handling and pre-processing stage, in the choice of model
architecture, and during model training. We here report on insights regarding these strategies
from a case study that aimed to detect a large wading bird (grey heron, Ardea cinerea) in
images from different camera traps. Model performance improved with data splitting according
to a non-random strategy, higher resolution images, and standard minority oversampling with
data augmentation in color space. An object detection architecture (YOLOv5x6) performed
better than an image classification architecture (MobileNetV2), while using fewer computing
resources. Transfer learning through initial weights derived from models pre-trained on similar
data was beneficial, but fine-tuning models on the data set at hand remained important. Finally,
we highlight the dependence of predictive performance on class imbalance, and the assumption
that the prevalence in the test set is representative of intended application sets. We discuss
different performance metrics, emphasizing the importance of reporting the complete set of
basic metrics along with the test set prevalence, and illustrate the use of metrics in downstream
ecological analyses.
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INTRODUCTION32

A core task in ecology is to gather information on species occurrences to understand their33

distribution and interactions with the environment. This information is crucial for both basic34

ecological research and applied conservation efforts. With technological advancements, camera35

traps have become a popular, non-intrusive method for monitoring wildlife (Burton et al., 2015).36

These devices allow researchers to capture images at regular intervals or when triggered by37

motion, generating large data sets over time. Such data sets can provide valuable insights into38

species occurrence, behavior, and habitat use. Manual processing of large data sets is extremely39

time consuming, and automated image classification provides significant benefits (Tuia et al.,40

2022).41

Deep learning techniques, particularly convolutional neural networks (CNNs), offer a promising42

solution to automate species identification in camera trap images (Borowiec et al., 2022). CNNs43



are usually trained on a (sub)set of data that was labeled manually, i.e., images are screened44

by a human for presence of the species of interest and labeled accordingly. This labeled image45

data set is split into training data with which to train the CNN, validation data to evaluate and46

optimize model performance during training, and held out test data to quantify the performance47

of the final trained model. With sufficient training, CNNs can extract meaningful patterns from48

images, learning to classify objects with impressive generalization capabilities.49

Two common approaches are image classification and object detection. Classification assigns50

a label (e.g., species or empty) to an entire image, while object detection also localizes the51

species (object) within the image, marks it with a bounding box, and classifies the object. There52

is now a wide variety of models publicly available, each containing a set of weights that are53

either randomly initialized or have been (pre-)trained on an existing data set (Vélez et al.,54

2023). Popular examples of classifiers are MobileNets (Howard et al., 2017), DenseNet (Huang55

et al., 2018), or EfficientNet (Tan and Le, 2019). MobileNets and their successor MobileNetV256

(Sandler et al., 2018) were designed for mobile applications and are efficient and small compared57

to other architectures. MobileNetV2 has been pre-trained on the ImageNet data set (Deng et al.,58

2009a), comprising millions of images labeled according to categories; however, these images59

are not typical of camera trap images. Object detection architectures commonly used are YOLO60

(Redmon et al., 2016), R-CNN (Girshick et al., 2014), or RetinaNet (Lin et al., 2017). A model61

based on the YOLOv5 architecture is MegaDetector, now popular for camera trap image analysis62

in ecology (e.g., Vélez et al. 2023). MegaDetector is trained on a large global data set of camera63

trap images to detect animals, people and vehicles (Beery et al., 2019).64

Despite the success of these methods, several challenges remain in applying deep learning to65

ecological data. Schneider et al. (2020) identified three critical factors that affect the performance66

of automated species recognition in camera trap images. First, the size of the data set available67

for training or fine-tuning CNNs is often modest. In single species detection there are two classes:68

the species of interest is present in an image (positive) or not (empty). Schneider et al. (2020)69

recommend at least 1000 images per class to achieve high recall (true positive rate). For rare70

species, this may be difficult to achieve. Second, camera trap images frequently suffer from class71

imbalance, as many frames capture empty scenes and only a small percentage of images contain72

animals, especially in the case of rare species or when cameras continuously capture images at73

regular intervals. Differences in this imbalance between cameras pose additional difficulty to74

model training. Third, the ability of CNNs to generalize to new settings, e.g., to new species or75

across different camera locations, also remains a significant challenge. Given that the background76

remains relatively static in one camera location (apart from daily and seasonal changes in weather77

and vegetation), applying the model to data from new locations may not be successful. Different78

data distributions in the training and the test set may constitute a domain shift, where the model is79

asked to predict in a distributional range not encountered during training. Strategies to overcome80

these challenges can be adopted during input data handling and pre-processing, as well as during81

model training (Chen et al. (2024)).82

Input data handling decisions include the following. First, appropriate data splitting into83

training, validation, and test sets is crucial to avoid data leakage, which occurs if information84

from the test or validation set is unintentionally used in the training procedure, leading to85

inflated estimates of model performance. This has to be considered in light of the ecological86

question of interest. Second, for camera trap images, image resolution is important. Images87

are typically downsized to a lower resolution in order to minimize memory requirements.88

Downsizing images constitutes an information loss, however, that can reduce model performance89

(Thambawita et al., 2021). Third, class imbalance can be addressed with resampling and90

data augmentation techniques, often in combination. Class imbalance in camera trap image91

data for single species detection usually involves few positives (the minority class) and many92
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Figure 1. Image examples from different camera traps, showing the difference in backgrounds,
seasons, and lighting conditions. Herons are increasingly difficult to detect in panels A to D.
Panels C and D show bounding boxes around herons, as used in the labeling of images to train
the object detection algorithm.

more negatives (the majority class). Resampling can balance the number of positives and93

negatives (empty frames) through undersampling, where a random subset of the negatives are94

used (Gomez Villa et al., 2017), or through oversampling, where copies of the positives are95

generated to achieve better class balance (Zualkernan et al., 2022). To avoid overfitting to96

specific, duplicated images, oversampling is usually combined with data augmentation, where97

copies of positives are distorted, e.g., in color space (Tabak et al., 2019; Whytock et al., 2021;98

Ferreira et al., 2020).99

During model training, a number of decisions are made based on model performance on a100

validation set. The first decision is the choice of model architecture, which depends on the task at101

hand but is also constrained by skill, available memory and computing power. A strategy to deal102

with small data sets is transfer learning, where weights (CNN parameter values) are imported103

from a model that was trained on a different, larger data set (Willi et al., 2019; Norouzzadeh104

et al., 2018). Weights can then be kept for all or some layers (by freezing layers; Yang et al.105

2024) or updated through training on the data set at hand. Hyperparameter tuning includes106

decisions about the learning rate, batch size, optimization- and model-specific parameters, or the107

cut-off (threshold) value that translates a score to a label.108

Ultimately, ecologists are interested in the application of camera trap monitoring in the context109

of an ecological question such as species occurrence probability in different habitats. While110

machine learning platforms that automate image recognition have been reviewed repeatedly in111

the ecological literature (Christin et al., 2019; Borowiec et al., 2022; Vélez et al., 2023), less112

attention has been paid to the interpretation of classifier performance metrics and their usage in113
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downstream ecological analyses (but see Rhinehart et al. (2022) for an alternative approach).114

Common recommendations for using machine learning models are to evaluate and report115

recall, accuracy, precision, or the F1 score to judge a model’s performance on a test set (e.g.,116

Norouzzadeh et al. 2018; Christin et al. 2019; Vélez et al. 2023). The specific meaning of each117

metric, and the sufficient set of metrics that should be reported to enable a full assessment of118

model performance, is often ignored. Subtle differences in metric interpretation, well understood119

in, e.g., the medical sciences in the context of diagnostic tests (Trevethan, 2017), are less120

frequently highlighted in ecological applications of classifiers. In particular, the dependence of121

selected metrics on the proportion of positive images (the ’prevalence’ or ’class imbalance rate’)122

in test versus application datasets is underappreciated. Low prevalence (one form of high class123

imbalance) is common in monitoring, especially of rare species, and strongly affects a model’s124

predictive performance metrics, with important corollaries for their interpretation. Lastly, little125

attention has been given to how these metrics can be used to account for model uncertainty in126

downstream ecological analyses of species detections in images. A proliferation of different127

terms used in different fields for the same metrics further complicates understanding (Kapoor128

and Narayanan, 2023). An overview of the key differences between various performance metrics129

and their interpretation in the context of ecological modeling is lacking.130

Here, we report on a case study of a single species recognition task in camera trap images to131

discuss data handling and model training strategies, compare architectures and provide guidance132

on the interpretation of performance metrics. The image data set is from a camera trap study133

designed to monitor the presence of grey heron (Ardea cinerea) at small streams in Switzerland.134

The ecological motivation was to understand whether there is a difference between streams in135

the probability of heron presence, and what ecological variables drive these differences. Typical136

for ecological monitoring data, the data set has high class imbalance (few positives, i.e., images137

with heron present), which furthermore differs between camera locations. Seasonal differences138

in light and background conditions render species recognition in these images a difficult task139

(Fig. 1).140

We first conducted an ablation study to investigate data handling strategies, especially data141

splitting and preprocessing, resampling and data augmentation strategies. Using the best settings142

determined in the ablation study, we then compared the performances of a classification network143

(a fine-tuned MobileNetV2 model) and an object detection network (the pre-trained MegaDe-144

tector model, and a fine-tuned YOLOv5x6 model) in two scenarios: with training data from145

the single camera (site) with the most positives, and with training data from all cameras (sites),146

which differ in heron prevalence. We compared the generalization capacity of the models trained147

on the single camera by their performance on out-of-sample tests sets from different cameras.148

Finally, we discuss different performance metrics, their interpretation and their usage in149

downstream ecological analyses of heron occurrence probability.150

METHODS151

Data152

The entire labeled data set consists of 415406 images taken by camera traps in 23 different153

locations between Jan 27, 2017 and July 17, 2017. Camera locations are distributed along 6154

different streams, and identified according to stream (GBU, KBU, NEN, PSU, SBU, SGN) and155

camera number (e.g., GBU3). Every camera set contains between 10k and 22k images, with156

a median value of 18992. The camera model was a Bushnell Trophy Cam HD Essential E2.157

Images were taken at regular 15 minute intervals or when triggered by motion. Night-time158

images were taken in infrared mode, but they were excluded from this study because there were159

insufficient positives, and because they constitute a separate classification challenge since it is160
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not trivial to convert infrared and RGB images to a comparable color mode.161

The day-time data set used consists of 251479 images, with only 3177 (1.3%) of frames162

containing herons. In addition, the distribution of positives across different cameras is uneven.163

The camera with the most positives, SBU4, contained 1545 (12.0%) images with heron present,164

and three cameras (GBU1-3) had no positives. Average prevalence (proportion of positives)165

across cameras was 1.2%. Further details are in Appendix A.166

Each image was initially labeled by a human as positive when containing at least one heron167

(heron, h), and negative when no heron was found (empty, e). These labels were considered the168

ground truth for the classification task. For training the object detection algorithm, bounding169

boxes were set around herons. To set bounding boxes we first applied the MegaDetector algorithm170

(Hernandez et al., 2024) to all positives and manually checked results; this set correct boxes171

for about half of herons. The remaining box labels were set manually with the Roboflow tool172

(Dwyer et al., 2024).173

The data set presents challenges typical for camera trap studies. Weather and light conditions174

occasionally affected image quality: fog led to wet cameras and blurry images, and varying sun175

angle gave strong or weak contrast. The heron’s position could make it difficult to spot, when it176

was distant from the camera, occluded by vegetation, or when only a small part of it was visible177

within the image plane. Occasionally, flying herons appeared blurry due to their fast motion (Fig.178

1).179

Ablation study180

To determine optimal data handling and pre-processing strategies, we first conducted an ablation181

study by training MobileNetV2 models, with initial weights derived from ImageNet data (Deng182

et al., 2009b), on the single camera data set (SBU4) and comparing their performance through183

the F1-score. We considered data splitting, image resolution, resampling strategies and data184

augmentation (i.e., techniques for increasing the diversity of the data set without actually185

collecting new data), as well as transfer learning (i.e., using weights derived from other data).186

The best strategies and settings determined during the ablation study were then used for training187

MobileNetV2 and the object detection architecture YOLOv5x6 to compare their performance188

in two scenarios. The YOLOv5x6 architecture for some aspects facilitated different some pre-189

processing strategies (e.g., higher image resolution); these choices were not part of the ablation190

study, which was conducted using MobileNetV2, but are also described in this section.191

Data splitting The train-validation-test set splitting was implemented on the full data set in192

two ways. Note that these splitting procedures were applied to both day- and night-time images,193

before night-time infrared images were excluded.194

Split 1 was chronological, with the 85% earliest images allocated to the training and validation195

data, and the latest 15% to the test data. We divided the initial portion, again chronologically,196

into 85% training and 15% validation data, ensuring the training data contained the earliest197

images. This method intends to minimize temporal data leakage, which could occur in a random198

split that places consecutive, nearly identical images into different data sets.199

Split 2 was seasonal. Here, we allocated the 7.5% earliest (January) and 7.5% latest (July)200

images to the test set. Of the remaining data, we again assigned the 7.5% first and 7.5% last201

images to the validation set, while remaining images constituted the training set. This was202

motivated by the fact that the model’s application is the classification of images from all seasons203

in following years (not be the continuation of a time series). We used only the earliest and204

latest images as the test set to minimize data leakage from boundary effects (similar consecutive205

images across training and test set boundaries).206
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Image resolution During the ablation study with MobileNetV2, we first downscaled the207

full images to a resolution of 448×448 (direct resizing), and then tested the effects on perfor-208

mance when increasing the input resolution to 896×896. Even higher resolutions increased209

computational load for MobileNetV2 substantially.210

For the object detection task, images were resized to the YOLOv5x6 default resolution211

1280×1280 via letterboxing (i.e., aspect ratio maintenance with additional padding). Despite212

information loss, this technique is preferable for object detection performance.213

For both classification and object detection, the pixels of resized images were generated via214

bilinear interpolation.215

Background removal We considered background removal as an additional image manipulation216

strategy to reduce the effect of complex backgrounds. Leveraging the time series of regularly217

taken photographs, pixel values over previous n images were averaged and subtracted from each218

image, such that objects that newly appeared in an image became more visible relative to the219

background. This did not improve performance notably, and was not further pursued. Details in220

Appendix B.221

Resampling We tested different resampling techniques to address class imbalance. We first222

randomly undersampled negatives to achieve a 1:1 ratio between both classes. Undersampling223

was applied to the training and validation data separately, allowing us to decrease training times224

and explore multiple configurations. While having the advantage of using a smaller training225

data set, undersampling is often a suboptimal strategy (Loffredo et al., 2024). We therefore226

proceeded to training with oversampling, which allowed us to use the entire data set and can227

improve both training time (Francazi et al., 2023) and overall performance (Loffredo et al., 2024).228

We oversampled the training data with two techniques: the synthetic minority over-sampling229

technique (SMOTE) (Chawla et al., 2002) and standard oversampling.230

SMOTE rebalances positives and negatives by producing new artificial minority (positive)231

instances through linear interpolation. These artificial images were generated from the prepro-232

cessed images, not from raw images.233

Standard oversampling rebalances the two classes by sufficiently resampling the positives such234

that positives and negatives are seen equally often during training. Copies of the positive set are235

combined with a random subsample of the minority class to achieve a balanced data set. We236

ensured variability among the copied heron images through random augmentation techniques237

during training, since using exact copies of the training images would lead to detrimental image238

memorization and overfitting.239

In trainings using images from all cameras, we additionally tested a novel logarithmic oversam-240

pling technique, with the goal to even out differences in class imbalance across different camera241

subsets. Performance did not improve noticeably, and results are therefore not shown. Details242

are in Appendix C.243

Data Augmentation For training MobileNetV2, we used data augmentation in color space244

by randomly altering the saturation, brightness and contrast values to simulate light changes245

that occur across different times of the day. Affine transformations like rotation, scaling and246

translations were discarded due to the possibility of herons disappearing from the frame or247

becoming significantly smaller and hence undetectable.248

For training YOLOv5x6, data augmentation was achieved with random transformations in hue-249

saturation-value (hsv) space. We also applied the YOLO-specific feature of mosaic augmentation250

with the aim of decreasing background dependence. This technique consists in combining three251

random images into a single image as a mosaic, where each subsample is located in a quadrant.252

Image resizing and color augmentations were then applied to the entire mosaic.253
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Transfer learning MobileNetV2 was initialized with weights pre-trained on the ImageNet data254

set. We started with freezing all but the last layer (i.e., keeping pre-trained weights in frozen255

layers) and adjusting the final layer for binary classification. Then we unfroze all layers and256

trained the full model, using pre-trained weights as initial values. Subsequent trainings were257

performed with all layers unfrozen.258

For YOLOv5x6, initial weights of the MegaDetector model (v5) were used, which is a259

YOLOv5x6 architecture trained on camera trap data to distinguish animals, humans, and vehicles260

(Hernandez et al., 2024). Throughout the training procedures, we only fine-tuned weights from261

the last 11 layers, corresponding to the detection and classification tasks, while keeping the262

first 12 backbone layers frozen (responsible for feature extraction), thus maximizing training263

efficiency and reducing the potential for overfitting.264

Architecture comparison265

After the initial ablation study we proceeded with training the classification network Mo-266

bileNetV2 and the object detection network YOLOv5x6 with the optimal settings determined267

by the ablation study and standard oversampling, while evaluating the F1-score of the model268

on undersampled validation data after every training epoch. An epoch is defined as one pass269

through the full dataset (for oversampling, this includes all generated copies). This method gives270

an effective estimate of model performance via metric curves as the training progresses, allowing271

the user to monitor parameter convergence. After determining the optimal training configurations272

and number of epochs for each setting, we retrained models on the merged training and validation273

sets, and report final results on held out test sets.274

Classification The selected classifier, MobileNetV2 (Sandler et al., 2018), contains 55 layers275

and a total of 3.4M parameters. This model is more compact and parameter-efficient than other276

classification networks, such as the larger ResNet, DenseNet, or EfficientNet architectures,277

and more recently Vision Transformers (Dosovitskiy et al., 2021). Although containing fewer278

trainable parameters, the inclusion of linear bottlenecks and depthwise separable convolution279

make it achieve excellent performance, reaching 91% top-5 accuracy on the ImageNet data set280

(Sandler et al., 2018).281

We chose MobileNetV2 because the task consisted of a binary classification rather than the282

detection of multiple species. Deeper models are more prone to overfitting and not likely to283

provide an improvement in accuracy at the cost of additional compute power.284

We used the optimizer AdamW (Loshchilov and Hutter, 2019) while keeping default moment285

parameters, learning rate 10−5, batch size 32, and default dropout probability 0.2. No benefit286

was evident from introducing weight decay. The confidence threshold was set to the commonly287

used value of 0.5.288

Object Detection The object detection model used was YOLOv5x6 (Ultralytics, 2021) with289

initial MegaDetector weights (version 5), which are derived from fine-tuning a YOLOv5x6290

architecture on global camera trap data (Hernandez et al., 2024). YOLOv5x6 contains a total of291

33 layers with 14M parameters. While there are more complex models with a two-stage pipeline292

(e.g., Cascade and Faster RCNNs) as well as more recent versions of YOLO available, we chose293

version 5 because it allowed us to use the pre-trained MegaDetector weights.294

We refer to the pre-trained, zero-shot model without further fine-tuning as the MegaDetector295

model, and provide results from this network alongside results from YOLOv5x6 trained on our296

data set (with MegaDetector weights as initial values). While the confidence threshold was297

optimized for the trained models, we fixed this value to the default 0.2 for the MegaDetector298

model.299
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To fine-tune the MegaDetector weights, we made partial use of the YOLOv5 framework300

(Ultralytics, 2021). Many of the training configurations were kept to their default values,301

including a stochastic gradient descent (SGD) optimizer (Ruder, 2017) with momentum 0.937,302

as well as initial and final learning rates of 10−2 and 10−4, respectively. The batch size was set303

to 32 and the input resolution was fixed to 1280×1280.304

The confidence threshold during the object detection task was varied after every epoch to305

maximize the detection F1-score on the validation set, as implemented by default in the YOLOv5306

framework. The model with maximum fitness is saved as the best model, and we used the307

corresponding confidence threshold for the final test metrics. The fitness F is defined as308

F = 0.1mAP@0.5+0.9mAP@0.5:0.95, where mAP@0.5 is the mean average precision (mAP)309

at intersection over union (IoU) 0.5, and mAP@0.5:0.95 is the mAP averaged over IoU values310

from 0.5 to 0.95 with step size 0.95 (Ultralytics, 2021).311

Scenarios We trained models on two data scenarios: a single-camera data set from the camera312

with most positives (SBU4) and the data set from all cameras combined (all cams). Models313

fine-tuned on the single-camera set were evaluated against held out test sets from the same314

camera and from other cameras (non-SBU4). Performance on non-SBU4 data was quantified to315

evaluate their generalization capabilities to different cameras, with different backgrounds and316

heron prevalence. Models trained on all cameras were evaluated against a held out test set from317

across all cameras, as well as camera-specific subsets. Alongside the models trained on our data,318

we also tested the zero-shot capabilities of the pre-trained MegaDetector model.319

For each test set and model, we report metrics derived from the confusion matrix, which320

compares the classification returned by the model to the ground truth label of an image (Box 1).321

In the case of object detection models, an image was classified as positive when at least one322

object (heron) was detected in the image.323

Specifically, we report the True Positive Rate (TPR), the True Negative Rate (TNR), the324

balanced accuracy, as well as the prevalence of positives in the test set and the Positive Predictive325

Value (PPV), the Negative Predictive Value (NPV) and the F1 score (definitions in Box 1). Key326

metrics were calculated for test sets corresponding to training sets (SBU4 and all cameras) as327

well as subsets of these to facilitate comparison.328

Performance metrics329

We provide definitions and a description of key performance metrics and their meaning in330

(Box 1). We clarify which metrics can be used in a downstream ecological analysis to account331

for the error rates of the chosen species detection model (with the example of a simple state332

space model). We highlight the impact of rarity, i.e., low prevalence of the species of interest333

(the positive class), on the predictive capacity of a chosen model, as well as avenues to improve334

model performance or predictive capacity.335
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Box 1. Performance metrics There is a fundamental yet often underappreciated distinction
between performance metrics commonly reported for classifiers. It has to do with the reference
set to which the metric applies and, consequently, its independence (for classifier performance) or
dependence (for predictive performance) on the context, specifically the prevalence (proportion of
positives) in the data set under study (in other words, the class imbalance).

Performance metrics are calculated based on the correspondence of ground truth and classification
by a model in a test set, as reported in the confusion matrix, i.e., the number of true positives (TP),
false positives (FP), false negatives (FN) and true negatives (TN):

Ground truth x
Positive (h) Negative (e)

Classification (label) y
Positive (+) TP FP → PPV
Negative (-) FN TN → NPV

→ TPR → TNR

Classifier performance Metrics describing classifier performance pertain to the ability of the
model to make a correct guess y = {+,−} given the truth x = {h,e}, that is they pertain to Pr(y|x).
These metrics are the true positive rate TPR (also called recall or sensitivity), which estimates Pr(+|h),
and the true negative rate TNR (or specificity), which estimates Pr(−|e). Based on the confusion
matrix, TPR and TNR are calculated, conditional on the truth, as T PR = T P

T P+FN and T NR = T N
T N+FP ,

respectively. Accuracy is often used as a summary measure of how well the classifier correctly
identifies the truth; it is calculated as ACC = T P+T N

T P+FP+T N+FN , i.e., the proportion of all classifications
that are correct. Accuracy is misleading when the data set is imbalanced; e.g., when the vast majority
is negative, a baseline model classifying all instances as negative would achieve a high TNR and
high accuracy. In such cases, balanced accuracy, calculated as the mean of TPR and TNR, gives a
comparatively more objective assessment of model performance.

Predictive performance Metrics describing the predictive capacity of an algorithm in the context
of a model’s application (prediction in context) quantify the probability of predicting the truth x
correctly, given a particular guess y, that is they pertain to Pr(x|y). These metrics are the positive
predictive value PPV (or precision), which estimates Pr(h|+), and the negative predictive value NPV,
which estimates Pr(e|−). Based on the confusion matrix, they are calculated, conditional on the label,
as PPV = T P

T P+FP and NPV = T N
T N+FN , but their validity is dependent on the prevalence Pr(x = h) of the

test set used. These metrics are not intrinsic to the model but also depend on the context, specifically
the prevalence, of the data set to which the models are applied. This is evident from an alternative
calculation: using Bayes’ theorem, predictive values can be derived from TPR, TNR and prevalence.
In this formulation, the PPV is calculated as

P(h|+) =
Pr(+|h)Pr(h)

Pr(+|h)Pr(h)+(1−Pr(−|e))Pr(e)
≈ T PR ·Pr(h)

T PR ·Pr(h)+(1−T NR) · (1−Pr(h))
(1)

Note that Pr(+|e) = 1−Pr(−|e). The NPV can be calculated analogously. The estimate of predictive
performance derived from the confusion matrix depends critically on the assumption that the prevalence
is representative. PPV and NPV estimated from performance on a test set are only valid for the test
set used or other data sets with the exact same prevalence as in that test set. Any violation of this
assumption will lead to false estimates of the predictive uncertainty of the model. Especially in the
case of very low prevalences, small differences can affect predictive metrics substantially (Fig. 5).

Finally, the F1-score is calculated as the harmonic mean of TPR (recall) and PPV (precision; as
estimated from the test set), and thereby gives information on both the classification and the predictive
performance, with the corollary that it is also sensitive to the prevalence, i.e., class imbalance.

To meaningfully assess the performance and predictive capacity of a classifier, all four metrics
(TPR, NPR, PPV and NPV), as well as the prevalence of positives in the test set, should be reported
(Trevethan, 2017).
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RESULTS336

Ablation study337

Training the full MobileNetV2 model (pre-trained weights used as initial values), increased338

model performance substantially compared to fine-tuning only the last layer (Table 1; Fig. 2).339

Splitting the data into training, validation, and test sets according to the seasonal strategy resulted340

in better model performance than the chronological split. Higher input image resolution (896x896341

pixels instead of 448x448) was also beneficial. Regarding oversampling strategies, SMOTE342

lead to a more unstable and marginally lower F1 curve (Fig. 2) than standard oversampling.343

Generating synthetic samples corresponds to a longer and computationally more expensive344

process than producing copies of minority data. Overall, standard oversampling in combination345

with random data augmentation in color space resulted in the best performance among the346

evaluated resampling and augmentation strategy combinations (Table 1).347

Table 1. Ablation study results showing the maximum F1 score achieved with MobileNetV2
trained on SBU4 data given different data splitting strategies, input image resolution, resampling
methods, data augmentation, and degrees of transfer learning (freezing initial weights in all but
the last layer, or training the full model). Oversampling refers to standard oversampling.

Data split Resolution Resampling Augmentation Layers
trained

Max. F1

Chronological 448x448 undersampling none last layer 0.34
Chronological 448x448 undersampling none full model 0.77
Seasonal 448x448 undersampling none full model 0.87
Seasonal 896x896 undersampling none full model 0.91
Seasonal 896x896 undersampling color full model 0.93
Seasonal 896x896 SMOTE none full model 0.92
Seasonal 896x896 oversampling color full model 0.94

Figure 2. Validation F1-score curves for the ablation study using MobileNetV2, A) training on
undersampled SBU4 data with different configurations, and B) training with SMOTE and
standard oversampling on SBU4 data.

Single camera scenario348

Both models converged after 15 epochs during training and evaluation on the validation set. The349

optimal confidence threshold for the object detection network was 0.07. Results are given for350
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both architectures fine-tuned on the joint training and validation sets for 15 epochs, and evaluated351

on the held out test sets from the SBU4 camera and from non-SBU4 cameras. The non-SBU4352

test set assesses generalization capabilities to out-of-sample data. Final F1-score training curves353

are in Appendix D.354

For the in-sample (SBU4) test set, the trained object detection algorithm YOLOv5x6 performed355

best, achieving the highest TPR (recall) and highest balanced accuracy, as well as the highest356

PPV (precision) and F1 score (Fig. 3, Table 2). Second was the trained classifier MobileNetV2,357

and last the zero-shot, pre-trained object detection model MegaDetector. Note though that in358

spite of high balanced accuracy (0.94) and a high TPR (recall) of 0.90, the best performing359

model YOLOv5x6 still only achieved a PPV (precision) of 0.71 (Fig. 3). That is, 29% of images360

classified as containing a heron (labeled +), were actually false positives.361

Out-of-sample performance for images from cameras not seen during training (non-SBU4) was362

low for all models. In terms of balanced accuracy and TPR (recall), the zero-shot MegaDetector363

model performed better than the models trained on SBU4 data (Fig. 3, Table 2). PPV (precision),364

however, was < 0.1 for all models. In terms of PPV (precision) and F1-score, the trained365

YOLOv5x6 model performed slightly better than MegaDetector. Note that the prevalence in the366

non-SBU4 set was six times lower than in SBU4 (Table 2).367

Figure 3. Performance of the classifier MobileNetV2 (MN) and the object detection model
YOLOv5x6 (YL) trained on data from the single camera with most positives, for held-out test
data from SBU4 and new data from other cameras (non-SBU4), as quantified by balanced
accuracy (A), and TPR (recall) and PPV (precision) (B). Also shown are zero-shot results for the
pre-trained MegaDetector model (MD).

All cameras scenario368

Both models converged already after one full epoch; the numerous positive copies gener-369

ated with standard oversampling likely accelerated the pattern recognition and learning pro-370

cesses.Extending the trainings to more epochs decreased validation metrics, indicating that371

networks started overfitting. A confidence threshold of 0.27 yielded maximum YOLOv5x6372

fitness. Final training F1-score curves are in Appendix D.373

Within-sample performance of all models trained on images from all cameras was worse than374

for the single camera scenario.375

Evaluated on the full test set across all cameras, the trained object detection algorithm376

YOLOv5x6 performed best, with highest, albeit modest, values of TPR (recall), PPV (pre-377

cision), and F1-score (Table 2). However, PPV (precision) was again very low also for the best378

model: YOLOv5x6 achieved a precision of only 0.33, in spite of comparatively high TPR (recall)379
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Table 2. Performance metrics for the classifier MobileNetV2 (MN) and the object detection
model YOLOv5x6 (YL) trained on the single camera with the highest prevalence (SBU4) and on
all cameras (all cams), along with results for the pre-trained MegaDetector model (MD), when
evaluated against test sets from SBU4, non-SBU4 cameras (¬SBU4), and all cameras. Note that
for models trained on SBU4, non-SBU4 constitutes an out-of-sample test set; for models trained
on all cameras, SBU4 and non-SBU4 are subsets of the all camera test set. p(h) is the prevalence
(proportion) of positives (heron) in the respective test sets. TPR (recall), TNR (specificity) and
balanced accuracy (BA, the mean of TPR and TNR) do not depend on prevalence; they are
intrinsic to the models. PPV (precision), NPV and F1-score (the harmonic mean of TPR and
PPV) depend on prevalence; they are here calculated given the prevalence of the respective test
set.

Model Train Test TPR
(recall)

TNR BA p(h) PPV
(precision)

NPV F1

MN SBU4 SBU4 0.815 0.963 0.889 0.073 0.635 0.985 0.714
MD SBU4 SBU4 0.790 0.838 0.814 0.073 0.278 0.981 0.411
YL SBU4 SBU4 0.903 0.971 0.937 0.073 0.709 0.992 0.794
MN SBU4 ¬SBU4 0.513 0.714 0.614 0.012 0.021 0.992 0.040
MD SBU4 ¬SBU4 0.568 0.901 0.734 0.012 0.064 0.994 0.115
YL SBU4 ¬SBU4 0.490 0.919 0.704 0.012 0.067 0.993 0.118
MN all all 0.626 0.942 0.784 0.015 0.141 0.993 0.230
MD all all 0.622 0.898 0.760 0.015 0.084 0.994 0.148
YL all all 0.803 0.975 0.889 0.015 0.328 0.997 0.466
MN all SBU4 0.927 0.401 0.664 0.073 0.109 0.986 0.195
YL all SBU4 0.895 0.942 0.919 0.073 0.547 0.991 0.679
MN all ¬SBU4 0.529 0.969 0.749 0.012 0.170 0.994 0.257
YL all ¬SBU4 0.773 0.977 0.875 0.012 0.285 0.997 0.416

of 0.80 and balanced accuracy of 0.89. That is, 67% of images classified as positives were false380

positives; in other words, the predictive certainty for heron presence was only 33%.381

Both models trained on data from all cameras had higher performance metric values than the382

zero-shot MegaDetector model, although in terms of TPR (recall) MegaDetector got close to the383

trained classifier MobileNetV2 (Fig. 4).384

Models fine-tuned on all cameras performed worse on the SBU4 test subset but better on the385

non-SBU4 test subset compared to models trained on SBU4 data only (Table 2). Note that the386

prevalence across all cameras is nearly five times lower than in SBU4.387

Performances varied considerably across cameras (Fig. 4). The balanced accuracy of YOLOv5x6388

differed most from MobileNetV2 for cameras with the highest (e.g., SBU4, NEN1) and lowest389

prevalences (e.g., SBU2).390

In summary, the trained object detection model YOLOv5x6 performed best, especially for391

the intended use case of applying a model to images from all cameras. For all cameras but392

SBU4, training YOLOv5x6 on images from all cameras was better than training this model on393

images from the single camera with most positives (SBU4) and applying it by generalizing to all394

cameras. However, the achieved PPV (precision) of the best model remained low.395
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Figure 4. Performance of models trained on data from all cameras. A) Balanced accuracy of
the classifier MobileNetV2 (MN), the object detection model YOLOv5x6 (YL) and the
zero-shot MegaDectector (MD) on test sets across all cameras (all), SBU4, non-SBU4, and four
individual cameras, two with relatively high prevalence in the test set (NEN1, SGN1) and two
with relatively low prevalence in the test set (NEN4, SBU2). The value above the bars (black,
angled) shows the prevalence (proportion of positives) in each respective test set. B) TPR (recall)
and PPV (precision) of these models on test sets across all cameras (all), SBU4, and non-SBU4.

DISCUSSION396

Using deep learning to automate single species recognition in a typical camera trap image data397

set, we report on insights regarding data pre-processing strategies and the results of a comparison398

between a classification and an object detection architecture. We use this case study to discuss399

the interpretation of performance metrics and to highlight the frequently neglected effect of class400

imbalance (low prevalence of the positive class) on predictive performance.401

Data handling and pre-processing Appropriate splitting of data into training, validation and402

test sets is important to avoid data leakage and overestimation of model performance (Kapoor and403

Narayanan, 2023). The intended use of the model has to be considered, however, which in our404

case was to classify new images across all seasons and cameras. The second, seasonal splitting405

method improved model performance for this task, since the training and validation sets were406

more similar in terms of weather and vegetation patterns, as influenced by seasonality. We stress407

that few studies have implemented non-random data splitting, and recommend consideration of408

the intended model application to improve performance under this specific task.409

Image resolution used during model training is often low and determined by default values410

used in open-source models (often 256×256, as in, e.g., Norouzzadeh et al. 2018; Tabak et al.411

2019). Humans tend to underestimate the required resolution because they are better than CNNs412

in detecting animals at low image resolution (Leorna and Brinkman, 2022). The performance413

improvement of MobileNetV2 with higher resolution demonstrates that this variable should414

be considered an additional hyperparameter in wildlife recognition, especially in cases where415

animals can be expected to cover only a small number of pixels. Higher resolution input416

data requires more memory, however, and trades off with the size of the architecture itself.417

With resolution 896×896 we nearly saturated the available GPU memory capacity, making it418

impractical to fully train larger CNNs while maintaining the same resolution. A systematic419

further exploration of these trade-offs would be useful.420

Transfer learning is an option to avoid model training altogether, as in the application of421

the pre-trained MegaDetector model, or to facilitate model training by fine-tuning some or all422
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weights derived from a model trained on similar data. MobileNetV2 benefited from unfreezing423

and fine-tuning all model layers, which implies that the ImageNet weights are not well-suited424

for camera trap data and that complete tuning is preferable over training only the last layer.425

Similarly, Yang et al. (2024) observed a substantial CNN classifier improvement from increasing426

the number of tunable layers when using camera trap data. While the zero-shot MegaDetector427

model, pre-trained on camera trap images, overall performed poorly, it still achieved TPR values428

comparable to the fine-tuned MobileNetV2, which points to the importance of using transfer429

learning with models pre-trained on comparable tasks (Christin et al., 2019).430

Resampling in combination with data augmentation offers avenues to overcome high class im-431

balance during model training (Klasen et al., 2022). Standard oversampling with augmentations432

in color space improved model performance the most, suggesting that these transformations433

were able to effectively simulate light changes across images.434

Object detection outperformed classification The trained object detection model YOLOv5x6435

performed overall better than the classification model MobileNetV2, for both in-sample test data436

and out-of-sample generalization. Additionally, YOLOv5x6 required approximately five times437

fewer computational resources than MobileNetV2 when trained on the same data set.438

Object detection may be overall more suitable to camera trap images, where backgrounds vary439

depending on weather and seasons as well as between cameras. This may be intrinsic to the440

architecture, which focuses the attention of the model on an identified object. Or it may stem441

from architecture-specific features such as the ability to use images of higher resolution with442

the YOLO-framework, or the YOLO-specific feature of mosaic augmentation. Initial weights443

obtained from pre-training on other camera trap images may have contributed to better fine-444

tuning of this model, pointing to the relevance of transfer learning (Willi et al., 2019). Potentially445

also the automated optimization of the confidence threshold via model fitness could lead to446

higher performance than achieved by the classification algorithms, where the threshold needs to447

be set.448

Taken together, these features may explain the more accentuated difference in performance449

between the two architectures in the all cameras scenario. Classification performance values for450

MobileNetV2 were considerably lower than for YOLOv5x6 in this scenario, and only slightly451

above the ones obtained with MegaDetector. The marked difference in the single camera SBU2452

stems from the fact that there was a single positive image in this camera set, which MobileNetv2453

failed to detect (resulting in TPR and PPV values of zero).454

Also when generalizing to test sets unseen during training (non-SBU4 in the single camera455

scenario), object detection performed better than classification, achieving higher F1 scores and456

predictive performance. Irrespective of this comparatively higher generalization capacity of457

the object detection model, performance on new data remained poor for both trained networks.458

When considering the intended use case of classifying images from all cameras, training models459

on images from all cameras was overall better than training models on the single camera with460

most positives. This was in spite of strong differences in class imbalance between cameras.461

Poor performance on images from new camera traps has also been observed by Beery et al.462

(2018), who found more than a 90% increase in error rates after evaluating a self-trained463

Inception-V3 model on samples from new locations. Additionally, using the same training and464

test sets, Beery et al. (2018) found a mean average precision decrease from 77% to 71% when465

evaluating a fine-tuned Faster R-CNN model on images with new backgrounds. Tabak et al.466

(2019) trained a ResNet-18 classifier on extensive camera trap data from 5 US locations, and467

observed a 18% drop in accuracy after evaluating this network on a set from Canada.468

Most past work has focused either on classification or on object detection. Both methods are469

occasionally applied sequentially (Norouzzadeh et al., 2021; Schneider et al., 2023), by cropping470
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Figure 5. Effect of prevalence (proportion of positives in the test set) on PPV (precision) for
different combinations of TPR (recall) and TNR (specificity). Also at high values of TPR and
TNR, precision is highly sensitive to low values of prevalence. The inset shows PPV at small
values of prevalence (logarithmic scale).

out animal frames with a pre-trained network and fine-tuning a classifier to recognize species in471

the cropped images. Few studies have independently fine-tuned and compared classification with472

object detection architectures on the same camera trap data set. Örn (2021) reported superior473

performance of YOLOv3 and MegaDetector over a DenseNet201 architecture. Beery et al. (2018)474

observed better generalization capabilities of the object detection architecture Faster R-CNN475

against the classification model InceptionV3. Object detection algorithms may thus generally be476

the better choice for camera trap image classification tasks than classification networks.477

High performance metrics do not imply low uncertainty Relationships between individual478

performance metrics are not consistent or predictable. It is therefore essential to report all four479

basic metrics (the performance metrics TPR and TNR, as well as the predictive metrics PPV and480

NPV) together with the prevalence in the test set based on which they were calculated to allow481

researchers to assess model performance comprehensively (Trevethan, 2017).482

High TPR (recall) and TNR, as well as balanced accuracy, do not necessarily indicate high483

predictive certainty. Predictive values (PPV and NPV) are critically dependent on prevalence.484

This has important consequences that are often overlooked in the discussion of classifier perfor-485

mance. First, low prevalence (high class imbalance) necessarily leads to low positive predictive486

values (see Box 1, Fig. 5). In our results this could partly explain the low PPV (precision) values487

observed for the non-SBU4 and all camera sets (Fig. 4), which have a prevalence of less than 2%.488

Second, the estimated values for the predictive performance metrics PPV (or precision) and NPV489

are only valid for data sets with the exact same prevalence as observed in the test set. The test set490

is hence assumed to be representative of the wider population and any potential application case.491

Third, under high class imbalance, small differences in prevalence (between, e.g., a test set492

and an unseen application set) have large effects on predictive certainty (Fig. 5). Consider a493

simplified example, where TPR and TNR are both high at 0.9. Decreasing prevalence in a low494

class imbalance scenario by 10% from 0.5 to 0.4, decreases the resulting PPV from 0.9 to 0.86.495

Decreasing prevalence in a high class imbalance scenario by only 1% from 0.02 to 0.01, halves496

the resulting (low) PPV from 0.16 to 0.08.497
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Box 2. Using metrics in downstream ecological analyses Ecological field data with
observation uncertainty is nowadays typically analyzed with state-space models such as the occupancy
model (MacKenzie et al. 2003), where the observation process is modeled separately and conditional
on the latent ecological process of interest.

Let xit denote the latent true presence of the species in an image taken at time t at site i (defined here
by the camera viewshed), and yit the image label (detection/non-detection) obtained by automated
detection of the species in the image by a classification algorithm. A simple occupancy, or state-space,
model, spelled out in hierarchical submodels, could then be formulated as follows.

The observation process here corresponds to the classifier’s detection/non-detection of the species
in an image, conditional on the species’ actual presence in the image (and hence the site). Note that
an additional level could be included that makes the probability of presence in an image conditional
on the separate probability of presence at a site, Pr(xit |zit); we omit this here for the sake of brevity
and simply note that the interpretation of Pr(x) here combines the probability of being both present
in a camera viewshed at the time of a snapshot and visible in an image. The false negative and false
positive error rates of detection, in the context of classifier uncertainty, then correspond directly to
Pr(−|h) ≈ (1−T PR) and Pr(+|e) ≈ (1−T NR) (cf. Box 1). The detection model can make direct
use of the estimators of the true positive and true negative detection probabilities, that is, the classifier
performance metrics T PR ≈ Pr(+|h) and T NR ≈ Pr(−|e):

Pr(yit |xit)∼ Bernoulli(xitPr(+|h)+(1− xit)Pr(−|e)) (2)

These classifier performance metrics are independent of the prevalence of the class of interest (Box
1), and are therefore valid estimators of the true positive and true negative rate also in applications
to new data sets, which might differ in prevalence from the test set. Avenues to improve the values
of these metrics include model ensembling, model averaging, or other, similar ways of combining
different algorithms trained on the same set of training data (e.g., Jurek et al. 2013; Kuncheva et al.
2000).

The ecological process model, estimating the probability of heron presence in an image and hence
site i at time t, would typically be formulated as:

Pr(xit)∼ Bernoulli

(
logit−1(α +

l

∑βlZlit)

)
(3)

where Zl are l environmental covariates hypothesized to influence, through a logit-linear relationship,
the presence of heron in a site and image. Covariates could be, e.g., the availability of food resources
(fish abundance in the stream), the distance to the nearest heron colony, human disturbance, or time of
day. Alongside Pr(x), these effects βl are often a target of inference for the ecologist.

Since Pr(x) here corresponds to an updated (posterior) estimate of our prior knowledge of prevalence
(as based on the proportion of positives in the test data set), the inclusion of any additional covariate
data that can inform this probability helps reduce the predictive uncertainty in the posterior. In other
words, meaningful explanatory variables, based on domain knowledge of hypothesized ecological
preferences of the target species, could help overcome the low predictive values that the classifier
alone is likely to exhibit in the case of low prevalence.

A second avenue for improving the estimate of Pr(x) would be the inclusion and formal integration
of a second (or more), independent observation data set(s) of the same sites in a ’double-observer
approach’ (Nakashima et al., 2022). Additional complementary data could be obtained by adding
more cameras that view the same site from different angles, or by including human observations of the
same sites.

Improving predictive values is, however, routinely done in ecological analyses, through the498

inclusion of environmental covariates that inform the posterior estimate of Pr(X = h) (see Box499

2). Nonetheless, the limitations of predictive performance of the classifier alone under high class500

16/27



imbalance should be kept in mind when using machine learning techniques for the automated501

detection of species using camera trap images.502

CONCLUSIONS503

Object detection algorithms may be preferable over classification for species detection tasks in504

wildlife camera trap data. Model performance was significantly improved by fine-tuning the full505

model on the data set at hand, while likely benefiting from initial weights derived from a model506

pre-trained on a similar data set (i.e., camera trap images).507

Pre-processing and model training decisions affect performance. Non-random data splitting508

that took the intended application into account, and the use of high resolution images were509

beneficial. To tackle the high class imbalance typical of camera trap data sets, standard minority510

oversampling with data augmentation in color space yielded the best results.511

We emphasize the importance of reporting all four basic performance metrics (TPR, TNR,512

PPV, and NPV) as well as the prevalence in the test set to enable meaningful interpretation of513

model performance. We highlight that predictive performance (PPV, NPV) can be expected to514

be low when prevalence is low, in spite of high classifier performance (TPR, TNR) and balanced515

accuracy values. This sensitivity of predictive performance to low prevalence (class imbalance)516

is rarely considered but can be expected to be common in camera trap projects designed to517

monitor rare species.518

This problem can be partly mediated by the addition of ecologically informative covariates519

in a downstream analysis, as is usually done in ecological applications. Practitioners should520

nonetheless be aware that high performance metrics of the classifier (TPR, TNR) do not in and521

of themselves imply low posterior uncertainty in applications.522
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A DATA SET662

In this section we provide more detailed information on the heron data set used in this project.663

We excluded night-time images from this study, meaning that all statistics given here correspond664

to day-time samples. Since the original splitting procedures were implemented on the entire data665

set, there were some deviations from the splitting ratios given in the Methods section. Table666

3 displays the total and per-camera sample size along with the number of positives. The same667

quantities are shown in Tables 4-9 for training, validation and test sets according to the first,668

chronological, and second, seasonal, splitting method.669

camera GBU1 GBU2 GBU3 GBU4 KBU1 KBU2 KBU3 KBU4
# samples 12276 12274 14349 11382 12485 11215 13543 7172
# positives 0 0 0 3 0 16 4 5
camera NEN1 NEN2 NEN3 NEN4 PSU1 PSU2 PSU3 SBU1
#samples 10032 12226 12261 10224 6222 8526 8833 10118
#positives 252 128 163 53 13 10 30 40
camera SBU2 SBU3 SBU4 SGN1 SGN2 SGN3 SGN4 Total
# samples 11618 10952 12899 11334 7849 11341 12348 251479
# positives 44 181 1545 183 97 223 187 3177

Table 3. Total and per-camera number of samples (# samples) and positives (# positives) for the
entire data set

A.1 Split 1: chronological670

camera GBU1 GBU2 GBU3 GBU4 KBU1 KBU2 KBU3 KBU4
# samples 8922 12274 12274 8255 7977 7474 12605 3296
# positives 0 0 0 3 0 15 4 5
camera NEN1 NEN2 NEN3 NEN4 PSU1 PSU2 PSU3 SBU1
#samples 6415 8587 6737 6161 2857 5843 5764 7120
#positives 66 127 155 38 3 8 5 39
camera SBU2 SBU3 SBU4 SGN1 SGN2 SGN3 SGN4 Total
# samples 6342 6219 7327 8229 6711 7695 7577 171230
# positives 36 150 1144 183 87 145 119 2332

Table 4. Total and per-camera number of samples (# samples) and positives (# positives) for the
training set according to the first, chronological splitting method
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camera GBU1 GBU2 GBU3 GBU4 KBU1 KBU2 KBU3 KBU4
# samples 1665 0 1999 1743 1658 1514 406 1426
# positives 0 0 0 0 0 0 0 0
camera NEN1 NEN2 NEN3 NEN4 PSU1 PSU2 PSU3 SBU1
# samples 1489 2271 2087 1217 1398 1307 1291 1319
# positives 2 0 7 11 0 2 6 0
camera SBU2 SBU3 SBU4 SGN1 SGN2 SGN3 SGN4 Total
# samples 2384 2371 2928 1559 1138 1576 3108 37854
# positives 1 24 252 0 10 41 42 398

Table 5. Total and per-camera number of samples (# samples) and positives (# positives) for the
validation set according to the first, chronological splitting method

camera GBU1 GBU2 GBU3 GBU4 KBU1 KBU2 KBU3 KBU4
# samples 1689 0 1507 1384 2850 2227 532 2450
# positives 0 0 0 0 0 1 0 0
camera NEN1 NEN2 NEN3 NEN4 PSU1 PSU2 PSU3 SBU1
# samples 2128 1368 3437 2846 1967 1376 1778 1679
# positives 184 1 1 4 10 0 19 1
camera SBU2 SBU3 SBU4 SGN1 SGN2 SGN3 SGN4 Total
# samples 2892 2362 2644 1546 0 2070 1663 42395
# positives 7 7 149 0 0 37 26 447

Table 6. Total and per-camera number of samples (# samples) and positives (# positives) for the
test set according to the first, chronological splitting method

A.2 Split 2: seasonal671

camera GBU1 GBU2 GBU3 GBU4 KBU1 KBU2 KBU3 KBU4
# samples 9652 9433 11008 9035 8153 7927 11292 4635
# positives 0 0 0 1 0 15 2 5
camera NEN1 NEN2 NEN3 NEN4 PSU1 PSU2 PSU3 SBU1
# samples 7045 10028 8111 6630 4107 6463 6395 7517
# positives 36 92 102 37 3 10 12 9
camera SBU2 SBU3 SBU4 SGN1 SGN2 SGN3 SGN4 Total
# samples 8121 7805 9508 8666 6735 8015 9753 186034
# positives 37 158 1263 111 83 181 146 2303

Table 7. Total and per-camera number of samples (# samples) and positives (# positives) for the
training set according to the second, seasonal splitting method
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camera GBU1 GBU2 GBU3 GBU4 KBU1 KBU2 KBU3 KBU4
# samples 629 1822 903 638 2134 1460 922 1059
# positives 0 0 0 0 0 0 2 0
camera NEN1 NEN2 NEN3 NEN4 PSU1 PSU2 PSU3 SBU1
# samples 1415 1498 2086 1967 833 874 1223 1336
# positives 51 10 28 5 3 0 11 11
camera SBU2 SBU3 SBU4 SGN1 SGN2 SGN3 SGN4 Total
# samples 2016 1658 1694 1437 532 1706 1446 31288
# positives 6 9 158 21 4 24 23 366

Table 8. Total and per-camera number of samples (# samples) and positives (# positives) for the
validation set according to the second, seasonal splitting method

camera GBU1 GBU2 GBU3 GBU4 KBU1 KBU2 KBU3 KBU4
# samples 1995 1019 2438 1709 2198 1828 1329 1478
# positives 0 0 0 2 0 1 0 0
camera NEN1 NEN2 NEN3 NEN4 PSU1 PSU2 PSU3 SBU1
# samples 1572 700 2064 1627 1282 1189 1215 1265
# positives 165 26 33 11 7 0 7 20
camera SBU2 SBU3 SBU4 SGN1 SGN2 SGN3 SGN4 Total
# samples 1481 1489 1697 1231 582 1620 1149 34157
# positives 1 14 124 51 10 18 18 508

Table 9. Total and per-camera number of samples (# samples) and positives (# positives) for the
test set according to the second, seasonal splitting method

B BACKGROUND REMOVAL672

In an effort to increase heron visibility – especially where the bird is obstructed by environmental
conditions –, we applied a background removal technique on input pixels. Such method consists
in taking the average ith pixel value pn

i of the last n images relative, and subtract it from the ith
pixel value pi of the current image, followed by a renormalization operation to ensure the new
pixel value p′i remains in interval [0,255]:

p′i =
pi − pn

i +255
2

(4)

We tested this technique on the undersampled SBU4 set for n = 2,4,8,16,32. An example673

for n = 4 is provided in Figure 6. As seen in Figure 7, background removal actually hinders674

performance, with validation F1-score curves slightly lower than original images. A reason675

for this could similar heron positioning across image sequences, making the birds less salient676

or vanish completely after pixel subtraction. Another explanation might be the presence of677

background noise due to light variations across different times of the day. Additional research678

is suggested to thoroughly investigate the origin of performance decrease after background679

removal.680
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Figure 6. Example of image before (original, A) and after resizing and background removal
using the previous 4 images (B).

Figure 7. F1-score validation curves using background removal

C LOGARITHMIC OVERSAMPLING681

As seen in appendix A, the distribution of positives across distinct cameras is quite uneven, with
a high concentration of heron images in SBU4. In order to achieve a more even distribution
and decrease potential camera background bias, we applied a novel logarithmic oversampling
technique which moderately increases the number of positives from non-majority cameras. Given
the number of positive samples ni from camera i, we increased the number of instances with
oversampling to

n′i = ni

log
(

1+ nSBU4
ni

)
log(2)

(5)
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This procedure was applied individually to the 10 cameras with most herons after SBU4, while682

positives from the remaining cameras were rearranged into a single group (‘regrouped cams’)683

and oversampled collectively. The rebalancing of positives across different cameras was then684

followed by standard oversampling. A logarithmic oversampling prevents the generation of685

excessive copies from minority cameras that would be obtained with a standard oversampling686

technique and may potentially lead to pattern memorization. The combined application of687

logarithmic and standard oversampling techniques on data from all cameras is referred to as log688

oversampling, and is implemented in the training procedures using all camera sets. As seen in689

Figures 8 and 9, the application of log oversampling has little impact on model performance for690

individual camera subsets. The only noticeable change occurs for MobileNetV2 on the SBU2691

set, which can be explained by low heron incidence.692

Figure 8. Balanced accuracy of MobileNetV2 trained on all cameras with oversampling (OS)
and logarithmic oversampling (log OS)
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Figure 9. Balanced accuracy of YOLOv5x6 trained on all cameras with oversampling (OS) and
logarithmic oversampling (log OS)

D COMPLETE RESULTS693

The training F1-score curves for both MobileNetV2 and YOLOv5x6 trained on both the SBU4694

and full data sets are displayed in Figure 10. The confusion matrix elements for the single- and695

multi-camera scenarios are shown in Tables 10 and 11, respectively.696

Figure 10. Final training curves. A) F1-score curve of models trained on the SBU4 set. B)
F1-score curve of models trained on all cameras.
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model evaluated on TN FP FN TP

MobileNetV2
SBU4 1515 58 23 101

non-SBU4 22906 9170 187 197

YOLOv5x6
SBU4 1527 46 12 112

non-SBU4 29467 2609 196 188

MegaDetector
SBU4 1318 255 26 98

non-SBU4 28890 3186 166 218

Table 10. Confusion matrix elements obtained with models trained on the SBU4 set and
untrained MegaDetector weights when evaluated on SBU4 and non-SBU4 sets. Matrix elements
are true negatives (TN), false positives (FP), false negatives (FN) and true positives (TP).

model evaluated on TN FP FN TP

MobileNetV2

SBU4 631 942 9 115
NEN1 1283 124 104 61
SGN3 1528 74 4 14
SGN4 1060 71 1 17
SGN1 1057 123 15 36
SBU3 1393 82 0 14
NEN3 1938 93 13 20
NEN2 654 20 12 14
SGN2 567 5 5 5
NEN4 1597 19 7 4
SBU2 1436 44 1 0

regrouped cams 18570 338 19 18
all cams 31714 1935 190 318

YOLOv5x6

SBU4 1481 92 13 111
NEN1 1291 116 43 122
SGN3 1509 93 3 15
SGN4 1091 40 0 18
SGN1 1033 147 2 49
SBU3 1436 39 3 11
NEN3 1993 38 5 28
NEN2 655 19 10 16
SGN2 557 15 4 6
NEN4 1573 43 5 6
SBU2 1472 8 0 1

regrouped cams 18722 186 12 25
all cams 32813 836 100 408

MegaDetector all cams 30206 3443 192 316

Table 11. Confusion matrix elements obtained with models trained on the full data set and
untrained MegaDetector weights when evaluated on various camera subsets. Matrix elements
are true negatives (TN), false positives (FP), false negatives (FN) and true positives (TP).
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