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Abstract  78 

Responses of natural populations to climate change are driven by how multiple climatic and 79 

biotic factors affect survival and reproduction, and ultimately shape population dynamics. Yet, 80 

we lack a general understanding of the role of such mechanisms in moderating climate-change 81 

impacts across different species. Here, we synthesize how the joint effects of climate and biotic 82 

interactions on different vital rates impact population change, using 41 species from trees to 83 

primates. We show that the effects of multiple climatic drivers tend to exacerbate population 84 

responses to climate change in most species. Importantly however, density feedbacks consistently 85 

buffer the effects of climate drivers on populations. In all species considered in our analyses, such 86 

interactions among climate and density had starkly different effects depending on the age, size, or 87 

life-cycle stage of individuals, highlighting that climate-change impacts can hardly be inferred 88 

from single drivers or ages or life-cycle stages, regardless of the life-history of species. Our work 89 

thus advances our ability to make generalizations about key pathways of climate-change impacts 90 

on populations. 91 

Short: From shrubs to primates, understanding climate-change impacts requires us to look at how 92 

individuals interact with each other. 93 

MAIN TEXT 94 
 95 
Introduction 96 
 97 
Among the multiple challenges for biodiversity conservation, the increasing severity of climate 98 

change, interacting with other global-change drivers, is of particular concern (1). Understanding 99 

how populations of plants and animals respond to such complex interactions is a priority for 100 
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theoretical and applied research and management (2). Populations in natural communities are 101 

structured by variation in genetic and phenotypic traits, and often also developmental stages, 102 

which determine how different rates of survival and reproduction are spread throughout the life 103 

cycle (3). In structured populations, climatic effects on population abundances are then filtered by 104 

how different biotic and abiotic drivers (including climate) affect trait-, age-, or stage-specific 105 

survival and reproduction (4–13). For instance, population persistence may be particularly 106 

affected when several climatic factors simultaneously reduce survival and reproduction of several 107 

life-cycle stages, accelerating population decline (5). In particular compound effects of hotter and 108 

drier climatic conditions on individuals can have strong negative impacts on natural populations 109 

and communities (14, 15), especially in combination with land-use change (16). However, 110 

populations may also be buffered from adverse climatic effect, when vital rates with higher 111 

impact on population growth, i.e., adult survival, exhibit the least temporal variability and thus 112 

stabilize population fitness (18, 22–24). Furthermore, a decrease in one vital rate under climate 113 

stress (e.g., recruitment) can be compensated with increases in other vital rates, such as survival 114 

of the remaining recruits or adults, under negative density feedbacks (6, 7, 20). This occurs 115 

because, when individuals compete for resources, negative climatic effects on abundance will 116 

also ease competition (6, 26), which can allow the populations to recover faster from or show 117 

higher resilience to adverse climatic effects (27). The role of density dependence may be 118 

particularly important in assessing climate-change effects on population dynamics (26). 119 

Therefore, to broadly understand the impacts of climate change in complex natural systems, we 120 

need to understand how intrinsic mechanisms interact to mediate such impacts on natural 121 

populations (28, 29). 122 

 123 

Despite substantial progress to synthesize the sensitivity of populations to climatic variation, 124 

comparative studies have largely overlooked complex mechanisms of interacting drivers and vital 125 

rates that generate variation in population-level metrics. For instance, previous studies have 126 

linked global indices of temperature and rainfall to abundances or population growth rates to 127 

show that terrestrial populations of plants and animals with shorter generation times are relatively 128 

more sensitive to climatic variation (21, 30). Despite producing important insights, such analyses 129 

have not investigated vital-rate responses to climatic factors and did not consider biotic drivers. A 130 

recent study compared the relative effect on plant population growth rates of perturbing abiotic 131 

vs. biotic drivers, but did not assess how simultaneous effects of different drivers on different 132 

vital rates affect populations (31). This contrasts with the growing consensus that complex 133 
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interactions among vital rates and biotic and climatic drivers complicate projections of 134 

persistence under climate change (28, 32–36). 135 

 136 

We synthesize, for the first time, how interacting climatic and biotic drivers change population 137 

dynamics across taxa by affecting different vital rates such as reproduction and juvenile and adult 138 

survival. Given the evidence for the importance of interactions among abiotic and biotic factors 139 

on population dynamics (5–12), we hypothesized (H1) that the simultaneous effects of climatic 140 

drivers and density dependence (whenever density feedbacks are present in population dynamics) 141 

can buffer population-level responses to climatic perturbations. Secondly, we hypothesized (H2) 142 

that changes of population growth rate under climatic perturbations cannot be predicted from 143 

perturbing single vital rates, even if those vital rates contribute strongly to population dynamics, 144 

given that climatic and biotic drivers typically affect vital rates differently and non-linearly, 145 

making their aggregated effect more complex to predict (33–35). 146 

We reviewed the ecological literature and identified studies that quantitatively linked at least two 147 

climatic drivers or one climatic and one biotic driver to at least two vital rates. Following (33), we 148 

defined climatic drivers as direct measures of temperature or precipitation, i.e., not drivers that 149 

affected climate indirectly, such as the Southern Annular Mode (i.e., Catharacta lönnbergi from 150 

(37); see Supporting Materials for a complete list of selection criteria). Among the biotic drivers, 151 

we distinguished intraspecific density dependence and interspecific interactions. We then built 152 

structured population models and used them to compute sensitivities of population growth rates 153 

(38) to a given climatic driver, either accounting for simultaneous effects of all other drivers on 154 

vital rates or keeping other drivers fixed, thus reducing the complexity of environmental effects. 155 

We also compared the effects of perturbing different single vital rates to understand whether 156 

population-level sensitivities are driven by changes in specific vital rates. When testing our 157 

hypotheses, we controlled for potential confounding factors, most importantly the life-history 158 

strategy of populations, which has been shown to strongly mediate population responses to 159 

environmental change (19, 21). We created a database making all data and code freely available 160 

online, to allow researchers to link age- or stage-specific vital rates to population responses under 161 

environmental change for further analyses such as forecasts.  162 

 163 
Results 164 
 165 
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We extracted data from 23 studies including 41 species (15 birds, 8 mammals, and 18 plant 166 

species). Among these species, 18 matrix population models, eight integral projection models, 167 

five integrated population models, and 10 individual-based models were used, and vital rates 168 

were typically modeled using generalized linear models. For an overview of life-history 169 

strategies, covariates, and demographic status of the species included in this comparative study, 170 

see Table S6. For each species, we calculated the scaled absolute sensitivities (|S|), i.e., changes 171 

in the population growth rate, λ, to observed climatic variation (standardized differences between 172 

maximum and minimum climatic values) (31). In most studies, we calculated λ for either a single 173 

(meta)population or a representative average population across the habitat range, as in the case of 174 

eight bird species (39) and 11 Mediterranean tree species (40). However, three studies (see 175 

Supporting Materials) modeled different populations. Here, we averaged sensitivities across 176 

populations to calculate species-specific average sensitivities to climate comparable across 177 

species (31). Additional analyses showed that such averaging did not affect results (Table S4). 178 

 179 

We modeled the variation in |S| using a modified meta-regression approach (41), where we 180 

pooled the results from all studies into one generalized linear hierarchical model. Our model 181 

included average age at maturity, a proxy for the fast-slow continuum of life-history strategies 182 

(42). As expected, slower-paced species had lower absolute sensitivities of λ (|S|) to climatic 183 

drivers compared to faster-paced species (Fig. 1; Table 1; βMaturity = -1.13 ± 0.19). These patterns 184 

agree with theoretical expectations (i.e., demographic buffering hypothesis; (18, 25)) and 185 

previous empirical studies (19, 21, 30, 43) and suggest that fast-paced life-histories across taxa 186 

are more labile to, or track, climatic fluctuations, whereas slow-paced life histories buffer 187 

population dynamics from multiple climatic effects (18, 19, 21).  188 

 189 
Population responses to climate variation are more buffered when density feedbacks are explicitly 190 
considered (H1) 191 
 192 
Across life histories, sensitivities |S| to changes in a focal climatic driver were lower for 193 

populations where intraspecific density dependence explicitly affected vital rates, as opposed to 194 

populations where vital rates were largely modeled as a function of climatic and other abiotic 195 

variables, but not density dependence (βDensityYes= -1.00 ± 0.56; Table 1; Fig. 1; Fig. S1). These 196 

differences in sensitivities were strongest when we accounted for the full complexity of 197 

environmental effects in sensitivity analyses (Fig. S1). This is because, under such full-198 

complexity analyses, we adjusted for observed changes in intraspecific density when the focal 199 
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perturbed climatic driver was at its minimum and maximum. Such covariation with density 200 

moderated the impact of the climatic driver and lowered the differences in λ under changes in the 201 

climatic driver (Fig. S2). In turn, |S| increased by holding density dependence constant when 202 

perturbing a climatic driver (βNoCovariation:Density = 0.40 ± 0.19). On the other hand, |S| decreased for 203 

models without density dependence when we held other climatic drivers constant and thus 204 

reduced the compound effects of climatic drivers (Table 1; βNoCovariation = -0.25 ± 0.11; Table 1; 205 

Fig. 1). Our results therefore suggest that interactions between climate and density may be critical 206 

in moderating climate-change impacts on populations across a wide range of taxa (5–12, 44, 45). 207 

On the other hand, synergistic effects of different climatic drivers can have a stronger impact on 208 

population dynamics than considering the effects of such drivers in isolation. 209 

 210 

Sensitivity of the population growth rate to climate cannot be predicted from climate responses of 211 
single vital rates (H2) 212 
 213 
We perturbed climatic drivers in each vital-rate model separately for 26 species to understand 214 

how different vital rates mediate the sensitivity of λ (|S|) to these drivers. For the remaining 215 

species, we could not perturb single vital rates due to the complexity of the models. A generalized 216 

linear regression model revealed that |S| was not driven by specific vital rates (Table 2). Fast-217 

paced life histories, i.e., ones with a lower age at maturity (43) were relatively more sensitive to 218 

climate perturbations in reproduction and survival of non-reproductive individuals than slow-219 

paced life histories (Fig. S5). This is to be expected as reproduction contributes relatively more to 220 

population dynamics of fast-paced species (19). Our results provide further evidence that fast-221 

paced life histories buffer critical vital rates from climatic perturbations less than slow-paced ones 222 

(18, 19, 22, 23); the latter typically showing lowest sensitivities when perturbing climate effects 223 

on adult survival, a critical vital rate (46). However, a closer look at sensitivities of λ to vital-rate 224 

specific effects of climatic drivers revealed a complex picture (Fig. 2). Across life-histories, λ can 225 

be equally affected by perturbations in several vital rates, and some vital rates showed strong 226 

responses to one environmental variable, but weak responses to other variables (Fig. 2; Figs. S11 227 

– S38).  228 

 229 

Overall, our results showed that growth-rate sensitivities, |S|, varied substantially among 230 

species/studies (Table 1; Table 2). While the fixed and random effects in our GLMMs jointly 231 

explained > 80 % of the variance in |S|, the proportion of variance attributed to random effects 232 

was always relatively higher (see Tables S1-S5). The effect of species explained > 50 % of the 233 
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random variation in the model. We also note that while 20 studies included only one species, 234 

three modeled several species, and we could not completely separate species and study effect - 235 

attempting to do so resulted in overparameterized models. Although we accounted for potential 236 

variables that may have confounded our results, i.e., number of vital rates modeled and average 237 

number of parameters per vital rate, one reason for such high variance among species or studies 238 

may be the varying complexity among studies in model design or the specific climatic variable 239 

considered – complexity that we could not account for in our analysis. On the other hand, high 240 

variability in responses to environmental drivers among species have also been observed in recent 241 

studies (30, 33, 47, 48). Thus, while we can discern generalizable patterns in population 242 

responses to climatic perturbations, only the inclusion of a wider range of future studies can 243 

disentangle the complex sources of context-dependent variation in population dynamics. 244 

Discussion 245 
 246 
Natural populations of plants and animals are increasingly affected by climate change worldwide 247 

(49, 50). By identifying under what context populations are more susceptible to negative effects 248 

of climatic drivers, we can prioritize conservation efforts and develop targeted strategies to 249 

mitigate adverse effects. Our comparative analyses shed light on some common demographic 250 

pathways through which populations of plants, mammals, and birds respond to complex 251 

interactions of climatic and biotic drivers. We show that simultaneous effects of multiple climatic 252 

drivers increase population sensitivity to climate change, while interactions between density 253 

dependence and climate are key in moderating effects of multiple climate drivers. Further, it is 254 

necessary to understand the effects of climatic drivers across the full life cycle of species – not 255 

just single vital rates. Our results have important implications for our understanding on how 256 

resilient populations are to climate change. 257 

 258 
Recent studies have emphasized that future climate risks to natural populations and humans will 259 

be exacerbated by compound effects of climate drivers (1, 51). While previous research has 260 

focused on understanding such compound effects on single species or populations (reviewed in 261 

e.g., 30, 34, 52), our results provide the first comparative evidence that synergistic effects of 262 

different climatic drivers can have a strong impact on population dynamics. Compound climatic 263 

effects, such as low rainfall and high temperature, often constitute climatic extremes (e.g., hot 264 

droughts, (51)), which are becoming increasingly common (1) and can have strong, non-additive 265 

effects on physiological processes of plants (53) and animals (54), negatively affecting population 266 

fitness (5, 32, 55). In meerkats (Suricata suricatta), for instance, extreme heat in a relatively dry 267 
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rainy season can lead to substantial loss of body mass and increased risks of deadly disease 268 

outbreaks (56). We note, however, that our study assessed changes in the magnitude, but not in 269 

the direction of population responses to perturbations in climate. Therefore, compound effects 270 

such as unusually warm and rainy reproductive seasons, may also lead to strong increases in 271 

population growth (56). This caveat is particularly relevant considering that fast life histories 272 

showed the strongest sensitivities to climate perturbations. Fast life histories are known to track 273 

environmental fluctuations (25), which can allow them to increase population size rapidly when 274 

favorable climatic conditions follow unfavorable ones, or to adapt to changing environmental 275 

conditions more rapidly (57).  276 

 277 
Climatic factors do not affect populations in isolation; other abiotic and biotic factors also play a 278 

role, and their impacts vary among populations and individuals within those populations (34, 58). 279 

Our results suggest that across taxa, adverse climate effects can be buffered by decreasing 280 

densities and thus easing the effects of intraspecific density, when present in populations (5, 7). In 281 

turn, for populations that increase in abundance under climate change, negative density 282 

dependence may increase population fluctuations under adverse environmental conditions (36). 283 

Other studies have also demonstrated the importance of density feedbacks in regulating 284 

population responses under land-use change (59) or disease outbreaks (60, 61), while populations 285 

of some social species that show non-linear responses to population densities may be particularly 286 

susceptible to climate change if adverse climatic effects reduce optimal densities (5). Similarly, 287 

climate change also affects populations through changes in interspecific interactions such as 288 

predation, competition, or facilitation (12, 62). However, interspecific interactions are still very 289 

rarely explicitly modeled when projecting population dynamics (33). Disentangling the relative 290 

contributions of climate and density dependence on population dynamics can require complex 291 

analyses, but studies that have done such breakdown of relative contributions have found that 292 

varying the effects of intra- or interspecific density dependence in vital rates produces the 293 

strongest responses at the population level (e.g., 12, 62, 63).  294 

 295 

Despite this growing evidence on the importance of assessing interactions of abiotic and biotic 296 

effects when quantifying population persistence under climate change (4, 5, 13, 31, 33), such 297 

assessments can be challenging. Unlike climatic variables that are often included as continuous 298 

covariates in vital-rate models and are easily perturbed, interactions with individuals of the same 299 

population or even different species took on many complex forms in the population models we 300 
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used in this study. While 30 % of species in our database explicitly included density dependence 301 

in their models, some studies only included indirect or static measures of biotic effects. For 302 

example, the tree species in our analysis had a colonization factor in their models, which was 303 

indirectly related to density, but was decoupled from climate variables in vital rates (40). 304 

Similarly, the models of Certhia familiaris, Linaria cannabina, Lophophanes cristatus, Prunella 305 

collaris, Prunella modularis, Pyrrhula pyrrhula, Sitta europaea, and Turdus torquatus did not 306 

contain density as a continuous driver in their vital-rate models (which was required for our 307 

sensitivity analyses), but density served as a fixed species-specific parameter affecting fecundity 308 

(39). As our results highlight that density feedbacks may be a general mechanism that moderates 309 

population fluctuations under climate change for a range of taxa, broadening comparative 310 

analyses that can account for complex density effects is an important step forward in population 311 

ecology. 312 

 313 

Density feedbacks are not equally important in all populations (64). However, the potential 314 

effects of density feedbacks have not been tested in many recent population models (33), likely 315 

due to a combination of lack of data and model complexity. In addition, most frameworks to 316 

predict biodiversity loss under global change do not explicitly model dynamic interactions 317 

between density and global-change drivers (65). We thus emphasize that including density 318 

feedbacks in the climate-demography models, for instance using population density or population 319 

size as a covariate in models (12, 36), may be key to understand how resilient natural populations 320 

are to climate change.  321 

 322 
Ultimately, the effects of climate change on population dynamics are filtered by the strength and 323 

direction of driver effects on different vital rates, and how much the latter contribute to 324 

population dynamics (e.g., (4–13, 19, 22, 26, 32, 35, 36, 37)). An important finding of our study 325 

is that, for any life history, even slow-paced ones where adult survival is the key vital rate driving 326 

population dynamics (19), we could not predict changes in population growth from perturbing 327 

single vital rates. This suggests that the manner in which interacting effects of different abiotic 328 

and biotic drivers filter through vital rates to affect population dynamics is highly context 329 

dependent (13). Rainfall scarcity or extreme temperatures may differently affect individuals 330 

depending on the habitat, season, and life-cycle stage considered (e.g., (5, 32)), or depending on 331 

how other species in a given community are responding to climate change (62). The complexity 332 

of the life cycle may also indicate how much a population is buffered from adverse environmental 333 
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effects (52). Some species have dormant life-cycle stages that can protect populations from 334 

environmental fluctuations (62). Dispersal, which was modeled in some studies considered here 335 

(see Supporting Materials), can stabilize decreasing populations and allow individuals to track 336 

new suitable habitats, and may itself be strongly mediated by climate (66). Therefore, from trees 337 

to primates, identifying how different abiotic and biotic factors impact populations across their 338 

full life cycle is key to be able to target conservation efforts towards certain factors during certain 339 

times of the life cycle. 340 

 341 
Our work has advanced comparative demographic analyses in two important ways. First, we 342 

standardized sensitivity analyses across a wide variety of population models, ranging from classic 343 

matrix population models to integrated population and integral projection models, and individual-344 

based models. By including the experts for each study system, we ensured that our methods did 345 

not produce inadvertent errors. Second, we provide a freely accessible and dynamic (i.e., 346 

constantly updated) database of population models that was compiled for this study. This offers 347 

an ideal basis to expand the number of studies and analyses in the future – for instance, 348 

forecasting how changes of local climatic drivers may affect populations and whether such effects 349 

can be approximated by global climate indices (67). We also recognize several limitations of our 350 

work. One limitation is that we could not account for taxonomic and geographical biases as we 351 

relied on available high-quality structured models that integrate multiple environmental factors 352 

(see Supporting Materials for study-specific details). Such tailored models are available for 353 

specific terrestrial plants, mammals, and birds, but are still lacking for many invertebrate species 354 

(68, 69), where relatively little is known on the demographic pathways through which climate 355 

change impacts abundance (70). We also have a geographic bias in our data as most study 356 

systems are from the Northern Hemisphere. Additionally, we only considered studies published in 357 

English. These types of biases can limit our ability to generalize patterns and employ 358 

conservation efforts based on comparative analyses (71, 72).  359 

When searching the literature for appropriate studies, we also discovered that reproducibility of 360 

ecological studies remains a problem. Of the 76 studies that met our search criteria, we could only 361 

replicate population models of 24 %. For the remaining studies, data and code to replicate 362 

analyses were not freely available and could often not be reproduced even when in contact with 363 

authors. Thus, we emphasize that making not just data but also code available is an important step 364 

towards reproducible comparative analyses in ecology (73).  365 
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Our comparative analyses provide evidence that interactions among biotic and abiotic drivers, 366 

and the complex effects of such multiple drivers on different vital rates, hinder simplistic 367 

predictions of population persistence under climate change. We emphasize the need to recognize 368 

and incorporate interactions between climate and density dependence into full life-cycle models 369 

in order to understand and potentially mitigate the threat that climate change poses on natural 370 

populations.  371 

 372 
 373 
Materials and Methods 374 
 375 
Literature search 376 
 377 
Our main objective was to collect code and data from studies which (i) modeled vital rates (e.g., 378 

survival, growth, reproduction) in natural populations as a function of at least two climatic 379 

variables or one climatic and one biotic variable; and (ii) constructed structured population 380 

models from which population growth rates could be obtained. We focused on studies where data 381 

were obtained in natural, unmanipulated populations (i.e., discarding experimental studies); and 382 

where the environmental variables were continuous so that we could calculate means and 383 

standard errors (see equation 1). We therefore excluded studies that constructed models for 384 

good/bad, dry/wet environments, etc. To obtain suitable studies, we performed a targeted review 385 

of the literature. We first considered a recent review, which revealed a lack of understanding 386 

regarding comprehensive demographic responses to climate change for terrestrial mammals 387 

including 87 species (33). From the publications in this review, we selected those that met our 388 

criteria. To supplement data from this list of studies, we conducted a Web of Science search using 389 

the search terms from (33) and also checked the Padrino database (74) as well as (75) (Details in 390 

SI). To be included in our database, vital-rate models had to be reproducible, i.e., the regression 391 

models were fully reported, including their formula, coefficients, and standard errors. We were 392 

able to obtain data from 23 studies that met all these criteria. 393 

 394 
As the first step of the analysis, we prepared a standardized protocol to build and perturb different 395 

structured population models, to maximize the ease of comparison across studies 396 

(https://github.com/EsinIckin/Comparative-demography-project). For help with conducting these 397 

analyses for the selected models, we contacted the authors of relevant studies. We extracted 398 

regression coefficients from tables to rebuild vital-rate models when possible; alternatively, the 399 

latter were provided by the authors of a given study. We then reconstructed population models 400 

https://github.com/EsinIckin/Comparative-demography-project
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from these vital rates, and the authors from the original papers reviewed these models to ensure 401 

that they were correct. In some cases, authors already provided the R code to rebuild the 402 

population model (for more information see Supporting Materials). The environmental covariate 403 

data were also obtained from the authors of the papers. All studies built structured population 404 

models based on > 7 years of demographic data collection and/or using data across the 405 

distribution range of species, and the range of environmental covariate values was sufficient to 406 

robustly build and perturb structured population models (see SI on study-specific details). 407 

 408 
Next, we compared among the species how perturbations in climatic variables affects long-term 409 

population fitness, λ, i.e., the sensitivity of λ to climatic drivers. For studies that provided matrix 410 

population models or integral projection models, we calculated λ as the annual asymptotic 411 

population growth rate using R package popbio version 2.7 (76). For studies that developed 412 

individual-based or integrated models, we calculated λ as the mean of annual growth rates over at 413 

least 50 years from at least 100 simulations (see Supporting Materials for study-specific details; 414 

Figs. S38-S52). To obtain sensitivities of λ to climatic drivers, we calculated λ under minimum 415 

and maximum values of a climatic driver while (i) accounting for the actual observed values of 416 

other drivers when the focal driver was at its minimum or maximum (sensitivities with 417 

covariation) or (ii) holding the other drivers constant at their average values (sensitivities 418 

without covariation). When studies modeled random year effects consistently across vital rates, 419 

we set the years to ones where a climatic driver was at its minimum or maximum in analyses; and 420 

otherwise, we held them constant (see Table S7 for details). We then calculated the scaled 421 

sensitivities according to Morris et al. (31) for each population and driver (Equation 1):  422 

 423 
 424 

|𝑆| = |
𝜆𝑚𝑎𝑥−𝜆𝑚𝑖𝑛

(𝑑𝑚𝑎𝑥−𝑑𝑚𝑖𝑛) SD𝑑⁄
|   Equation 1 425 

 426 
The driver values dmax and dmin produced the population growth rates when the driver was set to 427 

its maximum value (λmax) and its minimum value (λmin). The denominator of the scaled sensitivity 428 

|S| is the difference in the driver levels in standard deviation (SD) units. The scaled sensitivity 429 

makes it possible to compare |S| across different studies and driver types (31). We tested the 430 

robustness of the sensitivity metric by comparing |S| to the most common type of metric for 431 

summarizing outcomes in ecological meta-analyses: log response ratios (see Alternative 432 

sensitivity parameterizations in Supporting Materials).  433 

 434 
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We accounted for uncertainties around all |S| estimates by resampling parameters from vital-rate 435 

models and recalculating λ and |S| each time. More specifically, if a study reported the standard 436 

errors of the regression coefficients, we simulated the parameter distributions and sampled 437 

parameters from it, whereas in the case of Bayesian regressions, we sampled parameters from the 438 

MCMC posteriors. We produced 100 |S| estimates for most species but had to use fewer samples 439 

in some cases due to computational limits (see species-specific details in SI). In three cases, we 440 

averaged |S| over different populations to get species-specific results. However, this averaging did 441 

not affect our overall conclusions (see Table S4). 442 

 443 

Further, we perturbed the climatic drivers in each vital rate separately whenever possible (Figs. 444 

S12 – S38 for the specific vital rates in each species’ model), in the same manner as above, to get 445 

vital-rate specific |S|. In this case, all environmental driver values covaried with the focal driver in 446 

the perturbed vital-rate but were held at their average values in other vital rates. Lastly, for 447 

populations where intraspecific density dependence was explicitly considered as a driver in vital-448 

rate models, we performed additional perturbations: We accounted for the actual observed values 449 

of other climatic or biotic drivers when perturbing a focal climatic driver (sensitivities with 450 

covariation), but held densities constant. We did this to test how much |S| depended on density 451 

dependence moderating the effects climatic changes. 452 

 453 
 454 
Statistical analyses 455 
 456 

We used a generalized linear mixed model (GLMM), assuming a Gamma distributed response 457 

under a log link function, to understand the underlying mechanisms influencing population-level 458 

sensitivities |S| to climate change. We chose the Gamma distribution because the scaled 459 

sensitivities were positive values larger than zero. The resulting model fit well to observed data 460 

(Fig. 1), and model fit was substantially better than using a log-normal distribution, based on AIC 461 

and residual plots (77). We included log(age at sexual maturity) as a covariate for the effect of 462 

life-history speed on |S|. To test (H1) whether accounting for the simultaneous effect of biotic 463 

interactions decreased |S|, we incorporated as predictor variables: covariation with other drivers 464 

when λ was calculated under minimum/maximum values of a focal driver (accounted for or not), 465 

intraspecific density effects (incorporated or not in vital-rate models), and the interaction between 466 

the two. We focused on intraspecific density effects to analyze the role of biotic interactions in 467 

population dynamics because this was the most common type of biotic variables included in vital 468 
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rate models across species (see Table S6). We also controlled for a potential effect of model 469 

complexity on |S|, by including the log(number of vital rates) and log(mean parameters per vital 470 

rate) in each population model. To address potential phylogenetic differences or among species, 471 

taxonomic groups and species were integrated as nested random effects on the model intercept, 472 

respectively. To account for differences among taxonomic groups and species in how much driver 473 

covariation affects |S|, the same nested random effects were also applied on the slope of the 474 

covariation variable.  475 

 476 

To test (H2) whether specific vital rates were driving |S|, we repeated the GLMMs using |S| 477 

calculated by perturbing climatic drivers in single vital rates. To facilitate comparisons among 478 

species, we grouped the vital rates of each species into three main types: survival of non-479 

reproductive individuals (including juveniles), survival of reproductive individuals, and 480 

reproduction (including reproductive success and recruitment). We excluded trait change 481 

(including growth and maturation) as a vital rate, as it was only modeled in four species: 482 

Marmota flaviventer, Rhabdomys pumilio, Suricata suricatta, and Protea repens. The resulting 483 

GLMM had a similar structure as the one for the global |S|, with two differences. First, as we 484 

calculated vital-rate specific |S| without simplifying driver covariation in specific vital rates, 485 

covariation was not included in the model. Second, as we held variables constant in non-486 

perturbed vital rates, we simplified the model structure further by excluding whether species 487 

included or excluded density feedbacks in vital-rate and population models. We included main 488 

vital-rate type as a covariate and tested whether the climatic effects of different vital rates on |S| 489 

differed among life histories, via the effects of log(age at maturity), and used an interaction term 490 

of vital rate and age at sexual maturity.  491 

  492 

We calculated marginal and conditional R2 for all GLMMs to quantify the variance in the data 493 

explained by the fixed effects and random and fixed effects, respectively (78). We made all the 494 

data and code available online, along with the templates, ensuring that future analyses follow the 495 

same structure (https://github.com/EsinIckin/Comparative-demography-project). 496 

 497 
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Figures and Tables 1116 

 1117 
 1118 
Figure 1. Scaled sensitivities of population growth rates to climate, |S|, are lower when 1119 
accounting for density dependence in vital rates. Sensitivities are shown for species where 1120 
density effects were not modeled explicitly (A) or were added (B) as covariates in vita-rate models. 1121 
Different colors indicate sensitivity analyses under full environmental complexity (covariation with 1122 
other drivers considered when perturbing a focal climate driver in vital-rate models) or reduced 1123 
complexity (keeping other drivers as their average values when perturbing a focal driver). The 1124 
shaded areas indicate 95% model prediction intervals (see Table 1 for model coefficients). The 1125 
points show the observed mean sensitivity values of each species and perturbation scenario. We 1126 
labeled some example species across different life histories and taxa.  1127 
  1128 



 

 

34 

 

 1129 

 1130 
Figure 2. For any species, scaled sensitivities of population growth rates (|S|) vary 1131 
substantially when perturbing single vital rates. Perturbations are shown for the species where 1132 
we could perturb single vital rates. The plots are ordered by ascending age at sexual maturity and 1133 
the colors indicate the taxa mammals, birds, and plants. The points represent |S| for each species, 1134 
driver, vital rate, and parameter sample in vital-rate models. The boxplots display the distribution 1135 
of |S|, including the median (central line), the interquartile range (box), and the range of the data 1136 
(whiskers), with outliers shown as black points (nsamples per species and vital rate = 100, nsample for Halobaena caerulea 1137 
per vital rate = 50; see Supporting Materials). If some sensitivities of some vital rates are missing, it’s 1138 
because these species did not have a climatic variable (but could have a biotic variable) in this 1139 
specific vital rate. 1140 
  1141 
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Table 1. Output of model assessing how age at sexual maturity, covariation with other 1142 
drivers, presence of density feedbacks in vital-rate models and other covariates affected 1143 
scaled sensitivities of population growth rates to changes in climate, |S|. 1144 
A Fixed Effects Coefficient SE P 

Intercept -3.085 0.945 0.001 

Covariationno -0.250 0.112 0.026 

Densityyes -1.004 0.556 0.070 

Age at sexual maturity -0.991 0.200 <0.001 

Number of vital rates -0.221 0.501 0.660 

Parameters per vital rate 0.760 0.497 0.127 

Covariationno:Densityyes 0.470 0.192 0.014 

B Random Effects Variance SD Prop. variance 

Species/Group (Intercept) 1.738 1.318 0.633 

Species/Group Covariationno 0.241 0.473 0.088 

Group (Intercept) <0.001 <0.001 <0.01 

Group Covariationno <0.001 <0.001 <0.01 

Residual 0.767 0.757 0.279 

Marginal R2 (variance explained by fixed effects): 0.300 

Conditional R2 (variance explained by fixed and random effects): 0.829 

The fixed effects (A) and random effects (B) of the generalized linear mixed model with gamma 1145 
log link are shown here. The coefficient, standard error (SE), and p-value are reported for each 1146 
fixed effect, whereas variance and standard deviation (SD) are reported for each random effect, as 1147 
well as prop. variance, which indicates the proportion of the total random-effect variance 1148 
explained by different grouping variables. Nested random effects were incorporated due to 1149 
multiple observations within species and groups (nsamples = 17’240, nspecies = 41, ngroups = 3). Bold 1150 
p-values indicate statistical significance (α = 0.05).  1151 
 1152 
  1153 
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Table 2. Output of model assessing how age at sexual maturity, vital-rate type, presence of 1154 
density feedbacks in vital-rate models, and other covariates affected scaled sensitivities of 1155 
population growth rates to changes in climate, |S|, calculated by perturbing individual vital 1156 
rates. 1157 
A Fixed Effects Coefficient SE P 

Intercept -3.324 1.143 0.003 

Vital ratenon-reproductive survival -0.620 0.385 0.107 

Vital ratereproductive survival 0.030 0.363 0.936 

Age at sexual maturity -2.157 0.529 <0.001 

Number of vital rates -0.738 0.564 0.191 

Parameters per vital rate 0.850 0.541 0.117 

Age at sex. mat.:vital ratenon-reproductive survival 1.412 0.596 0.012 

Age at sex. mat.:vital ratereproductive survival 1.097 0.491 0.025 

B Random Effects Variance SD Prop. variance 

Species/Group (Intercept) 2.057 1.434 0.272 

Species/Group Vital ratenon-reproductive survival 2.336 1.528 0.283 

Species/Group Vital ratereproductive survival 2.078 1.442 0.264 

Group (Intercept) <0.001 <0.001 <0.01 

Group Vital ratenon-reproductive survival <0.001 <0.001 <0.01 

Group Vital ratereproductive survival <0.001 <0.001 <0.01 

Residual 0.957 0.998 0.180 

Marginal R2 (variance explained by fixed effects): 0.271 

Conditional R2 (variance explained by fixed and random effects): 0.878 

The fixed effects (A) and random effects (B) of the generalized linear mixed model with gamma 1158 
log link are shown here. The coefficient, standard error (SE), and p-value are reported for each 1159 
fixed effect, whereas variance and standard deviation (SD) are reported for each random effect, as 1160 
well as prop. variance, which indicates the proportion of the total random-effect variance 1161 
explained by different grouping variables. Nested random effects were incorporated due to 1162 
multiple observations within species and groups (nsamples = 13’040, nspecies = 26, ngroups = 3). Bold 1163 
p-values indicate statistical significance (α = 0.05). Note that while perturbing one vital rate at a 1164 
time, we accounted for covariation with other factors in the focal rate but set the covariates in the 1165 
other vital-rate models to their mean values. 1166 
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Supplementary text, figures, and tables 19 
 20 
Selection of studies 21 

We used the following selection criteria for a study to be included in our database: 22 

 23 

- A study had to be conducted on a wild natural population (i.e. (79)). 24 

- Quantitative models had to link at least two climatic, or one climatic and one biotic 25 

driver, to at least one vital rates (i.e., (80)).  26 

- The above drivers needed to be continuous for us to calculate the maximum, minimum, 27 

mean, and standard deviation, making results comparable across studies. This also 28 

allowed for perturbations with covariation, accounting for observed values of other 29 

drivers when the focal driver was at its extremes (i.e., (81)). 30 

- To facilitate comparisons, climatic drivers had to be direct measures of temperature or 31 

precipitation, meaning it couldn’t be a driver that influences climate, such as the Southern 32 

Annular Mode (i.e., Catharacta lönnbergi from (82)). 33 

- The study should have constructed a structured population model such as a matrix 34 

population model, integrated population model, integral projection model, or individual-35 

based model (80, 83–85). 36 

 37 

To find suitable studies, we first searched open databases on structured population models. We 38 

searched through the original papers in COMADRE and COMPARDE databases on matrix 39 

population models (86, 87). We also searched the open database Padrino, which has been 40 

collecting studies that parameterized vital rates as functions of traits and other covariates to build 41 

integral projection models (88). We also examined the database collected in (89), who compiled 42 

information on studies examining the relationship between environmental drivers and population 43 

growth rates in plants using structured population models. Lastly, we considered the studies 44 

published in (90).  45 

 46 

To consider additional papers that were not part of the previous databases, we also searched Web 47 

of Science (WoS). For this, we used the search term:  48 

 49 

TS = ((“vital rate” OR demograph* OR population OR life-history OR “life history” OR model) 50 

AND (climat* OR precipitation OR rain* OR temperature OR weather OR density)).  51 

 52 
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 53 

We acknowledge that we could have missed other relevant studies if our search terms were not 54 

mentioned in the title, abstract, or key words. Initial selection of studies from the above-listed 55 

databases showed that it was difficult to obtain all necessary data for our analyses from studies 56 

published prior to 2016. This was because information in the papers was not sufficient to replicate 57 

the models, we could not reach the authors of the studies, or they were not able to provide all the 58 

necessary information. We therefore restricted our WoS search to the most recent years (2016-59 

2023). This yielded over three million results. We ordered the results by relevance and scanned 60 

through the first 300 papers, as further results were not relevant to our selection criteria. 61 

 62 
Sensitivity analyses 63 
 64 

We used different perturbations of climatic variables in underlying vital-rate models to calculate 65 

long-term population growth rates – which approximate population fitness under environmental 66 

change. In cases where we constructed matrix population or integral projection models (see 67 

Details on Study Species), we calculated the asymptotic population growth rate (λ), using the R 68 

package popbio version 2.7 (91). For individual-based models, we calculated λ as the long-term 69 

average of Nt+1/Nt after projecting the population dynamics for at least 50 time steps and 70 

discarding the first 5-50 time steps to exclude an effect of transient dynamics in simulations (see 71 

Details on Study Species). We verified visually that λ calculated from simulations converged, 72 

corresponding to a distribution of growth rates that fluctuated with the same magnitude and 73 

direction across simulations (Figs. S30 – S43). 74 

 75 
All perturbations included calculating λ under minimum (dmin) and maximum (dmax) values of a 76 

climatic driver (d) observed during a study period. In doing so, we used the actual observed 77 

values of other covariates when the focal driver was at its minimum or maximum (covariation) to 78 

account for the full complexity of environmental fluctuations and their effects on demography. 79 

We compared these perturbations to simplified ones, where we kept the remaining environmental 80 

covariates in vital-rate models fixed at their average values (no covariation) when perturbing a 81 

focal driver, which is typically done in classic sensitivity analyses (92). We then calculated the 82 

absolute scaled sensitivities, |S|, for each population and climatic driver (81) (Equation 1): 83 

 84 

|𝑆| = |
λ𝑚𝑎𝑥 − λ𝑚𝑖𝑛

(𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛)/SD𝑑
| 85 

 86 
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The denominator of |S| is the difference in the driver levels in SD (standard deviation) units. This  87 

allows to compare the sensitivities of λ to drivers that vary over different scales, i.e., across 88 

different studies (81). We used the absolute values of S because we were interested in the 89 

magnitude of the driver’s effects on λ rather than the direction. We also calculated uncertainties 90 

around |S| from standard errors of regression coefficients or from MCMC posterior distributions 91 

in those cases where vital rates were modeled using Bayesian regression. In the first situation, we 92 

used parametric bootstrapping; that is, we simulated the distributions of the regression 93 

coefficients based on their mean and SE and then ran the sensitivity analyses again by taking 100 94 

parameter samples from the distribution. In the case of Bayesian regressions, we took 100 95 

samples directly from the MCMC posterior distributions. We also tested other parameterizations 96 

of sensitivities to assess how much our choice of how to assess sensitivities affected results (see 97 

Alternative sensitivity parameterizations below). All analyses were conducted in R version 4.2.2.  98 

 99 

In most studies, we calculated λ for either a single (meta)population or a representative average 100 

population across the habitat range. For the eight bird species, Malchow et al. developed a model 101 

using data from two sources. The species included Certhia familiaris, Linaria cannabina, 102 

Lophophanes cristatus, Prunella collaris, Prunella modularis, Pyrrhula pyrrhula, Sitta europaea, 103 

and Turdus torquatus, and the data covered 2585 sites across Switzerland (93). Although the 104 

individual-based models were spatially explicit, we adopted the matrix model and simulated 105 

mean population growth rates and mean sensitivities for each species across sites. Similarly, the 106 

11 Mediterranean tree species Fagus sylvatica, Quercus faginea, Quercus ilex, Quercus 107 

robur/petraea, Pinus nigra, Pinus pinea, Quercus suber, Pinus uncinata, Pinus halepensis, Pinus 108 

pinaster, and Pinus sylvestris were located across the continental territory of Spain in a 1 km x 1 109 

km grid system (84) and we first calculated the scaled sensitivities and then averaged across the 110 

grid. In the case of Drosophyllum lusitanicum, Conquet et al. (94) included eight distinct 111 

populations, for which we first conducted the sensitivity analyses separately, and then averaged 112 

the results across sites. The study species Dracocephalum austriacum and Perisoreus infaustus 113 

also included four and two populations, respectively, for which we again first calculated the 114 

sensitivities separately, and then averaged the results across sites. We did this averaging in the 115 

main analyses to compare results at the species level. However, we performed additional analyses 116 

where we separated the different populations for Drosophyllum lusitanicum,  Dracocephalum 117 

austriacum, and Perisoreus infaustus (see Table S4). 118 

 119 
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To understand the underlying mechanisms influencing population-level sensitivities to climate 120 

change (|Sc|), we fit a global generalized linear mixed model (GLMM), assuming a Gamma 121 

distribution with a log link function (Equation 2): 122 

log(|𝑆𝑐|) = 𝜇1 + 𝛽1 ∗ COV +  𝛽2 ∗ DENS + 𝛽3 ∗ log (MAT) + 𝛽4 ∗ log(VR) + 𝛽5 ∗ log(PAR) +123 

𝛽6 ∗ (COV × DENS), 124 

 125 

where µ1 is the intercept, 𝛽1 is the slope for the variable covariation (COV) which is categorical 126 

(no/yes), 𝛽2 is the slope for the variable density (DENS; i.e., density dependence explicitly 127 

included in vital-rate models) which is also categorical with two levels (no/yes), 𝛽3 is the slope 128 

for the log-transformed age at sexual maturity (MAT), 𝛽4 is the slope for the log-transformed total 129 

number of vital rates that had climatic or biotic covariates (VR), 𝛽5 is the slope for the log-130 

transformed mean number of parameters per vital rate (PAR), and 𝛽6 is the slope for the 131 

interaction of covariation and density. To address potential phylogenetic differences or variances 132 

within species, taxonomic groups and species were integrated as nested random intercepts, and 133 

covariation was added as a random slope. 134 

 135 

We also fitted a simpler model, where we averaged sensitivities |S|, based on perturbations that 136 

considered the full complexity (i.e., covariation) of environmental drivers, across all perturbed 137 

drivers for each species. As Fig. S1 demonstrates, average |S| were significantly lower for species 138 

where vital-rate models included density dependence.   139 

 140 

 141 
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 142 
Figure S1. Scaled sensitivities of population growth rate to climate (|S|) averaged across all 143 
drivers for the 41 species used in the comparative analysis. The points represent the calculated 144 
averages, and the boxplots display the distribution of these averages among species where vital-145 
rate models included or excluded density dependence. The boxplots show the median (central 146 
line), the interquartile range (box), and the range of the data (whiskers), with outliers shown as 147 
black points. A GLMM (with a Gamma link family) was used to model the average sensitivities 148 
as a function of presence or absence of density dependence, with species group as a random effect 149 
on the mean, and mean (SE)  estimates are shown. All calculations and plotting were done on 150 
the full dataset (A) or omitting species with very large or small ages at sexual maturity (B).  151 
 152 

To investigate further whether the patterns (|S| lower for species where vital-rate models included 153 

density dependence) were driven by the effect of density dependence in vital-rate models, we 154 

performed additional perturbations for those species that modeled density dependence: We 155 

repeated the perturbations of climatic drivers considering covariation with other biotic and abiotic 156 

covariates, but not with density (keeping density fixed). |S| increased for most populations with 157 

modeled density dependence when changes in the effects of density dependence were fixed in 158 

perturbations (Fig. S2).  159 

 160 
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 161 

Figure S2. Scaled sensitivities of population growth rates to climate, |S|, for species where density 162 
dependence was considered explicitly in vital-rate models. |S| were calculated either keeping 163 
density fixed at their average values (but considering covariation with other environmental drivers) 164 
or considering covariation with density (along with other drivers, as in the global analysis in the 165 
main text) when perturbing a focal climate driver in vital-rate models. Boxplots summarize |S| 166 
across all resampled values for all focal climate drivers.   167 
 168 

We then fitted an additional GLMM to see whether fixing interactions with density in full 169 

complexity perturbations still resulted in populations with density dependence having a lower |S| 170 

(Equations 3):  171 

 172 

log(|𝑆𝑐𝑓𝑖𝑥𝐷𝑒𝑛𝑠𝑖𝑡𝑦|) = 𝜇1 +  𝛽2 ∗ DENS + 𝛽3 ∗ log (MAT) + 𝛽4 ∗ log(VR) + 𝛽5 ∗ log(PAR) 173 

 174 

Parameter estimates from this model showed that, compared to results from the full global model 175 

(Equation 2), the effect of density decreases, and is not significant, 𝛽2 = -0.711(±0.589) (see 176 

sensitivity_fixed_density.R).      177 

We performed the global analyses (Equation 2) separately for plants, where we had a good 178 

representation of age at maturity and studies that included and excluded density dependence in 179 

vital-rate models. The results represented well the general results where all taxa were included 180 

(Fig. S3). We note that we simplified the random error structure to allow the model to converge 181 

(Table S1).  182 
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Table S1. Output of model assessing how age at maturity, covariation with other drivers, 183 
presence of density dependence in vital-rate models, and other covariates affected scaled 184 
sensitivities of population growth rates of plant species to observed variation in climatic drivers. 185 
A Fixed Effects Coefficient SE P 

Intercept -0.788 1.743 0.651 

Covariationno -0.483 0.042 <0.001 

Densityyes -1.102 1.081 0.308 

Age at maturity -1.386 0.296 <0.001 

Number of Vital Rates 0.093 0.923 0.919 

Parameters per Vital Rate -0.149 0.577 0.796 

Covariationno:Densityyes 1.455 0.068 <0.001 

B Random Effects Variance SD Prop. variance 

Species (Intercept) 0.396 0.629 0.483 

Residual 0.454 0.674 0.517 

Marginal R2 (variance explained by fixed effects): 0.559 

Conditional R2 (variance explained by fixed and random effects): 0.785 

 

The fixed effects (A) and random effects (B) of the generalized linear mixed model with gamma 186 
log link are shown here. The coefficient, standard error (SE), and p-value are reported for each 187 
fixed effect. Whereas variance and standard deviation (SD) are reported for each random effect. 188 
Random effects were incorporated due to multiple observations within species (nsamples = 3420, 189 
nspecies = 18). Bold p-values indicate significance (α = 0.05). Prop. variance indicates the 190 
proportion of the total random-effect variance explained by different grouping variables. 191 
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 192 
Figure S3. Scaled sensitivities of population growth rates to climate, |S|, across plant species. The 193 
age at sexual maturity in years (x-axis) is log-transformed using the natural logarithm. Sensitivities 194 
are shown for species where density dependence was not modeled (n =15) (A) or were added (n = 195 
3) (B) as covariates in models. Different colors indicate sensitivity analyses where covariation with 196 
other environmental drivers was considered when perturbing a focal climate driver in vital-rate 197 
models or omitted by keeping other drivers as their average values. The shaded areas indicate 95% 198 
model prediction intervals. The points show the observed mean sensitivity values of each species. 199 
We labeled some example species across different life histories and taxa. 200 
 201 
 202 
We also assessed the differences between the sensitivities to temperature and rain (|STR|) by fitting 203 

another GLMM like above but this time untangling the climatic drivers (Equation 4): 204 

log(|𝑆𝑇𝑅|) = 𝜇2 + 𝛽1 ∗ COV +  𝛽2 ∗ DENS + 𝛽3 ∗ log(MAT) + 𝛽4 ∗ DRIVER + 𝛽7 ∗205 

(COV × DENS) + 𝛽8 ∗ (COV × DRIVER) + 𝛽9 ∗ (DENS × DRIVER) + 𝛽11 ∗ log(VR) + 𝛽12 ∗206 

log (PAR), 207 

 208 

where µ2 is the intercept, α1 is the slope for the variable covariation (COV) which is categorical 209 

(no/yes), 𝛽2 is the slope for the variable density (DENS; i.e., density dependence present in vital-210 

rate models) which is also categorical with two levels (no/yes), 𝛽3 is the slope for the log-211 
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transformed age at sexual maturity (MAT), 𝛽4 is the slope for the driver (DRIVER), 𝛽7 is the 212 

slope for the interaction of covariation and density, 𝛽8 is the slope for the interaction of 213 

covariation and driver, 𝛽9 is the slope for the interaction of density and driver, 𝛽10 is the slope for 214 

the log-transformed age at maturity (MAT), 𝛽11 is the slope for the log-transformed total number 215 

of vital rates that had climatic or biotic covariates (VR), and 𝛽12 is the slope for the log-216 

transformed mean number of parameters per vital rate (PAR). To address potential phylogenetic 217 

differences or variances within species, taxonomic groups and species were integrated as nested 218 

random intercepts, and covariation was added as a random slope (Table S2; Fig. S4). 219 

Table S2. Output of model assessing how age at maturity, covariation with other drivers, 220 
presence of density dependence in vital-rate models, driver type, and other covariates affected 221 
scaled sensitivities of population growth rates to changes in rain or temperature. 222 
A Fixed Effects Estimate SE P 

Intercept -3.474 1.010 <0.001 

Covariationno -0.450 0.122 <0.001 

Densityyes -0.651 0.568 0.255 

Drivertemp 0.297 0.028 <0.001 

Age at Maturity -0.983 0.204 <0.001 

Number of Vital Rates -0.141 0.526 0.788 

Parameters per Vital Rate 0.748 0.501 0.136 

Covariationno:Densityyes 0.487 0.201 0.015 

Covariationno:Drivertemp 0.234 0.036 <0.001 

Densityno:Drivertemp -0.446 0.045 <0.001 

B Random Effects Variance SD Prop. variance 

Species:Group    

Intercept 1.636 1.279 0.490 

Covariationyes 0.237 0.487 0.186 

Group    

Intercept <0.001 <0.001 <0.01 

Covariationyes <0.001 <0.001 <0.01 

Residual 0.715 0.846 0.324 

Marginal R2 (variance explained by fixed effects): 0.261 

Conditional R2 (variance explained by fixed and random effects): 0.824 

 

The fixed effects (A) and random effects (B) of the generalized linear mixed model with gamma 223 
log link are shown here. The coefficient, standard error (SE), and p-value are reported for each 224 
fixed effect. Whereas variance and standard deviation (SD) are reported for each random effect. 225 
Random effects were incorporated due to multiple observations within species (nsamples = 17’105, 226 
nspecies = 41, ngroups = 3). Bold p-values indicate significance (α = 0.05). Prop. variance indicates 227 
the proportion of the total random-effect variance explained by different grouping variables. 228 
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 229 
Figure S4. Scaled sensitivities of population growth rates to rain and temperature, |S|, across 230 
species. The age at sexual maturity in years (x-axis) is log-transformed using the natural 231 
logarithm. The sensitivities are shown for species where density dependence was not modeled in 232 
vital-rate models or were considered. Different colors indicate sensitivity analyses where 233 
covariation with other environmental drivers was considered when perturbing a focal climate 234 
driver in vital-rate models or omitted by keeping other drivers as their average values. The shaded 235 
areas indicate 95% model prediction intervals. The points are average |S| per species and driver 236 
modeled. 237 
 238 

 239 

 240 

 241 

 242 

 243 

 244 

 245 

 246 
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 247 

We also tested how specific vital rates were driving |SVR| and fitted a GLMM using |S| that we 248 

computed by perturbing climatic drivers in single vital rates (see methods in main text; Fig. S5). 249 

 250 
Figure S5. Scaled sensitivities of population growth rates to vital rates, |S|, across species. For 251 
each species, vital rates were categorized into three general categories (different colors. The age 252 
at sexual maturity in years (x-axis) is log-transformed using the natural logarithm. The shaded 253 
areas indicate 95% model prediction intervals. The points are average |S| per species and vital rate 254 
modeled.  255 
 256 
To assess whether the length of the study affected any of our results, we included the variable 257 

study length as a covariate in the global GLMM (Equation 2). Study durations ranged from 3 to 258 

40 years, with a mean of 21 years. Due to the wide range of study length, we used the natural 259 

logarithm of study length in the model. The results indicated that including study length as a 260 

covariate did not affect |S| (βstudy length= -0.38 ± 0.47). 261 

 262 
In addition, although we obtained the majority of λ values analytically and we checked that λ 263 

calculated from simulations, i.e., as the long-term average of (Nt+1/Nt), converged, we 264 

additionally evaluated statistically whether including λ calculated from simulations affected our 265 

results. To do so, we re-parameterized the global model above removing the subset of species 266 

where λ was calculated from simulations. The results remained unchanged, with the exception 267 



 

 

13 

 

that the coefficient describing changes in sensitivities when perturbations were simplified 268 

(Covariationno) showed relatively higher variability (see Table S3; Fig. S6).  269 

 270 

 271 
Figure S6. Scaled sensitivities of population growth rates to climate, |S|, removing the subset of 272 
species where λ was calculated from simulations. The age at sexual maturity in years (x-axis) is 273 
log-transformed using the natural logarithm. Sensitivities are shown for species where density 274 
dependence was not modeled (A) or were added (B) as covariates in models. Different colors 275 
indicate sensitivity analyses where covariation with other environmental drivers was considered 276 
when perturbing a focal climate driver in vital-rate models or omitted by keeping other drivers as 277 
their average values. The shaded areas indicate 95% model prediction intervals. The points show 278 
the observed mean sensitivity values of each species. We labeled some example species across 279 
different life histories and taxa. 280 
 281 

 282 

 283 

 284 

 285 

 286 

 287 

 288 

 289 



 

 

14 

 

 290 

 291 

 292 

 293 

Table S3. Output of model assessing how age at sexual maturity, covariation with other drivers, 294 
presence of density dependence in vital-rate models and other covariates affected scaled 295 
sensitivities of population growth rates to changes in climate, |S|, removing the subset of species 296 
where λ was calculated from simulations. 297 
A Fixed Effects Coefficient SE P 

Intercept -2.377 0.724 0.001 

Covariationno -0.137 0.141 0.337 

Densityyes -0.865 0.431 0.045 

Age at sexual maturity -0.958 0.266 <0.001 

Number of vital rates -0.316 0.357 0.377 

Parameters per vital rate 0.701 0.391 0.081 

Covariationno:Densityyes 0.238 0.236 0.313 

B Random Effects Variance SD Prop. variance 

Species/Group (Intercept) 0.813 0.902 0.388 

Species/Group Covariationno 0.263 0.517 0.222 

Group (Intercept) <0.001 <0.001 <0.01 

Group Covariationno <0.001 <0.001 <0.01 

Residual 0.823 0.908 0390 

Marginal R2 (variance explained by fixed effects): 0.338 

Conditional R2 (variance explained by fixed and random effects): 0.748 

The fixed effects (A) and random effects (B) of the generalized linear mixed model with gamma 298 
log link are shown here. The coefficient, standard error (SE), and p-value are reported for each 299 
fixed effect, whereas variance and standard deviation (SD) are reported for each random effect. 300 
Nested random effects were incorporated due to multiple observations within species and groups 301 
(nsamples = 14’566, nspecies = 25, ngroups = 3). Bold p-values indicate statistical significance (α =0.05). 302 
Prop. variance indicates the proportion of the total random-effect variance explained by different 303 
grouping variables. 304 
 305 
 306 

Finally, we repeated the global model, but maintaining |S| separate for different populations of 307 

Drosophyllum lusitanicum, Dracocephalum austriacum, and Perisoreus infaustus. We thus 308 

included another nested level of the random effect: population nested in species, which in turn 309 

was nested in group (mammals, birds, plants). As Table S4 shows, the results remained 310 

unchanged, and variance among populations did not contribute substantially to the random effect 311 

variance.  312 

 313 



 

 

15 

 

Table S4. Output of model assessing how age at sexual maturity, covariation with other drivers, 314 
presence of density dependence in vital-rate models and other covariates affected scaled 315 
sensitivities of population growth rates to changes in climate, |S|, including a population 316 
random effect. 317 
A Fixed Effects Coefficient SE P 

Intercept -3.007 0.958 0.002 

Covariationno -0.252 0.112 0.024 

Densityyes -1.000 0.559 0.071 

Age at sexual maturity -1.032 0.199 <0.001 

Number of vital rates -0.321 0.504 0.523 

Parameters per vital rate 0.844 0.491 0.091 

Covariationno:Densityyes 0.389 0.190 0.040 

B Random Effects Variance SD Prop. variance 

Population/Species/Group (Intercept) 0.015 0.123 0.015 

Population/Species/Group Covariationno 0.050 0.222 0.042 

Species/Group (Intercept) 1.724 1.313 0.447 

Species/Group Covariationno 0.174 0.417 0.142 

Group (Intercept) <0.001 <0.001 <0.01 

Group Covariationno <0.001 <0.001 <0.01 

Residual 0.738 0.859 0.293 

Marginal R2 (variance explained by fixed effects): 0.302 

Conditional R2 (variance explained by fixed and random effects): 0.829 

The fixed effects (A) and random effects (B) of the generalized linear mixed model with gamma 318 
log link are shown here. The coefficient, standard error (SE), and p-value are reported for each 319 
fixed effect, whereas variance and standard deviation (SD) are reported for each random effect. 320 
Nested random effects were incorporated due to multiple observations within species and groups 321 
(nsamples = 17’666, nspecies = 41, ngroups = 3). Bold p-values indicate statistical significance (α =0.05). 322 
Prop. variance indicates the proportion of the total random-effect variance explained by different 323 
grouping variables. 324 
 325 

Alternative sensitivity parameterizations 326 
 327 
When using the same data to calculate the range (maximum-minimum) and SD of a variable, 328 

there is necessarily a positive correlation between those two metrics (Fig. S7). This means that 329 

our scaling approach (Equation 1) results in a denominator that is similar across different species. 330 

One way to break this correlation is to calculate long-term SD of climatic drivers, while taking 331 

the range of values over a given shorter-term study period. In our comparative analysis, it was not 332 

possible to calculate long-term SD of climatic drivers in many studies we examined. However, in 333 

all studies but one (on the gray mouse lemur, Microcebus murinus (95)) the covariates in vital 334 

rate models did not show a large range (Fig. S7), and covariates were already scaled to represent z 335 

scores (mean = 0; SD = 1 regardless of range) for 23 species of the 41 species (Fig. S7). In other 336 

words, the covariates were already on a similar scale across most studies. The grey mouse lemur 337 
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was the only study that used raw climatic values with large ranges of temperatures (30°C – 32°C) 338 

and rainfall (621 mm – 1404 mm).  339 

 340 

 341 

Figure S7. Relationship between observed ranges (maximum – minimum values) and standard 342 
deviations of climatic variables perturbed in this comparative study. These values were used to 343 
scale sensitivities of population growth rates, λ, across different studies (see Equation 1). The 344 
plots show (A) all ranges, including for studies where climatic drivers were already scaled in the 345 
original study (SD = 1); or (B) removing the latter drivers.  346 
 347 

In addition, we calculated another sensitivity metric to test whether our scaling impacted our 348 

conclusions. We calculated the log response ratios (|L|) of perturbed population growth rates, λ, 349 

(Equation 5): 350 

 351 

|L| = |log(λmax/λmin)|, 352 

 353 

where min and max refer to λ calculated at the minimum and maximum values of a climatic 354 

driver. As with |S|, we considered absolute values as we were interested in the magnitude of the 355 

effects only. Log response ratios are the most common type of metric for summarizing outcomes 356 

in ecological meta-analyses (96, 97), but do not account for different scales in perturbations (81). 357 

As Fig. S8 and Table S5 show, our conclusions remain largely unchanged when considering |L| as 358 

sensitivity metric (except for a higher uncertainty associated with the main effect of “Density in 359 

vital rate modes”). This highlights that our results are not sensitive to different sensitivity 360 

parameterizations.  361 

 362 
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 363 

Table S5. Output of model assessing how age at sexual maturity, covariation with other drivers, 364 
presence of density dependence in vital-rate models and other covariates affected log response 365 
ratios, |L|. 366 
A Fixed Effects Coefficient SE P 

Intercept -2.587 0.894 0.004 

Covariationno -0.281 0.127 0.027 

Densityyes -0.561 0.510 0.254 

Age at sexual maturity -0.378 0.181 0.036 

Number of vital rates 0.209 0.464 0.652 

Parameters per vital rate 0.451 0.451 0.316 

Covariationno:Densityyes 0.455 0.219 0.037 

B Random Effects Variance SD Prop. variance 

Species/Group (Intercept) 1.954 1.398 0.470 

Species/Group Covariationno 0.374 0.612 0.206 

Group (Intercept) <0.001 <0.001 <0.01 

Group Covariationno <0.001 <0.001 <0.01 

Residual 0.933 0.966 0325 

Marginal R2 (variance explained by fixed effects): 0.101 

Conditional R2 (variance explained by fixed and random effects): 0.761 

The fixed effects (A) and random effects (B) of the generalized linear mixed model with gamma 367 
log link are shown here. The coefficient, standard error (SE), and p-value are reported for each 368 
fixed effect, whereas variance and standard deviation (SD) are reported for each random effect. 369 
Nested random effects were incorporated due to multiple observations within species and groups 370 
(nsamples = 16’805, nspecies = 41, ngroups = 3). Bold p-values indicate statistical significance (α =0.05). 371 
Prop. variance indicates the proportion of the total random-effect variance explained by different 372 
grouping variables. 373 
 374 

 375 
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 376 
Figure S8. Log response ratios (|L|) of population growth rates, λ, under perturbations of climatic 377 
variables in vital-rate models. The age at sexual maturity in years (x-axis) is log-transformed 378 
using the natural logarithm. Response ratios are shown for species where density dependence was 379 
not modeled (A) or were added (B) as covariates in vital-rate models. Different colors indicate 380 
perturbations where covariation with other environmental drivers was considered when 381 
perturbing a focal climate driver in vital-rate models or omitted by keeping other drivers as their 382 
average values. The shaded areas indicate 95% model prediction intervals. The points show the 383 
observed mean sensitivity values of each species. We labeled some example species across 384 
different life histories and taxa. 385 
 386 
 387 
 388 
 389 
 390 
 391 
 392 
 393 
 394 
 395 
 396 
 397 
 398 
 399 
 400 
 401 
 402 
 403 
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Details on study species 404 

Table S6. Overview of all the species included in this comparative study. The covariates used in 405 
the models were temperature (T), precipitation (P), intraspecific density (D1), interspecific density 406 
(D2), southern annular mode (SAM), sea surface temperature (SST), rain-on-snow (ROS), sea-ice 407 
concentration (SIC), food (B), potential evapotranspiration (PET), and latent climatic variable (Q). 408 
The IUCN status comprises of least concern (LC), vulnerable (VU), data deficient (DD), and 409 
unknown (?). The population trend categories, also obtained from the IUCN red list, are stable (=), 410 
increasing (+), decreasing (-), or unknown (?). The sources of the original studies the data were 411 
obtained from are listed in sources, alongside the sources of IUCN status, population trend, and age 412 
at sexual maturity if it was not obtained from the original study. 413 

Species 
Common 

name 

Covariat

es 

IUCN 

status 

Popul

ation 

trend 

Age at sex. 

maturity 

(years) 

Source 

Certhia familiaris 
Eurasian 

treecreeper 
T, P LC =  1 

(131, 
132) 

Linaria cannabina 
Common  

linnet 
T, P LC - 1 

(131, 

133) 

Lophophanes  

cristatus 
Crested tit T, P LC - 1 

(131, 

134) 

Prunella collaris 
Alpine 

accentor 
T, P LC = 1 

(131, 

135) 

Prunella modularis Dunnock T, P LC - 1 
(131, 
136) 

Pyrrhula pyrrhula 
Eurasian 

bullfinch 
T, P LC - 1 

(131, 
137) 

Sitta europaea 
Eurasian  

nuthatch 
T, P LC = 1 

(131, 

138) 

Turdus torquatus Ring ouzel T, P LC = 1 
(131, 

139) 

Cinclus cinclus 

White-

throated  

dipper 

T, D1 LC - 1 

(140, 

141, 

142) 

Halobaena  
caerulea 

Blue petrel 

SST, 

SAM, D1, 

D2, B, 

SAM 

LC - 4 

(142, 

143, 

144) 

Thalassarche  

melanophris 

Black-

browed 

albatross 

SST 

winter, 

SST 

breeding 

season 

LC + 10.6 
(142,14

5,146) 

Spheniscus  
magellanicus 

Magellanic 

penguin 
T, P, SST LC - 2.8 

(142, 
147, 

148) 

Microcebus 

murinus 

Gray mouse 

lemur 
T, P, D1 LC - 1 

(149, 

150) 
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Rangifer tarandus Reindeer ROS, D1 VU - 1.9 
(142, 

151) 

Vulpes lagopus Arctic fox T, B LC = 0.8 

(142, 

152, 
153) 

Rhabdomys pumilio 
Striped 

mouse 
T, D1, B LC = 0.7 

(154, 

155, 
156) 

Marmota  

flaviventer 

Yellow- 

bellied  

marmot 

Q, D1 LC = 2 
(157, 

158) 

Suricata suricatta Meerkat T, P, D1 LC = 1 
(159, 
160) 

Giraffa  
camelopardalis 

Masai  
giraffe 

P, D1 VU - 6 
(161, 
162) 

Protea repens Sugarbush T, P LC = 4 

(163, 

164, 
165) 

Fagus sylvatica Beech T, P LC ? 40 

(166, 

167, 

168) 

Quercus faginea 
Honeydew 

oak 
T, P LC ? 30 

(166, 

169, 

170) 

Quercus ilex Holly oak T, P LC = 30 

(166, 

169, 

171) 

Quercus pyrenaica Pyrenean oak T, P LC = 30 

(166, 

169, 

172) 

Quercus robur Common oak T, P LC - 30 

(166, 

169, 

173) 

Pinus nigra Black pine T, P LC = 27.5 

(166, 

174, 

175) 

Pinus pinea Stone pine T, P LC = 22.5 

(166, 

175, 

176) 

Quercus suber Cork oak T, P LC - 30 

(166, 

169, 

177) 

Pinus uncinata 
Mountain 

pine 
T, P LC = 15 

(166, 

178, 

179) 

Pinus halepensis Aleppo pine T, P LC = 5 
(166, 
175, 

180) 
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Pinus pinaster 
Maritime 

pine 
T, P LC + 12.5 

(166, 

175, 

181) 

Pinus sylvestris Scots pine T, P LC = 27.5 

(166, 

175, 

182) 

Drosophyllum  
lusitanicum 

Dewy pine T, D1 ? - 2 (183) 

Halimium  
halimifolium 

Yellow sun 

rose 
P, D1, D2 ? - 5.8 (184) 

Cistus libanotis Rockrose P, D1, D2 LC - 4.6 
(184, 

185) 

Opuntia imbricata 
Devil’s rope 

pear 

T 

(multiple) 
LC + 9 

(186–

189) 

Dracocephalum 

austriacum 

Austrian 

dragonhead 
T, P, PET DD - 2 

(190, 

191) 

Branta leucopsis 
Barnacle 

goose 

T, P, D1, 

B 
LC = 2 (192) 

Perisoreus 
infaustus 

Siberian jay P,T,D1 LC = 1 (193) 

Oryctolagus 

cuniculus 

European 

rabbit 
T,D1,B EN - 0.33 (194) 

Lavandula stoechas Lavender T, P ? ? 3 (195) 

Aptenodytes 

forsteri 

Emperor 

penguin 

SIC 

(multiple) 
NT - 3 (196) 

 414 
  415 
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Birds 416 
 417 

Blue Petrel (Halobaena caerulea). The population of blue petrels was studied on Mayes Island in 418 

the Southern Ocean where they breed during the austral summer (82). This species is long-lived 419 

and reaches sexual maturity at the age of four years (82). The climate and population size 420 

information were obtained from the a GitHub repository 421 

(https://github.com/maudqueroue/MultispeciesIPM_SkuaPetrel) and the code for the vital rate 422 

models and the population model, as well as the regression coefficients were provided by the 423 

corresponding author of (82). The authors built a multispecies integrated population model where 424 

the covariates in the vital-rate models for the petrel were: the Southern annular mode, sea surface 425 

temperature anomalies (SSTA), chlorophyll a concentration, and intra- and interspecific density. 426 

We classified SSTA as the only climatic driver “temperature”. We calculated λ by projecting the 427 

population for 20 years, discarding the first ten years to account for transient dynamics. λ was 428 

then determined by calculating the changes in abundance per year using the formula and 429 

averaging it. We calculated uncertainties around λ for each perturbation scenario by resampling 430 

regression coefficients from the MCMC posteriors 10 times (instead of 50 or 100 due to the limits 431 

of computational power); and then recalculating λ. 432 

 433 

The White-throated Dipper (Cinclus cinclus). The study population of the white-throated dipper 434 

is located in the river system of Lyngdalselva in southern Norway (83). The dipper is a small 435 

short-lived passerine bird with the average age at sexual maturity of one year (98, 99). The 436 

climate data and population size information were obtained from the corresponding author of 437 

(83). The structure of the vital-rate models (survival and recruitment rates of the age classes 1-4) 438 

and the regression coefficients were obtained from the paper’s supplementary materials Table S1 439 

and Table S2, respectively (83). The study integrated the recorded number of occupied nests, 440 

capture-recapture data of females, and data on reproductive success into a Bayesian integrated 441 

population model (83). We built the matrix population model based on the life cycle illustrated in 442 

Figure 1 of the study (83). Noticeably, the immigration rate was added as apparent recruitment 443 

per capita to age class 1 in our population model, after discussing it with the corresponding 444 

author. The covariates used in the vital-rate models were standardized mean winter temperature 445 

and density. We classified the former as “temperature” for our GLMMs. We calculated λ as the 446 

dominant eigenvalue of the matrix model for each perturbation scenario. We calculated 447 

https://github.com/maudqueroue/MultispeciesIPM_SkuaPetrel
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uncertainties around λ for each perturbation scenario by resampling regression coefficients 100 448 

times using a gaussian distribution with SE given by the study; and then recalculating λ. 449 

 450 

The Magellanic Penguin (Spheniscus magellanicus). The study population of the Magellanic 451 

penguins is located at the Punta Tombo colony in Argentina (100). They typically reach sexual 452 

maturity at the age of 2.8 years (99). The data and R code were obtained from the corresponding 453 

author’s GitHub repository (https://github.com/teejclark/Press_Pulse) (100). Clark-Wolf and 454 

colleagues built a pre-breeding, three-stage, female-only integrated population model (100). The 455 

covariates used in the vital-rate models were the total precipitation between October 15 and 456 

December 15, temperature as the % of days per breeding season when maximum air temperature 457 

was higher than 25 °C, and sea surface temperature anomalies during breeding and migration 458 

season and their lagged versions. We classified precipitation as “rain” and the rest as 459 

“temperature” for our GLMMs. We calculated λ by running the model for 38 years, calculating λ 460 

= (Nt+1/Nt), and averaging it across all years. We only used the last 20 λ, discarding the first 18 461 

years to account for transient dynamics. We calculated uncertainties around λ for each 462 

perturbation scenario by resampling regression coefficients from the MCMC posteriors that we 463 

obtained from the IPM 100 times; and then recalculating λ. 464 

Swiss Birds. The study included eight Swiss breeding bird populations: Eurasian bullfinch 465 

(Pyrrhula pyrrhula), European crested tit (Lophophanes cristatus), Eurasian treecreeper (Certhia 466 

familiaris), Eurasian nuthatch (Sitta europaea), dunnock (Prunella modularis), common linnet 467 

(Linaria cannabina), ring ouzel (Turdus torquatus), and alpine accentor (Prunella collaris). The 468 

authors of the study chose bird species with age at maturity of one year that share common traits 469 

(93). The climate data and the code were obtained from the author’s GitHub repository: 470 

https://github.com/UP-macroecology/Malchow_DemogEnv_2022, and the regression coefficients 471 

for the models were provided directly by the authors (93). A female-only, two-stage matrix 472 

population model with three vital rates was built for each species (93). In the vital-rate models, 473 

five climatic covariates were used: mean temperature and total precipitation during the breeding 474 

season, mean temperature in fall, and total precipitation and minimum temperature during winter. 475 

Temperature-related covariates were categorized as “temperature”, and precipitation-related ones 476 

as “rain”. We calculated λ as the dominant eigenvalue of the matrix model for each perturbation 477 

scenario and for each species separately. We calculated uncertainties around λ for each 478 

perturbation scenario by resampling regression coefficients from the MCMC posteriors 100 479 

times, and then recalculating λ. We conducted the analyses for each species separately, but they 480 

https://github.com/teejclark/Press_Pulse
https://github.com/UP-macroecology/Malchow_DemogEnv_2022
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all followed the same workflow. Although the individual-based models were spatially explicit 481 

(covering 2585 sites across Switzerland) (93), we adopted the matrix model and simulated mean 482 

λ and mean |S| for each species across sites. 483 

 484 

The Black-browed Albatross (Thalassarche melanophris). The study population is located at 485 

Kerguelen Island, in the colony of Cañon des Sourcils Noirs (101). The black-browed albatross is 486 

a long-lived seabird, reaching sexual maturity at the age of 10.6 years (99, 102). The climate data 487 

and code, including the model parameters, were provided by the corresponding author (101). The 488 

authors built a matrix population model comprised of 25 states. The covariates used in the vital-489 

rate models were standardized sea surface temperature (SST) in the juvenile sector during the 490 

wintering season (May to August), SST in the wintering sector of adults (July to September), and 491 

SST in the breeding sector (October of year t to March of year t+1) (102). We classified all the 492 

climatic covariates as “temperature”. We calculated λ as the dominant eigenvalue of the matrix 493 

model for each perturbation scenario. We calculated uncertainties around λ for each perturbation 494 

scenario by resampling regression coefficients 100 times using a gaussian distribution with SE 495 

extracted from Table S2.4b of a previous study (103); and then recalculating λ. 496 

 497 

The Barnacle Goose (Branta leucopsis). The study population was monitored in northwestern 498 

Svalbard where it breeds (104). The Svalbard barnacle goose population overwinters at Solway 499 

Firth, Scotland, before flying to Svalbard for breeding in summer. The barnacle goose reaches 500 

sexual maturity at the age of 2 years (105). The climate data and code, including the model 501 

parameters, were provided by the corresponding author (104). The authors built a matrix 502 

population model comprised of 2 states, fledglings and adults. The covariates used in the vital-503 

rate models were mean daily minimum temperatures October-March in Scotland and in April-504 

May in Helgeland, mean precipitation in April-May in Helgeland, the flyway population size at 505 

the wintering grounds in Scotland, spring onset, adult numbers in Svalbard, and fox predation. 506 

We classified all the climatic covariates as “temperature” or “rainfall”. We calculated λ as the 507 

dominant eigenvalue of the matrix model for each perturbation scenario. We calculated 508 

uncertainties around λ for each perturbation scenario by resampling regression coefficients 100 509 

times using a multivariate Normal distribution based on the parameter covariance matrix. 510 

 511 

The Siberian Jay (Perisoreus infaustus). Siberian jay individuals have been observed long-term 512 

near Arvidsjaur, northern Sweden. For this study, we had 15 years of data on 4341 sightings from 513 
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1166 individuals (106). We used population models representing two populations: managed (in 514 

the southern area where scots pine and Norway spruce are thinned, harvested, and re-planted in 515 

80–120 year cycles) and natural (northern area of the study site that has not been managed for at 516 

least 200 years). The jays reach sexual maturity at the age of 1 year. The climate data and code, 517 

including the model parameters, were provided by the corresponding author (106). The authors 518 

built a periodic matrix population model that described transitions among juvenile, non-breeding, 519 

and breeding stages across winter and summer seasons. The covariates used in the vital-rate 520 

models were mean winter snow depth (December–March), average temperature during the 521 

breeding season (April–May), and population density. We classified all the climatic covariates as 522 

“temperature” or “precipitation”. We calculated λ as the dominant eigenvalue of the annual 523 

product of the periodic matrix model for each perturbation scenario. We calculated uncertainties 524 

around λ for each perturbation scenario by resampling regression coefficients 100 times using a 525 

multivariate Normal distribution based on the parameter covariance matrix. We calculated 526 

sensitivities for the natural and managed population separately, and the averaged them across the 527 

two populations for the global analysis. 528 

 529 

The emperor penguin (Aptenodytes forsteri). For this work, we used a long-term dataset on 530 

breeding emperor penguins at Dumont D’Urville, Terre Adélie, in Antarctica. The colony has 531 

been monitored every year, during the breeding season (March–December), from 1962 onwards. 532 

We used the demographic model in (107) constructed from capture histories from 1962-2005. The 533 

authors constructed a sex- (males and females) and stage-structured (pre-breeders, breeding pairs, 534 

non-breeder) periodic (seasonal) matrix population model following (108). The climatic 535 

covariates in vital-rate models were proportional anomalies in sea-ice concentration (SIC), 536 

relative to the mean from 1979 to 2007 in the pre-breeding, laying, incubating, and rearing 537 

seasons. We categorized the SIC as “temperature” in our GLMMs. All data and code to construct 538 

and perturb the population model were made available by Jenouvrier and coauthors and can be 539 

found at: https://gitfront.io/r/fledge-whoi/zUbHbQtJq2XV/emperor-penguin-IUCN/ (CMR code). 540 

We calculated λ as the dominant eigenvalue of the annual product of the seasonal matrix 541 

population models for each perturbation scenario, after projecting population dynamics for 1000 542 

years and letting the population vector converge to a stable distribution (projections were 543 

necessary because female/male ratios were used to model breeding and were generated within the 544 

model). We obtained the uncertainties around λ for each perturbation scenario using parametric 545 

bootstrapping to obtain variation in vital rate parameters (following the original study; (107)). 546 

https://gitfront.io/r/fledge-whoi/zUbHbQtJq2XV/emperor-penguin-IUCN/
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 547 

Mammals 548 

The Masai Giraffe (Giraffa camelopardalis tippelskirchi or G. tippelskirchi). The metapopulation 549 

of female Masai giraffes studied here is located in northern Tanzania (109–111). They reach 550 

sexual maturity at the age of 6 years (85). The data and code were provided by the authors of (85) 551 

and can be found at https://github.com/MariaPaniw/Masai_giraffe_ibm. The study used long-term 552 

demographic data to develop a stochastic, socially structured individual-based model (IBM) (85). 553 

The two covariates used in the model were population density and rainfall; the latter was 554 

classified as “rain” for our GLMMs. We ran the model for 150 seasons (4-month time steps), 555 

discarding the first 12 seasons to account for transient dynamics. λ was then determined by 556 

calculating the changes in abundance per year using the formula λ = (Nt+1/Nt) and averaging it 557 

across all years. We ran the simulation 100 times to obtain the uncertainties around λ for each 558 

perturbation scenario. 559 

 560 

The Yellow-bellied Marmot (Marmota flaviventer). The study population of these large rodents is 561 

located in the Upper East River Valley, Gothic, Colorado. They reach sexual maturity at the age 562 

of 2 years (112). The data and code of the study were provided by the author of the study (112) 563 

and can also be found at https://datadryad.org/stash/dataset/doi:10.5061/dryad.4j0zpc87c. The 564 

authors of (112) built seasonal stage-, mass- and environmental-specific integral projection 565 

models (IPM) that account for seasonal demographic covariation using a latent climatic variable 566 

(Q) that depicts a measure of environmental quality (112). We considered random year variation 567 

as a separate covariate, due to the way the demographic model was built. We considered Q as a 568 

climatic driver and composite of both rainfall and temperature (see (112)). We calculated λ as the 569 

dominant eigenvalue of the matrix of the IPM for each perturbation scenario. We calculated 570 

uncertainties around λ for each perturbation scenario by resampling regression coefficients 100 571 

times from the MCMC posteriors, and then recalculating λ. 572 

 573 

The Gray Mouse Lemur (Microcebus murinus). The study population of this small lemur is 574 

located in the Kirindy forest in Madagascar (113). They are a short-lived species, reaching sexual 575 

maturity at the age of one year (80, 114, 115). The climate and population-size data were provided 576 

by the corresponding author of (80). We obtained the structure of the vital-rate models, regression 577 

coefficients, and their standard errors from Table 1 of their paper. We then rebuilt the MPM based 578 

on the annual life cycle illustrated in Figure 6 of their paper (80). The model is a two-stage and 579 

https://datadryad.org/stash/dataset/doi:10.5061/dryad.4j0zpc87c
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two-sex matrix population model (80). The covariates used in the vital-rate models were monthly 580 

mean maximum temperature, monthly total rainfall, and population density. We classified mean 581 

maximum temperature as “temperature” and total rainfall as “rain” for our GLMMs. We 582 

calculated λ as the dominant eigenvalue of the matrix model for each perturbation scenario. We 583 

calculated uncertainties around λ for each perturbation scenario by resampling regression 584 

coefficients 100 times using a gaussian distribution with SE given by the study; and then 585 

recalculating λ. 586 

 587 

The Svalbard Reindeer (Rangifer tarandus). The study population of the wild Svalbard reindeer is 588 

located in central Spitsbergen, Svalbard, Norway (116). They reach sexual maturity at the age of 589 

1.9 years (99). The climate data, population size information, and posterior samples were 590 

obtained from the authors (116). The model used was an integrated population model with six 591 

female age classes. The covariates in the vital rate models were rain-on-snow (ROS), population 592 

density, and winter length. We did not include sensitivities to winter length since it was not 593 

related to temperature or rain. ROS was classified as “rain” for our GLMMs. We calculated λ as 594 

the dominant eigenvalue of the matrix model for each perturbation scenario. We calculated 595 

uncertainties around λ for each perturbation scenario by resampling regression coefficients 100 596 

times from the MCMC posteriors, and then recalculating λ. 597 

 598 

The African Striped Mouse (Rhabdomys pumilio). The short-lived African striped mouse lives in 599 

the dry regions of South Africa and reaches sexual maturity within the first year; for our study, we 600 

set this parameter to 0.7 years (79, 117). The climate and population-size data, as well as the full 601 

code of the population model was provided by the corresponding author (79). The model built in 602 

the study was a female-only stage-structured matrix population model (79). The covariates 603 

utilized in the vital-rate models included monthly mean temperature, food availability, and 604 

population density. Monthly mean temperature was categorized as “temperature” in the analyses. 605 

We calculated λ as the dominant eigenvalue of the matrix model (which described the population 606 

dynamics over one month) for each perturbation scenario. We calculated uncertainties around λ 607 

for each perturbation scenario by resampling regression coefficients 100 times from the MCMC 608 

posteriors, and then recalculating λ. This was the only species where λ could not be calculated on 609 

an annual scale. We tested whether this affected our results by repeating the global GLMM 610 

excluding this species. Doing so did not change our results (see the R script on GitHub named 611 

MainAnalysis_without_RhabdomysPumilio.R). 612 
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 613 

The Meerkat (Suricata suricatta). The study population of these small social mammals is located 614 

in the Kuruman River Reserve in South Africa (118). They reach sexual maturity at the age of one 615 

year (118). The data and code were provided by the corresponding author of (118). The model 616 

used was a mass-stage-classified integral projection model (118). The covariates in the vital-rate 617 

models included population density, interannual rainfall, and temperature deviations (from 618 

seasonal means). We classified rainfall as “rain” and temperature deviations as “temperature” for 619 

our GLMMs. We calculated λ as the dominant eigenvalue of the annual integral projection model 620 

for each perturbation scenario. We obtained the uncertainties around λ for each perturbation 621 

scenario using non-parametric bootstrapping to obtain variation in vital rate parameters 622 

(following the original study, (118)). 623 

 624 

The Arctic Fox (Vulpes lagopus). The study population of these abundant generalists and apex 625 

predators is located in Svalbard, Norway (119). They reach sexual maturity at the age of 0.8 years 626 

(119). The climate and population data, as well as the full code on the model was provided by the 627 

corresponding author of study (119). The authors of the study built a Bayesian integrated 628 

population model (119). The covariates used in the vital-rate models were sea ice extent, 629 

availability of reindeer carcasses, and goose population size. We classified sea ice extent as 630 

“temperature” and the others as biotic factors. We calculated λ as the dominant eigenvalue of the 631 

matrix model for each perturbation scenario under two hunting scenarios (low vs high pressure), 632 

and then averaged the results. We calculated uncertainties around λ for each perturbation scenario 633 

by resampling regression coefficients 100 times from the MCMC posteriors, and then 634 

recalculating λ. 635 

The European rabbit (Oryctolagus cuniculus). Parameters to run an individual-based model of 636 

rabbit population dynamics in Doñana Protected Area (southwestern Spain) were obtained from 637 

Tablado and co-authors (120). Rabbits are native to the Iberian Peninsula but their abundances 638 

have declined, including in Doñana, due to a combination of climate and land-use change and 639 

diseases. Rabbit are fast-lived and reach sexual maturity at around 4 months. The study by 640 

Tablado and co-authors complied demographic parameters from previous studies to develop a 641 

stochastic individual-based model (IBM). The main climatic variable in the model was mean 642 

monthly temperature, from which we obtained measures of food (or green pasture) availability 643 

and breeding season length. Population density was also considered as a covariate in vital-rate 644 

models. We ran the IBM for 16 years (1-month time steps), discarding the first 5 years to account 645 
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for transient dynamics. λ was then determined by calculating the changes in abundance per year 646 

using the formula λ = mean((Nt+1/Nt)), where t = abundance in June (end of the breeding season). 647 

We ran the simulations 100 times to obtain the uncertainties around λ for each perturbation 648 

scenario. 649 

 650 

Plants 651 

Shrubs (Cistus libanotis, Halimium halimifolium, Lavandula stoechas). These three common 652 

shrub species are located in Doñana National Park in Spain. C. libanotis reaches sexual maturity 653 

(i.e., mean age at first flowering in plants) at the age of 4.6 years, H. halimifolium at the age of 654 

5.8 years, and L. stoechas at the age of 3 years (121). The climate and population-size data, 655 

posterior samples, and code were provided by the authors, and the data and code for the 656 

population model for Cistus libanotis and Halimium halimifolium, can be found on the author’s 657 

GitHub repository: https://github.com/MariaPaniw/shrub_forecast (121). The demography of the 658 

latter two shrub species was described by a three-stage life cycle, from which a matrix population 659 

model was built (121). The covariates used in the vital-rate models were rainfall, inter- and 660 

intraspecific densities. For Lavandula stoechas, we expanded the population model develop in 661 

(121) using individual-based data collected 2019-2023. We fit an integral projection model for 662 

this species, with vital rates were parameterized as functions of seasonal temperature and rainfall 663 

(adult plant density was used as on offset in recruitment models only). We classified seasonal 664 

temperature and rainfall as “temperature” “rain” for our GLMMs, respectively. We calculated λ as 665 

the dominant eigenvalue of the matrix model or integral projection model for each perturbation 666 

scenario. We calculated uncertainties around λ for each perturbation scenario by resampling 667 

regression coefficients 100 times from the MCMC posteriors (or multivariate Normal distribution 668 

based on the parameter covariance matrix for L. stoechas), and then recalculating λ. 669 

 670 

The Pontic Dragonhead (Dracocephalum austriacum). The four study populations are located in 671 

the Bohemian Karst in Central Europe (122). This study species reaches its sexual maturity at the 672 

age of two on average (122). The data and code were provided by the corresponding author 673 

(Evers et al. in preparation). They built an integral projection model. The climatic covariates used 674 

in the vital-rate models were potential evapotranspiration (PET), precipitation, and temperature. 675 

We classified precipitation as a climatic driver “rain”, and temperature as “temperature” for our 676 

GLMMs. We calculated λ as the dominant eigenvalue of the matrix model for each perturbation 677 

scenario. We obtained uncertainties around λ for each perturbation scenario by resampling 678 

https://github.com/MariaPaniw/shrub_forecast
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coefficients 100 times from the functional linear models, which linked climate drivers to vital 679 

rates, and then recalculating λ. 680 

 681 

The Dewy Pine (Drosophyllum lusitanicum). The eight study populations of the dewy pine, a 682 

carnivorous subshrub, are located in the heathlands of Southern Spain (123, 94). The dewy pine 683 

reaches sexual maturity at the age of two years (123). The data and code for the analysis was 684 

provided by the corresponding author (94). They built an individual-based model (IBM) and used 685 

these five covariates in the vital-rate models: temperature, rainfall, density, size, and time since 686 

last fire. The two climatic drivers temperature and rainfall were classified as such. We calculated 687 

λ by projecting the population for 50 years, discarding the first 25 years to account for transient 688 

dynamics. λ was then determined by calculating the changes in abundance per year using the 689 

formula λ = (Nt+1/Nt) and averaging it over all the years. We calculated uncertainties around λ for 690 

each perturbation scenario by running the simulation 100 times, and then recalculating λ. 691 

 692 

Spanish Trees. This study includes several tree species populations across Spain (84). These 693 

include Fagus sylvatica, Pinus halepensis, Pinus nigra, Pinus pinaster, Pinus pinea, Pinus 694 

sylvestris, Pinus uncinata, Quercus faginea, Quercus ilex, Quercus robur/petraea, and Quercus 695 

suber. The mean age at sexual maturity of each species can be found in Table S6. The climate 696 

data and the code for the model were obtained from the corresponding author’s GitHub 697 

repository: https://github.com/garciacallejas/IPM_basic (84). A spatially explicit integral 698 

projection model was constructed for all tree species (84). The covariates in the vital-rate models 699 

include temperature, precipitation, and their anomalies. We classified temperature and 700 

precipitation as “temperature” and “rain” for our analyses. We calculated λ by running the model 701 

for 90 years (10-year time steps), discarding the first 50 years to account for transient dynamics. λ 702 

was then determined by calculating the changes in abundance per year using the formula λ = 703 

(Nt+1/Nt) and averaging it. We calculated uncertainties around λ for each perturbation scenario by 704 

running the simulation five times (due to computational demands), and then recalculating λ. In 705 

the original study, the tree species were spread across the continental territory of Spain in a 1 km 706 

x 1 km grid system (84). For our study, we first calculated the scaled sensitivities and then 707 

averaged across the area. 708 

 709 

https://github.com/garciacallejas/IPM_basic
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The Tree Cholla Cactus (Opuntia imbricata). The study population is located at the Sevilleta 710 

National Wildlife Refuge in New Mexico, USA (124, 125). This species reaches sexual maturity 711 

at the age of nine years (126). The integral projection model is based on the R script from Aldo 712 

Compagnoni (127). Further, two vital-rate models are from the analysis of Sanne Evers (126). 713 

The data and code were provided by the corresponding author of (126). The covariates in the 714 

vital-rate models were climate anomalies of the values instead of absolute values. The variables 715 

were mean average daily temperatures of two different time windows and mean minimum daily 716 

temperature (126). We classified the covariates in our analyses as “temperature”. We calculated λ 717 

as the dominant eigenvalue of the matrix for each perturbation scenario. We calculated 718 

uncertainties around λ for each perturbation scenario by resampling regression coefficients 100 719 

times from the posterior distributions, and then recalculating λ. 720 

The Common Sugarbush (Protea repens). This species of shrub is found throughout the 721 

Mediterranean climate of the Cape Floristic Region in South Africa (128). It reaches sexual 722 

maturity at the age of four years (129). All data and code were accessible online (128). However, 723 

to obtain posterior samples of regression coefficients, we rebuilt and executed the regression 724 

models in JAGS (130). The population model built is an integral projection model. The covariates 725 

used in the vital-rate models that we perturbed were minimum July temperature and mean annual 726 

precipitation, respectively classified as “temperature” and “rain” in the meta-regressions. We 727 

calculated λ as the dominant eigenvalue of the matrix model for each perturbation scenario. We 728 

calculated uncertainties around λ for each perturbation scenario by resampling regression 729 

coefficients 100 times from the posterior distributions, and then recalculating λ. 730 

 731 

 732 
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 733 
Figure S9. Differences in scaled sensitivities |S| of population growth rates of mammalian species 734 
to (A) rain and (B) temperature, without and with covarying drivers (Sno cov – Scov). Different 735 
colors indicate models where density effects were included or not. A positive difference indicates 736 
that the sensitivities with covariation are lower than those without covariation, implying that there 737 
are dampening effects of covariation on the sensitivity of a species. The diamond symbols display 738 
the median sensitivities, while the points represent all calculated sensitivities from 100 739 
resamplings per species (nresamplings = 100). 740 

 741 

  742 
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 743 
Figure S10. Differences in scaled sensitivities |S| of population growth rates of avian species to 744 
(A) rain and (B) temperature, without and with covarying drivers (Sno cov – Scov). Different colors 745 
indicate models where density effects were included or not. A positive difference indicates that 746 
the sensitivities with covariation are lower than those without covariation, implying that there are 747 
dampening effects of covariation on the sensitivity of a species. The diamond symbols display the 748 
median sensitivities, while the points represent all calculated sensitivities from 100 resamplings 749 
per species (nresamplings = 100, nresamplings for Halobaena caerulea = 50).  750 

  751 



 

 

34 

 

 752 
Figure S11. Differences in scaled sensitivities |S| of population growth rates of plant species to 753 
(A) rain and (B) temperature, without and with covarying drivers (Sno cov – Scov). Different colors 754 
indicate models where density effects were included or not. A positive difference indicates that 755 
the sensitivities with covariation are lower than those without covariation, implying that there are 756 
dampening effects of covariation on the sensitivity of a species. The diamond symbols display the 757 
median sensitivities, while the points represent all calculated sensitivities from 100 resamplings 758 
per species (nresamplings = 100, nresamplings for Spanish Trees = 5).  759 

 760 

761 
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 762 

Figure S12. Scaled sensitivities of population growth rates per vital rate to different drivers for 763 
Certhia familiaris. The dots represent the mean scaled sensitivities across the calculated 764 
resamplings per driver and vital rate combination (nresamplings = 100) and the error bars display the 765 
standard errors. The climatic drivers here are rain and temperature. 766 
  767 
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 768 

Figure S13. Scaled sensitivities of population growth rates per vital rate to different drivers for 769 
Cinclus cinclus. The dots represent the mean scaled sensitivities across the calculated resamplings 770 
per driver and vital rate combination (nresamplings = 100) and the error bars display the standard 771 
errors. The climatic driver here is temperature, and the density driver refers to intraspecific 772 
density. 773 
  774 
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 775 

Figure S14. Scaled sensitivities of population growth rates per vital rate to different drivers for 776 
Halobaena caerulea. The dots represent the mean scaled sensitivities across the calculated 777 
resamplings per driver and vital rate combination (nresamplings = 50) and the error bars display the 778 
standard errors. The abiotic driver here is the Southern Annular Mode, the biotic driver is 779 
interspecific density, the density driver refers to intraspecific density, and the climatic driver is 780 
sea surface temperature. 781 
  782 
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 783 

Figure S15. Scaled sensitivities of population growth rates per vital rate to different drivers for 784 
Linaria cannabina. The dots represent the mean scaled sensitivities across the calculated 785 
resamplings per driver and vital rate combination (nresamplings = 100) and the error bars display the 786 
standard errors. The climatic drivers here are rain and temperature. 787 
  788 
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 789 

Figure S16. Scaled sensitivities of population growth rates per vital rate to different drivers for 790 
Lophophanes cristatus. The dots represent the mean scaled sensitivities across the calculated 791 
resamplings per driver and vital rate combination (nresamplings = 100) and the error bars display the 792 
standard errors. The climatic drivers here are rain and temperature. 793 
  794 
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 795 

Figure S17. Scaled sensitivities of population growth rates per vital rate to different drivers for 796 
Prunella collaris. The dots represent the mean scaled sensitivities across the calculated 797 
resamplings per driver and vital rate combination (nresamplings = 100) and the error bars display the 798 
standard errors. The climatic drivers here are rain and temperature. 799 
  800 
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 801 

Figure S18. Scaled sensitivities of population growth rates per vital rate to different drivers for 802 
Prunella modularis. The dots represent the mean scaled sensitivities across the calculated 803 
resamplings per driver and vital rate combination (nresamplings = 100) and the error bars display the 804 
standard errors. The climatic drivers here are rain and temperature. 805 
  806 
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 807 

Figure S19. Scaled sensitivities of population growth rates per vital rate to different drivers for 808 
Pyrrhula pyrrhula. The dots represent the mean scaled sensitivities across the calculated 809 
resamplings per driver and vital rate combination (nresamplings = 100) and the error bars display the 810 
standard errors. The climatic drivers here are rain and temperature. 811 
  812 
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 813 

Figure S20. Scaled sensitivities of population growth rates per vital rate to different drivers for 814 
Sitta europaea. The dots represent the mean scaled sensitivities across the calculated resamplings 815 
per driver and vital rate combination (nresamplings = 100) and the error bars display the standard 816 
errors. The climatic drivers here are rain and temperature. 817 
  818 
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 819 

Figure S21. Scaled sensitivities of population growth rates per vital rate to different drivers for 820 
Spheniscus magellanicus. The dots represent the mean scaled sensitivities across the calculated 821 
resamplings per driver and vital rate combination (nresamplings = 100) and the error bars display the 822 
standard errors. The climatic drivers here are rain, temperature, and sea surface temperature 823 
anomalies (also classified as temperature). 824 
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 826 

Figure S22. Scaled sensitivities of population growth rates per vital rate to different drivers for 827 
Turdus torquatus. The dots represent the mean scaled sensitivities across the calculated 828 
resamplings per driver and vital rate combination (nresamplings = 100) and the error bars display the 829 
standard errors. The climatic drivers here are rain and temperature. 830 
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 835 

Figure S23. Scaled sensitivities of population growth rates per vital rate to different drivers for 836 
Perisoreus infaustus. The dots represent the mean scaled sensitivities across the calculated 837 
resamplings per driver and vital rate combination (nresamplings = 100) and the error bars display the 838 
standard errors. The climatic drivers here are rain and temperature. 839 
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 841 

Figure S24. Scaled sensitivities of population growth rates per vital rate to different drivers for 842 
Branta leucopsis. The dots represent the mean scaled sensitivities across the calculated 843 
resamplings per driver and vital rate combination (nresamplings = 100) and the error bars display the 844 
standard errors. The climatic drivers here are rain and temperature. 845 
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 848 

Figure S25. Scaled sensitivities of population growth rates per vital rate to different drivers for 849 
Giraffa camelopardalis. The dots represent the mean scaled sensitivities across the calculated 850 
resamplings per driver and vital rate combination (nresamplings = 100) and the error bars display the 851 
standard errors. The climatic driver here is rain. 852 
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 854 

Figure S26. Scaled sensitivities of population growth rates per vital rate to different drivers for 855 
Marmota flaviventer. The dots represent the mean scaled sensitivities across the calculated 856 
resamplings per driver and vital rate combination (nresamplings = 100) and the error bars display the 857 
standard errors. The abiotic driver here is Q, which is a composite measure, including climate, 858 
representing environmental quality. 859 
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 861 

Figure S27. Scaled sensitivities of population growth rates per vital rate to different drivers for 862 
Microcebus murinus. The dots represent the mean scaled sensitivities across the calculated 863 
resamplings per driver and vital rate combination (nresamplings = 100) and the error bars display the 864 
standard errors. The density driver refers to intraspecific density, and the climatic drivers are rain 865 
and temperature. 866 
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 868 

Figure S28. Scaled sensitivities of population growth rates per vital rate to different drivers for 869 
Rangifer tarandus. The dots represent the mean scaled sensitivities across the calculated 870 
resamplings per driver and vital rate combination (nresamplings = 100) and the error bars display the 871 
standard errors. The abiotic driver here is winter length, the density driver refers to intraspecific 872 
density, and the climatic driver is rain-on-snow, classified as rain. 873 
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 875 

Figure S29. Scaled sensitivities of population growth rates per vital rate to different drivers for 876 
Rhabdomys pumilio. The dots represent the mean scaled sensitivities across the calculated 877 
resamplings per driver and vital rate combination (nresamplings = 100) and the error bars display the 878 
standard errors. The biotic driver is food availability, the density here refers to intraspecific 879 
density, and the climatic driver is temperature.  880 
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 882 

Figure S30. Scaled sensitivities of population growth rates per vital rate to different drivers for 883 
Suricata suricatta. The dots represent the mean scaled sensitivities across the calculated 884 
resamplings per driver and vital rate combination (nresamplings = 100) and the error bars display the 885 
standard errors. The climatic drivers here are rain and temperature. 886 
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 888 

Figure S31. Scaled sensitivities of population growth rates per vital rate to different drivers for 889 
Vulpes lagopus. The dots represent the mean scaled sensitivities across the calculated resamplings 890 
per driver and vital rate combination (nresamplings = 100) and the error bars display the standard 891 
errors. The biotic driver here represents reindeer carcass availability and goose abundance, and 892 
the climatic driver is sea ice extent, also classified as sea ice extent. 893 
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 896 

Figure S32. Scaled sensitivities of population growth rates per vital rate to different drivers for 897 
Oryctolagus cuniculus. The dots represent the mean scaled sensitivities across the calculated 898 
resamplings per driver and vital rate combination (nresamplings = 100) and the error bars display the 899 
standard errors. The biotic driver here represents reindeer carcass availability and goose 900 
abundance, and the climatic driver is sea ice extent, also classified as sea ice extent. 901 
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 903 

Figure S33. Scaled sensitivities of population growth rates per vital rate to different drivers for 904 
Cistus libanotis. The dots represent the mean scaled sensitivities across the calculated 905 
resamplings per driver and vital rate combination (nresamplings = 100) and the error bars display the 906 
standard errors. The biotic driver is interspecific density, the climatic driver is rain, and density 907 
represents intraspecific density. 908 
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 910 

Figure S34. Scaled sensitivities of population growth rates per vital rate to different drivers for 911 
Drosophyllum lusitanicum. The dots represent the mean scaled sensitivities across the calculated 912 
resamplings per driver and vital rate combination (nresamplings = 100) and the error bars display the 913 
standard errors. The climatic drivers are rain and temperature, and density represents intraspecific 914 
density. 915 
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 918 

Figure S35. Scaled sensitivities of population growth rates per vital rate to different drivers for 919 
Halimium halimifolium. The dots represent the mean scaled sensitivities across the calculated 920 
resamplings per driver and vital rate combination (nresamplings = 100) and the error bars display the 921 
standard errors. The biotic driver is interspecific density, the climatic driver is rain, and density 922 
represents intraspecific density. 923 
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 925 

Figure S36. Scaled sensitivities of population growth rates per vital rate to different drivers for 926 
Opuntia imbricata. The dots represent the mean scaled sensitivities across the calculated 927 
resamplings per driver and vital rate combination (nresamplings = 100) and the error bars display the 928 
standard errors. The climatic driver temperature represents mean average daily temperatures of 929 
two different time windows and mean minimum daily temperature. 930 
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 932 

Figure S37. Scaled sensitivities of population growth rates per vital rate to different drivers for 933 
Protea repens. The dots represent the mean scaled sensitivities across the calculated resamplings 934 
per driver and vital rate combination (nresamplings = 100) and the error bars display the standard 935 
errors. The climatic drivers are rain and temperature. 936 
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 940 

Figure S38. Scaled sensitivities of population growth rates per vital rate to different drivers for 941 
Lavandula stoechas. The dots represent the mean scaled sensitivities across the calculated 942 
resamplings per driver and vital rate combination (nresamplings = 100) and the error bars display the 943 
standard errors. The climatic drivers are rain and temperature. 944 
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 946 
Figure S39. Time series of simulated annual growth rates (Nt+1/Nt) for Giraffa camelopardalis, 947 
which we averaged to calculate λ (after discarding transient dynamics). The colors represent the 948 
multiple simulations (n = 100). 949 
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 952 
Figure S40. Time series of simulated annual growth rates (Nt+1/Nt) for Spheniscus magellanicus, 953 
which we averaged to calculate λ (after discarding transient dynamics). The colors represent the 954 
multiple simulations (n = 100). 955 
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 959 
Figure S41. Time series of simulated annual growth rates (Nt+1/Nt) for Halobaena caerulea, 960 
which we averaged to calculate λ (after discarding transient dynamics). The colors represent the 961 
multiple simulations (n = 10). 962 
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 965 
Figure S42. Time series of simulated annual growth rates (Nt+1/Nt) for Fagus sylvatica, which we 966 
averaged to calculate λ (after discarding transient dynamics). The colors represent the multiple 967 
simulations and sites (see species-specific details in SI). The variation in λ is largely attributed to 968 
variation among sites as we ensured to remove sites from analyses where λ values changed 969 
direction in simulations.  970 
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 973 
Figure S43. Time series of simulated annual growth rates (Nt+1/Nt) for Pinus halepensis, which 974 
we averaged to calculate λ (after discarding transient dynamics). The colors represent the multiple 975 
simulations and sites (see species-specific details in SI). The variation in λ is largely attributed to 976 
variation among sites as we ensured to remove sites from analyses where λ values changed 977 
direction in simulations. 978 
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 981 
Figure S44. Time series of simulated annual growth rates (Nt+1/Nt) for Pinus nigra, which we 982 
averaged to calculate λ (after discarding transient dynamics). The colors represent the multiple 983 
simulations and sites (see species-specific details in SI). The variation in λ is largely attributed to 984 
variation among sites as we ensured to remove sites from analyses where λ values changed 985 
direction in simulations. 986 
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 989 
Figure S45. Time series of simulated annual growth rates (Nt+1/Nt) for Pinus pinaster, which we 990 
averaged to calculate λ (after discarding transient dynamics). The colors represent the multiple 991 
simulations and sites (see species-specific details in SI). The variation in λ is largely attributed to 992 
variation among sites as we ensured to remove sites from analyses where λ values changed 993 
direction in simulations. 994 
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 997 
Figure S46. Time series of simulated annual growth rates (Nt+1/Nt) for Pinus pinea, which we 998 
averaged to calculate λ (after discarding transient dynamics). The colors represent the multiple 999 
simulations and sites (see species-specific details in SI). The variation in λ is largely attributed to 1000 
variation among sites as we ensured to remove sites from analyses where λ values changed 1001 
direction in simulations. 1002 
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 1005 
Figure S47. Time series of simulated annual growth rates (Nt+1/Nt) for Pinus sylvestris, which we 1006 
averaged to calculate λ (after discarding transient dynamics). The colors represent the multiple 1007 
simulations and sites (see species-specific details in SI). The variation in λ is largely attributed to 1008 
variation among sites as we ensured to remove sites from analyses where λ values changed 1009 
direction in simulations. 1010 
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 1013 
Figure S48. Time series of simulated annual growth rates (Nt+1/Nt) for Pinus uncinata, which we 1014 
averaged to calculate λ (after discarding transient dynamics). The colors represent the multiple 1015 
simulations and sites (see species-specific details in SI). The variation in λ is largely attributed to 1016 
variation among sites as we ensured to remove sites from analyses where λ values changed 1017 
direction in simulations.   1018 
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 1021 
Figure S49. Time series of simulated annual growth rates (Nt+1/Nt) for Quercus faginea, which 1022 
we averaged to calculate λ (after discarding transient dynamics). The colors represent the multiple 1023 
simulations and sites (see species-specific details in SI). The variation in λ is largely attributed to 1024 
variation among sites as we ensured to remove sites from analyses where λ values changed 1025 
direction in simulations. 1026 
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 1029 
Figure S50. Time series of simulated annual growth rates (Nt+1/Nt) for Quercus ilex, which we 1030 
averaged to calculate λ (after discarding transient dynamics). The colors represent the multiple 1031 
simulations and sites (see species-specific details in SI). The variation in λ is largely attributed to 1032 
variation among sites as we ensured to remove sites from analyses where λ values changed 1033 
direction in simulations. 1034 
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 1037 
Figure S51. Time series of simulated annual growth rates (Nt+1/Nt) for Quercus robur/petraea, 1038 
which we averaged to calculate λ (after discarding transient dynamics) The colors represent the 1039 
multiple simulations and sites (see species-specific details in SI). The variation in λ is largely 1040 
attributed to variation among sites as we ensured to remove sites from analyses where λ values 1041 
changed direction in simulations. 1042 

 1043 

  1044 



 

 

75 

 

 1045 
Figure S52. Time series of simulated annual growth rates (Nt+1/Nt) for Quercus suber, which we 1046 
averaged to calculate λ (after discarding transient dynamics). The colors represent the multiple 1047 
simulations and sites (see species-specific details in SI). The variation in λ is largely attributed to 1048 
variation among sites as we ensured to remove sites from analyses where λ values changed 1049 
direction in simulations. 1050 
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 1052 
Figure S53. Time series of simulated annual growth rates (Nt+1/Nt) for Oryctolagus cuniculus, 1053 
which we averaged to calculate λ (after discarding transient dynamics of year 1-5). The colors 1054 
represent the multiple simulations and sites (see species-specific details in SI). The variation in λ 1055 
is largely attributed to variation among sites as we ensured to remove sites from analyses where λ 1056 
values changed direction in simulations. The colors represent the multiple simulations (n = 100). 1057 
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