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Abstract  123 

Responses of natural populations to climate change are driven by how multiple climatic and 124 

biotic factors affect survival and reproduction, and ultimately shape population dynamics. Yet, 125 

despite substantial progress to synthesize the sensitivity of populations to climatic variation, 126 
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comparative studies still overlook such complex interactions among drivers that generate 127 

variation in population-level metrics. Here, we use a common framework to synthesize how the 128 

joint effects of climate and biotic drivers on different vital rates impact population change, using 129 

unique long-term data from 41 species, ranging from trees to primates. We show that 130 

simultaneous effects of multiple climatic drivers exacerbate population responses to climate 131 

change, especially for fast-lived species. However, accounting for density feedbacks under 132 

climate variation buffers the effects of climate-change on population dynamics. In all species 133 

considered in our analyses, such interactions among climate and density had starkly different 134 

effects depending on the age, size, or life-cycle stage of individuals, regardless of the life-history 135 

of species. Our work provides the first general framework to assess how covarying effects of 136 

climate and density across a wide range of population models can impact populations of plants 137 

and animals under climate change.  138 

Significance statement: There is a growing consensus that complex interactions among vital 139 

rates and numerous abiotic and biotic drivers complicate simple predictions of climate-change 140 

impacts on plant and animal populations. Here, we use a unique dataset of some of the longest 141 

studied populations of 41 plant, bird, and mammal species to compare the effects of such 142 

complex mechanisms on population persistence. Despite the unique context of each study 143 

population, our results show remarkable generalizable patterns of population responses to climate 144 

variation. To advance future research, we provide fully reproducible models and an open-access 145 

data repository, enabling broad-scale integration of demographic responses to climate change.  146 

 147 
MAIN TEXT 148 
 149 
Introduction 150 
 151 
Among the multiple challenges for biodiversity conservation, the increasing severity of climate 152 

change, interacting with other global-change drivers, is of particular concern (1). Inferring general 153 

patterns of how populations of plants and animals respond to such complex interactions, beyond 154 

single case studies, is a priority for theoretical and applied research and management (2). All 155 

populations in natural communities are structured by variation in genetic and phenotypic traits, 156 

and often also developmental stages, which determine how different rates of survival and 157 

reproduction are spread throughout the life cycle (3). In structured populations, climatic effects on 158 

population abundances are then filtered by how different biotic and abiotic drivers (including 159 

climate) affect trait-, age-, or stage-specific survival and reproduction (4-13). For instance, 160 



 

 

6 

 

population persistence may be particularly affected when several climatic factors simultaneously 161 

reduce survival and reproduction of several life-cycle stages, accelerating population decline (5). 162 

In particular compound effects of hotter and drier climatic conditions on individuals are projected 163 

to increase under climate change and can have strong negative impacts on natural populations and 164 

communities (14,15), especially in combination with land-use change (16). However, populations 165 

may also be buffered from adverse climatic effect, when vital rates with higher impact on 166 

population growth, i.e., adult survival, exhibit the least temporal variability and thus stabilize 167 

population fitness (18, 22-24). Furthermore, a decrease in one vital rate under climate stress (e.g., 168 

recruitment) can be compensated with increases in other vital rates, such as survival of the 169 

remaining recruits or adults, under negative density feedbacks (6,7, 20). This occurs because, 170 

when individuals compete for resources, negative climatic effects on abundance will also ease 171 

competition (6, 26), which can allow the populations to recover faster from or show higher 172 

resilience to adverse climatic effects (27). The role of density dependence may be particularly 173 

important in assessing climate-change effects on population dynamics (26). Therefore, to broadly 174 

understand the impacts of climate change in complex natural systems, we need to understand how 175 

intrinsic mechanisms interact to mediate such impacts on natural populations (28, 29). 176 

 177 

Despite substantial progress to synthesize the sensitivity of populations to climatic variation, 178 

comparative studies have largely overlooked complex mechanisms of interacting drivers and vital 179 

rates that generate variation in population-level metrics. For instance, previous studies have 180 

linked global indices of temperature and rainfall to abundances or population growth rates to 181 

show that terrestrial populations of plants and animals with shorter generation times are relatively 182 

more sensitive to climatic variation (21, 30). Despite producing important insights, such analyses 183 

have not investigated vital-rate responses to multiple climatic factors and did not consider biotic 184 

drivers such as density dependence. A recent study compared the relative effect on plant 185 

population growth rates of perturbing abiotic vs. biotic drivers, but did not assess how 186 

simultaneous effects of different drivers on different vital rates affect populations (31). This 187 

contrasts with the growing consensus that complex interactions among vital rates and biotic and 188 

climatic drivers complicate projections of persistence under climate change (28, 32-36). 189 

 190 

We synthesize, for the first time, how interacting climatic and biotic drivers change population 191 

dynamics across taxa by affecting different vital rates such as reproduction and juvenile and adult 192 

survival. Given the evidence for the importance of the effects of multiple abiotic drivers and their 193 



 

 

7 

 

interactions with density feedbacks on population dynamics (5-12), we hypothesized that, 194 

generally, the simultaneous effects of several climatic drivers in vital-rate models amplify 195 

population responses to climate change; but that climate-change impacts on populations are 196 

buffered when density dependence is incorporated in vital-rate models.  197 

We reviewed the ecological literature and identified studies that quantitatively linked at least two 198 

climatic drivers or one climatic and one biotic driver to at least two vital rates. Following (33), we 199 

defined climatic drivers as direct measures of temperature or precipitation, i.e., not drivers that 200 

affected climate indirectly, such as the Southern Annular Mode (i.e., Catharacta lönnbergi from 201 

(37); see Supplementary Materials for a complete list of selection criteria). Among the biotic 202 

drivers, we distinguished intraspecific density dependence and interspecific interactions. We then 203 

built structured population models and used them to compute sensitivities of population growth 204 

rates (38) to a given climatic driver, either accounting for simultaneous effects of all other drivers 205 

on vital rates or keeping other drivers fixed, thus reducing the complexity of environmental 206 

effects. We also compared the effects of perturbing different single vital rates to understand 207 

whether population-level sensitivities are driven by changes in specific vital rates across species. 208 

When testing our hypothesis, we controlled for potential confounding factors, most importantly 209 

the life-history strategy of populations, which has been shown to strongly mediate population 210 

responses to environmental change (19, 21). We created a database making all data and code 211 

freely available online, to allow researchers to link age- or stage-specific vital rates to population 212 

responses under environmental change for further analyses such as forecasts.  213 

 214 
Results 215 
 216 

We extracted data from 23 studies including 41 species (15 birds, 8 mammals, and 18 plant 217 

species). Among these species, 18 matrix population models, eight integral projection models, 218 

five integrated population models, and 10 individual-based models were used, and vital rates 219 

were typically modeled using generalized linear models. Among biotic drivers, intraspecific 220 

density dependence was most commonly included as a driver in vital-rate models (i.e., in 13 221 

studies; four birds, six mammals, three plants). For an overview of life-history strategies, 222 

covariates, and demographic status of the species included in this comparative study, see Table 223 

S6. For each species, we calculated the scaled absolute sensitivities (|S|), i.e., changes in the 224 

population growth rate, λ, to observed climatic variation (standardized differences between 225 

maximum and minimum climatic values) (31). In most studies, we calculated λ for either a single 226 
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(meta)population or a representative average population across the habitat range, as in the case of 227 

eight bird species (39) and 11 Mediterranean tree species (40) – that is, vital-rate models did not 228 

distinguish populations explicitly. However, three studies (see Supplementary Materials) modeled 229 

different populations. Here, we averaged sensitivities across populations to calculate species-230 

specific average sensitivities to climate comparable across species (31). Additional analyses 231 

showed that such averaging did not affect results (Table S4). 232 

 233 

We modeled the variation in |S| using a modified meta-regression approach (41), where we 234 

pooled the results from all studies into one generalized linear hierarchical model. Our model 235 

included average age at maturity, a proxy for the fast-slow continuum of life-history strategies 236 

(42). As expected, slower-paced species had lower absolute sensitivities of λ (|S|) to climatic 237 

drivers compared to faster-paced species (Fig. 1; Table 1; βMaturity = -1.13 ± 0.19). These patterns 238 

agree with theoretical expectations (i.e., demographic buffering hypothesis (18, 25)) and previous 239 

empirical studies (19, 21, 30, 43) and suggest that fast-paced life histories across taxa are more 240 

labile to, or track, climatic fluctuations, whereas slow-paced life histories buffer population 241 

dynamics from multiple climatic effects (18, 19, 21).  242 

 243 
Population responses to multiple climatic drivers and density dependence 244 
 245 
Across life histories, sensitivities |S| to changes in a focal climatic driver were consistently higher 246 

when covarying climatic drivers were also perturbed than when holding other climatic drivers 247 

constant (Table 1; βNoCovariation = -0.25 ± 0.11; Table 1; Fig. 1). Thus, synergistic effects of 248 

different climatic drivers can have a stronger impact on population dynamics than considering the 249 

effects of such drivers in isolation, as is typically done in sensitivity analyses. At the same time, 250 

|S| were lower for populations where intraspecific density dependence explicitly affected vital 251 

rates along with climatic drivers, as opposed to populations that did not consider how climatic 252 

drivers interact with density dependence (βDensityYes= -1.00 ± 0.56; Table 1; Fig. 1; Fig. S1). These 253 

differences in including vs. excluding density dependence in population models were strongest 254 

when we accounted for the full complexity of environmental effects in sensitivity analyses (Fig. 255 

S1). That is, |S| increased by holding density dependence constant when perturbing a climatic 256 

driver as opposed to adjusting for observed changes in intraspecific density when the focal 257 

perturbed climatic driver was at its minimum and maximum (βNoCovariation:Density = 0.40 ± 0.19). 258 

This suggest that covariation between climate and density may be critical in moderating climate-259 

change impacts on populations across a wide range of taxa (5-12, 44, 45). Additional analyses 260 
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further isolating the effects of density feedbacks vs. different biotic and abiotic drivers in vital-261 

rate models confirmed that covariation with density lowered |S| when climatic drivers were 262 

perturbed (Fig. S2).  263 

 264 

Demographic pathways of climate effects on populations 265 
 266 
We perturbed climatic drivers in each vital-rate model separately for 26 species to understand 267 

how different vital rates mediate the sensitivity of λ (|S|) to these drivers. For the remaining 268 

species, we could not perturb single vital rates due to the complexity of the models. A generalized 269 

linear regression model revealed that fast-paced life histories, i.e., ones with a lower age at 270 

maturity (43), were relatively more sensitive to climate perturbations in reproduction and survival 271 

of non-reproductive individuals than slow-paced life histories (Table 2; Fig. S5). This is to be 272 

expected as reproduction contributes relatively more to population dynamics of fast-paced species 273 

(19). Our results provide further evidence that fast-paced life histories buffer critical vital rates 274 

from climatic perturbations less than slow-paced ones (18, 19, 22,23), because they have a higher 275 

energy budget that they can invest into growth, reproduction, or dispersal after perturbations (46). 276 

However, a closer look at sensitivities of λ to vital-rate specific effects of climatic drivers 277 

revealed a complex picture (Fig. 2). Across life histories, λ can be equally affected by 278 

perturbations in several vital rates, and some vital rates showed strong responses to one 279 

environmental variable, but weak responses to other variables (Fig. 2; Figs. S11 – S38).  280 

 281 

Overall, our results showed that growth-rate sensitivities, |S|, varied substantially among 282 

species/studies (Table 1; Table 2). While the fixed and random effects in our GLMMs jointly 283 

explained > 80 % of the variance in |S|, the proportion of variance attributed to random effects 284 

was always relatively higher (see Tables S1-S5). The effect of species explained > 50 % of the 285 

random variation in the model. We also note that while 20 studies included only one species, 286 

three modeled several species, and we could not completely separate species and study effect - 287 

attempting to do so resulted in overparameterized random effects. Although we accounted for 288 

potential variables that may have confounded our results, i.e., number of vital rates modeled and 289 

average number of parameters per vital rate, one reason for such high variance among species or 290 

studies may be the varying complexity among studies in model design or the specific climatic 291 

variable considered – complexity that we could not account for as independent covariates in our 292 

analysis. On the other hand, high variability in responses to environmental drivers among species 293 

have also been observed in recent studies (30, 33, 47, 48). Thus, while we can discern 294 
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generalizable patterns in population responses to climatic perturbations, only the inclusion of a 295 

wider range of future studies can disentangle the complex sources of context-dependent variation 296 

in population dynamics. 297 

 298 
Discussion 299 
 300 
Natural populations of plants and animals are increasingly affected by climate change worldwide 301 

(49, 50). By identifying under what context populations are more susceptible to negative effects 302 

of climatic drivers, we can prioritize conservation efforts and develop targeted strategies to 303 

mitigate adverse effects. Our comparative analyses shed light on some common demographic 304 

pathways through which populations of plants, mammals, and birds respond to complex 305 

interactions of climatic and biotic drivers. We show that simultaneous effects of multiple climatic 306 

drivers increase population sensitivity to climate change, while interactions between density 307 

dependence and climate can effectively lower such sensitivity. Our results thus have important 308 

implications for assessing how resilient populations are to climate change. 309 

 310 
Recent studies have emphasized that future climate risks to natural populations and humans will 311 

be exacerbated by compound effects of climate drivers (1, 51). While previous research has 312 

focused on understanding such compound effects on single species or populations (e.g., reviewed 313 

in 30, 34, 52), our results provide the first comparative evidence across different contexts that 314 

synergistic effects of different climatic drivers can have a strong impact on population dynamics. 315 

Compound climatic effects, such as low rainfall and high temperature, often constitute climatic 316 

extremes, e.g., hot droughts (51) and are becoming increasingly common (1). Such extremes can 317 

have strong, non-additive effects on physiological processes of plants (53) and animals (54), 318 

negatively affecting population dynamics (5, 32, 55). In meerkats (Suricata suricatta), for 319 

instance, extreme heat in a relatively dry rainy season can lead to substantial loss of body mass 320 

and increased risks of deadly disease outbreaks (56). We note, however, that our study assessed 321 

changes in the magnitude, but not in the direction of population responses to perturbations in 322 

climate. Therefore, compound effects such as unusually warm and rainy reproductive seasons, 323 

may also lead to strong increases in population growth (56), particularly for fast life histories (25, 324 

57).  325 

 326 
Climatic factors do not affect populations in isolation; other abiotic and biotic factors also play a 327 

role, and their impacts vary among populations and individuals within those populations (34, 58). 328 

Our results suggest that across taxa, adverse climate effects can be buffered by decreasing the 329 
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number of individuals in a population and thus easing the effects of intraspecific density, when 330 

present in populations (5, 7). In turn, for populations that increase in abundance under climate 331 

change, a resulting stronger effects of negative density dependence may increase population 332 

fluctuations under adverse environmental conditions (36). Other studies have also demonstrated 333 

the importance of density feedbacks in regulating population responses under land-use change 334 

(59) or disease outbreaks (60, 61), while populations of some social species that show non-linear 335 

responses to population densities may be particularly susceptible to climate change if adverse 336 

climatic effects reduce optimal densities (5). Similarly, climate change also affects populations 337 

through changes in interspecific interactions such as predation, competition, or facilitation (12, 338 

62). However, interspecific interactions are still very rarely explicitly modeled when projecting 339 

population dynamics (33).  340 

 341 

Despite this growing evidence on the importance of assessing interactions of abiotic and biotic 342 

effects when quantifying population persistence under climate change (4, 5, 13, 31, 33), such 343 

assessments are challenging. Unlike climatic variables that are often included as continuous 344 

covariates in vital-rate models and are easily perturbed, interactions with individuals of the same 345 

population or even different species took on many complex forms in the population models we 346 

used in this study. Some studies only included indirect or static measures of biotic effects. For 347 

example, the tree species in our analysis had a colonization factor in their models, which was 348 

indirectly related to density, but was decoupled from climate variables in vital rates (40). 349 

Similarly, the models of Certhia familiaris, Linaria cannabina, Lophophanes cristatus, Prunella 350 

collaris, Prunella modularis, Pyrrhula pyrrhula, Sitta europaea, and Turdus torquatus did not 351 

contain density as a continuous driver in their vital-rate models (which was required for our 352 

sensitivity analyses), but density served as a fixed species-specific parameter affecting fecundity 353 

(39). Thus, we could only assess the effects of covariation between climate and density 354 

dependence in 13 of the 41 modeled species. Although they represented all three taxonomic 355 

groups and covered a wide range of life histories, resulting in an unbiased sample, understanding 356 

whether density feedbacks are a general mechanism that moderates population fluctuations under 357 

climate change for a wider range of taxa requires broadening comparative analyses that can 358 

account for complex density effects. 359 

 360 

 361 
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Density feedbacks are not equally important in all populations (64), and their effects have been 362 

tested and considered to not substantially affect population dynamics in the case of Marmota 363 

flaviventer and Lavandula stoechas (see Supporting Materials). However, the potential effects of 364 

density feedbacks have not been tested in many recent population model (33), likely due to a 365 

combination of lack of data and model complexity. In addition, most frameworks to predict 366 

biodiversity loss under global change do not explicitly model dynamic interactions between 367 

density and global-change drivers (65). We thus emphasize that including density feedbacks in 368 

the climate-demography models, for instance using population density or population size as a 369 

covariate in models (12, 36), may be key to understand how resilient natural populations are to 370 

climate change. If such feedbacks are not included due to data limitations or modelling 371 

constraints, our results suggest that it is important to at least discuss the potential implications of 372 

such omissions (66).  373 

 374 
Ultimately, the effects of climate change on population dynamics are filtered by the strength and 375 

direction of driver effects on different vital rates, and how much the latter contribute to 376 

population dynamics (e.g., 4-13, 19, 22, 26, 32, 35-37). For any life history, even slow-paced 377 

ones where adult survival is the key vital rate driving population dynamics (19), changes in 378 

population growth were the results of complex effects of various drivers across different vital 379 

rates, showing high context dependence (13). Rainfall scarcity or extreme temperatures may 380 

differently affect individuals depending on the habitat, season, and life-cycle stage considered 381 

(e.g., 5, 32), or depending on how other species in a given community are responding to climate 382 

change (62). The complexity of the life cycle may also indicate how much a population is 383 

buffered from adverse environmental effects (52). Some species have dormant life-cycle stages 384 

that can protect populations from environmental fluctuations (62). Dispersal, which was modeled 385 

in some studies considered here (see Supplementary Materials), can stabilize decreasing 386 

populations and allow individuals to track new suitable habitats, and may itself be strongly 387 

mediated by climate (67). Therefore, from trees to primates, identifying how different abiotic and 388 

biotic factors impact populations across their full life cycle is key to be able to target conservation 389 

efforts towards certain factors during certain times of the life cycle. 390 

 391 
Our work has advanced comparative demographic analyses in two important ways. First, we 392 

standardized sensitivity analyses across a wide variety of population models, ranging from classic 393 

matrix population models to integrated population and integral projection models, and individual-394 

based models. By including the experts for each study system, we ensured that our methods did 395 
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not produce inadvertent errors. Second, we provide a freely accessible and dynamic (i.e., 396 

constantly updated) database of population models that was compiled for this study. This offers 397 

an ideal basis to expand the number of studies and analyses in the future – for instance, 398 

forecasting how changes of local climatic drivers may affect populations and whether such effects 399 

can be approximated by global climate indices (68). We also recognize several limitations of our 400 

work. One limitation is that we could not account for taxonomic and geographical biases as we 401 

relied on available high-quality structured models that integrate multiple environmental factors 402 

(see Supplementary Materials for study-specific details). Such tailored models are available for 403 

specific terrestrial plants, mammals, and birds, but are still lacking for many invertebrate species 404 

(69,70), where relatively little is known on the demographic pathways through which climate 405 

change impacts abundance (71). We also have a geographic bias in our data as most study 406 

systems are from the Northern Hemisphere. Additionally, we only considered studies published in 407 

English. These types of biases can limit our ability to generalize patterns and employ 408 

conservation efforts based on comparative analyses (72, 73).  409 

When searching the literature for appropriate studies, we also discovered that reproducibility of 410 

ecological studies remains a problem. Of the 76 studies that met our search criteria, we could only 411 

replicate population models of 24 %. For the remaining studies, data and code to replicate 412 

analyses were not freely available and could often not be reproduced even when in contact with 413 

authors. Thus, we emphasize that making not just data but also code available is an important step 414 

towards reproducible comparative analyses in ecology (74).  415 

Our comparative analyses provide evidence that interactions among biotic and abiotic drivers, 416 

and the complex effects of such multiple drivers on different vital rates, hinder simplistic 417 

predictions of population persistence under climate change. We emphasize the need to recognize 418 

and incorporate interactions between climate and density dependence into full life-cycle models 419 

in order to understand and potentially mitigate the threat that climate change poses on natural 420 

populations.  421 

 422 
 423 
Materials and Methods 424 
 425 
Literature search 426 
 427 
Our main objective was to collect code and data from studies which (i) modeled vital rates (e.g., 428 

survival, growth, reproduction) in natural populations as a function of at least two climatic 429 
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variables or one climatic and one biotic variable; and (ii) constructed structured population 430 

models from which population growth rates could be obtained. We focused on studies where data 431 

were obtained in natural, unmanipulated populations (i.e., discarding experimental studies); and 432 

where the environmental variables were continuous so that we could calculate means and 433 

standard errors (see equation 1). We therefore excluded studies that constructed models for 434 

good/bad, dry/wet environments, etc. To obtain suitable studies, we performed a targeted review 435 

of the literature. We first considered a recent review, which revealed a lack of understanding 436 

regarding comprehensive demographic responses to climate change for terrestrial mammals 437 

including 87 species (33) From the publications in this review, we selected those that met our 438 

criteria. To supplement data from this list of studies, we conducted a Web of Science search using 439 

the search terms from (33) and also checked the Padrino database (75) as well as (76) (Details in 440 

Supplementary Materials). To be included in our database, vital-rate models had to be 441 

reproducible, i.e., the regression models were fully reported, including their formula, coefficients, 442 

and standard errors. We were able to obtain data from 23 studies that met all these criteria. 443 

 444 
As the first step of the analysis, we prepared a standardized protocol to build and perturb different 445 

structured population models, to maximize the ease of comparison across studies 446 

(https://github.com/EsinIckin/Comparative-demography-project). For help with conducting these 447 

analyses for the selected models, we contacted the authors of relevant studies. We extracted 448 

regression coefficients from tables to rebuild vital-rate models when possible; alternatively, the 449 

latter were provided by the authors of a given study. We then reconstructed population models 450 

from these vital rates, and the authors from the original papers reviewed these models to ensure 451 

that they were correct. In some cases, authors already provided the R code to rebuild the 452 

population model (for more information see Supplementary Materials). The environmental 453 

covariate data were also obtained from the authors of the papers. All studies built structured 454 

population models based on > 7 years of demographic data collection and/or using data across the 455 

distribution range of species, and the range of environmental covariate values was sufficient to 456 

robustly build and perturb structured population models (see Supplementary Materials on study-457 

specific details). 458 

 459 
Next, we compared among the species how perturbations in climatic variables affects long-term 460 

population fitness, λ, i.e., the sensitivity of λ to climatic drivers. For studies that provided matrix 461 

population models or integral projection models, we calculated λ as the annual asymptotic 462 

population growth rate using R package popbio (77) version 2.7. For studies that developed 463 

https://github.com/EsinIckin/Comparative-demography-project
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individual-based or integrated models, we calculated λ as the mean of annual growth rates over at 464 

least 50 years from at least 100 simulations (see Supplementary Materials for study-specific 465 

details; Figs. S38-S52). To obtain sensitivities of λ to climatic drivers, we calculated λ under 466 

minimum and maximum values of a climatic driver while (i) accounting for the actual observed 467 

values of other drivers when the focal driver was at its minimum or maximum (sensitivities with 468 

covariation) or (ii) holding the other drivers constant at their average values (sensitivities 469 

without covariation). When studies modeled random year effects consistently across vital rates, 470 

we set the years to ones where a climatic driver was at its minimum or maximum in analyses. We 471 

then calculated the scaled sensitivities according to Morris et al. (31) for each population and 472 

driver (Equation 1):  473 

 474 
 475 

|𝑆| = | 𝜆𝑚𝑎𝑥−𝜆𝑚𝑖𝑛
(𝑑𝑚𝑎𝑥−𝑑𝑚𝑖𝑛) SD𝑑⁄

|   Equation 1 476 

 477 
The driver values dmax and dmin produced the population growth rates when the driver was set to 478 

its maximum value (λmax) and its minimum value (λmin). The denominator of the scaled sensitivity 479 

|S| is the difference in the driver levels in standard deviation (SD) units. The scaled sensitivity 480 

makes it possible to compare |S| across different studies and driver types (31). We tested the 481 

robustness of the sensitivity metric by comparing |S| to the most common type of metric for 482 

summarizing outcomes in ecological meta-analyses: log response ratios (see Alternative 483 

sensitivity parameterizations in Supplementary Materials).  484 

 485 

We accounted for uncertainties around all |S| estimates by resampling parameters from vital-rate 486 

models and recalculating λ and |S| each time. More specifically, if a study reported the standard 487 

errors of the regression coefficients, we simulated the parameter distributions and sampled 488 

parameters from it, whereas in the case of Bayesian regressions, we sampled parameters from the 489 

MCMC posteriors. We produced 100 |S| estimates for most species but had to use fewer samples 490 

in some cases due to computational limits (see species-specific details in Supplementary 491 

Materials). In three cases, we averaged |S| over different populations to get species-specific 492 

results. However, this averaging did not affect our overall conclusions (see Table S4). 493 

 494 

Further, we perturbed the climatic drivers in each vital rate separately whenever possible (Figs. 495 

S12 – S38 for the specific vital rates in each species’ model), in the same manner as above, to get 496 
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vital-rate specific |S|. In this case, all environmental driver values covaried with the focal driver in 497 

the perturbed vital-rate but were held at their average values in other vital rates. Lastly, for 498 

populations (n =13) where intraspecific density dependence was explicitly considered as a driver 499 

in vital-rate models, we performed additional perturbations: We accounted for the actual observed 500 

values of other climatic or biotic drivers when perturbing a focal climatic driver (sensitivities with 501 

covariation), but held densities constant. We did this to test how much |S| depended on density 502 

dependence moderating the effects climatic changes. 503 

 504 
 505 
Statistical analyses 506 
 507 

We used a generalized linear mixed model (GLMM), assuming a Gamma distributed response 508 

under a log link function, to understand the underlying mechanisms influencing population-level 509 

sensitivities |S| to climate change. We chose the Gamma distribution because the scaled 510 

sensitivities were positive values larger than zero. The resulting model fit well to observed data 511 

(Fig. 1), and model fit was substantially better than using a log-normal distribution, based on AIC 512 

and residual plots (78). We included log(age at sexual maturity) as a continuous covariate for the 513 

effect of life-history speed on |S|. To test whether covariation among climatic drivers and lambda 514 

changed |S|, we incorporated as predictor variables: covariation with other drivers when λ was 515 

calculated under minimum/maximum values of a focal driver (categorical; accounted for or not), 516 

intraspecific density effects (categorical; incorporated or not in vital-rate models), and the 517 

interaction between the two. We focused on intraspecific density effects to analyze the role of 518 

biotic interactions in population dynamics because this was the most common type of biotic 519 

variables included in vital rate models across species (see Table S6). We also controlled for a 520 

potential effect of model complexity on |S|, by including the log(number of vital rates) and 521 

log(mean parameters per vital rate) in each population model. Taxonomic groups and species 522 

were integrated as nested random effects on the model intercept, respectively. To account for 523 

differences among taxonomic groups and species in how much driver covariation affects |S|, the 524 

same nested random effects were also applied on the slope of the covariation variable. We also 525 

assessed whether |S| differed depending on which type of climatic driver was perturbed in vital-526 

rate models (temperature vs. rainfall) by fitting another GLMM akin to the main analysis but 527 

including climatic driver as a covariate (Table S2; Fig. S4).  528 

 529 
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To better understand which vital rates were driving |S|, we repeated the GLMMs using |S| 530 

calculated by perturbing climatic drivers in single vital rates. To facilitate comparisons among 531 

species, we grouped the vital rates of each species into three main types: survival of non-532 

reproductive individuals (including juveniles), survival of reproductive individuals, and 533 

reproduction (including reproductive success and recruitment). We excluded trait change 534 

(including growth and maturation) as a vital rate, as it was only modeled in four species: 535 

Marmota flaviventer, Rhabdomys pumilio, Suricata suricatta, and Protea repens. The resulting 536 

GLMM had a similar structure as the one for the global |S|, with two differences. First, as we 537 

calculated vital-rate specific |S| without simplifying driver covariation in specific vital rates, 538 

covariation was not included in the model. Second, as we held variables constant in non-539 

perturbed vital rates, we simplified the model structure further by excluding whether species 540 

included or excluded density feedbacks in vital-rate and population models. We included main 541 

vital-rate type as a covariate and tested whether the climatic effects of different vital rates on |S| 542 

differed among life histories, via the effects of log(age at maturity), and used an interaction term 543 

of vital rate and age at sexual maturity.  544 

 545 

We calculated marginal and conditional R2 for all GLMMs to quantify the variance in the data 546 

explained by the fixed effects and random and fixed effects, respectively (79). We made all the 547 

data and code available online, along with the templates, ensuring that future analyses follow the 548 

same structure (https://github.com/EsinIckin/Comparative-demography-project). 549 
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FIGURE 1 

 
 

Figure 1. Scaled sensitivities of population growth rates to climate, |S|, are lower when accounting 
for changes in population density under climate change. Sensitivities are shown for species where 

density effects were not modeled explicitly (A) or were added (B) as covariates in vita-rate models. 

Different colors indicate sensitivity analyses under full environmental complexity (covariation with 

other drivers considered when perturbing a focal climate driver in vital-rate models) or reduced 

complexity (keeping other drivers as their average values when perturbing a focal driver). The lines 

represent predicted |S| over a range of ages of sexual maturity. The shaded areas indicate 95% model 

prediction intervals (see Table 1 for model coefficients). To aid visualization, the points show the 

observed sensitivity values of each species and perturbation scenario averaged over all perturbed 

climatic drivers and all resampled |S| under parameter uncertainty. Figs. S9-S11 show the distributions 

of resampled values per species. We labeled some example species across different life histories and 

taxa.  

 



FIGURE 2 
 

 
Figure 2. For any species, scaled sensitivities of population growth rates (|S|) vary substantially 
when perturbing single vital rates. Perturbations are shown for the species where we could perturb 
single vital rates. The plots are ordered by ascending age at sexual maturity and the colors indicate the 
taxa mammals, birds, and plants. The points represent |S| for each species, driver, vital rate, and 
parameter sample in vital-rate models. The boxplots display the distribution of |S|, including the median 
(central line), the interquartile range (box), and the range of the data (whiskers), with outliers shown as 
black points (nsamples per species and vital rate = 100, nsample for Halobaena caerulea per vital rate = 50; see Supplementary 
Materials). If some sensitivities of some vital rates are missing, it’s because these species did not have 
a climatic variable (but could have a biotic variable) in this specific vital rate. 
 



Table 1. Output of model assessing how age at sexual maturity, covariation with other drivers, 
presence of density feedbacks in vital-rate models and other covariates affected scaled 
sensitivities of population growth rates to changes in climate, |S|. 
A Fixed Effects Coefficient SE P 

Intercept -3.085 0.945 0.001 

Covariationno -0.250 0.112 0.026 

Densityyes -1.004 0.556 0.070 

Age at sexual maturity -0.991 0.200 <0.001 

Number of vital rates -0.221 0.501 0.660 

Parameters per vital rate 0.760 0.497 0.127 

Covariationno:Densityyes 0.470 0.192 0.014 

B Random Effects Variance SD Prop. variance 

Species/Group (Intercept) 1.738 1.318 0.633 

Species/Group Covariationno 0.241 0.473 0.088 

Group (Intercept) <0.001 <0.001 <0.01 

Group Covariationno <0.001 <0.001 <0.01 

Residual 0.767 0.757 0.279 

Marginal R2 (variance explained by fixed effects): 0.300 

Conditional R2 (variance explained by fixed and random effects): 0.829 

The fixed effects (A) and random effects (B) of the generalized linear mixed model with gamma log 
link are shown here. The coefficient, standard error (SE), and p-value are reported for each fixed 
effect, whereas variance and standard deviation (SD) are reported for each random effect, as well as 
prop. variance, which indicates the proportion of the total random-effect variance explained by 
different grouping variables. Nested random effects were incorporated due to multiple observations 
within species and groups (nsamples = 17’240, nspecies = 41, ngroups = 3). nsamples reflects all resampled |S| 
for each perturbation scenario and species to account for parameter uncertainty. Bold p-values 
indicate statistical significance (α = 0.05).  
 



Table 2. Output of model assessing how age at sexual maturity, vital-rate type, presence of 1 
density feedbacks in vital-rate models, and other covariates affected scaled sensitivities of 2 
population growth rates to changes in climate, |S|, calculated by perturbing individual vital 3 
rates. 4 
A Fixed Effects Coefficient SE P 

Intercept -3.324 1.143 0.003 

Vital ratenon-reproductive survival -0.620 0.385 0.107 

Vital ratereproductive survival 0.030 0.363 0.936 

Age at sexual maturity -2.157 0.529 <0.001 

Number of vital rates -0.738 0.564 0.191 

Parameters per vital rate 0.850 0.541 0.117 

Age at sex. mat.:vital ratenon-reproductive survival 1.412 0.596 0.012 

Age at sex. mat.:vital ratereproductive survival 1.097 0.491 0.025 

B Random Effects Variance SD Prop. variance 

Species/Group (Intercept) 2.057 1.434 0.272 

Species/Group Vital ratenon-reproductive survival 2.336 1.528 0.283 

Species/Group Vital ratereproductive survival 2.078 1.442 0.264 

Group (Intercept) <0.001 <0.001 <0.01 

Group Vital ratenon-reproductive survival <0.001 <0.001 <0.01 

Group Vital ratereproductive survival <0.001 <0.001 <0.01 

Residual 0.957 0.998 0.180 

Marginal R2 (variance explained by fixed effects): 0.271 

Conditional R2 (variance explained by fixed and random effects): 0.878 

The fixed effects (A) and random effects (B) of the generalized linear mixed model with gamma 5 
log link are shown here. The coefficient, standard error (SE), and p-value are reported for each 6 
fixed effect, whereas variance and standard deviation (SD) are reported for each random effect, as 7 
well as prop. variance, which indicates the proportion of the total random-effect variance 8 
explained by different grouping variables. Nested random effects were incorporated due to 9 
multiple observations within species and groups (nsamples = 13’040, nspecies = 26, ngroups = 3). nsamples 10 
reflects all resampled |S| for each perturbation scenario and species to account for parameter 11 
uncertainty. Bold p-values indicate statistical significance (α = 0.05). Note that while perturbing 12 
one vital rate at a time, we accounted for covariation with other factors in the focal rate but set the 13 
covariates in the other vital-rate models to their mean values. 14 
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