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ABSTRACT 12 

The local persistence of long-lived organisms is at risk as climate change drives a rapid shift in 13 
selection regimes world-wide. Although adaptive evolution is one of the main mechanisms by 14 
which populations persist in changing environments, we have little information regarding how 15 
selection regimes will shift in response to continued climate change, nor on the potential for trees 16 
to evolve adaptively under novel selection pressures. To address these gaps, here we assessed the 17 
changes in selection in three sites along a spatial climate gradient which mimics expected 18 
temporal changes in climate and determined whether trait covariance might accelerate or impede 19 
the rate of adaptive evolution of seven Picea mariana populations in the warmer and drier 20 
environment. In three common garden sites established 50 years ago, we measured an array of 21 
traits which represent water use, response to temperature, structural investment, and metabolic 22 
efficiency. Our findings reveal that all 10 traits measured in this study were under selection in at 23 
least one site. We also find different traits are under selection in each site, with four instances 24 
where the shift in selection gradient is consistent with shifts in climate: water use efficiency 25 
(WUE); needle carbon to nitrogen ratio (CN); the interaction between WUE and CN; and the 26 
interaction between CN and huber value. In the warm and dry site, traits under selection were 27 
largely uncorrelated, with only four of the 49 trait combinations under selection exhibiting intra 28 
population trait covariances. The shifts in selection gradient suggest that climate change may 29 
select for needles with higher WUE, higher structural carbon and higher hydraulic supply to the 30 
needles. The few trait-trait correlations indicate that phenotypic integration should neither 31 
impede nor facilitate adaptive evolution, leaving P. mariana provenances with the evolutionary 32 
flexibility to respond to climate change regardless of the direction to selection. 33 



INTRODUCTION 34 
As climates shift under global climate change, the growth, productivity and persistence of 35 

tree species globally are at risk (Allen et al., 2010; Choat et al., 2012). This is especially true for 36 

the boreal forest which is experiencing climate change at a rapid rate compared to regions at 37 

lower latitudes (Aubin et al., 2018; Chagnon et al., 2022). These rapid shifts in environmental 38 

conditions expose local populations to new selection pressures with little time for evolution by 39 

natural selection to occur, leaving long-lived sessile organisms at particular risk of becoming 40 

mismatched with new environmental conditions (Barrett & Schluter, 2008; de Lafontaine et al., 41 

2018). Studies worldwide have reported widespread forest tree mortality driven by this 42 

mismatch, leaving adaptation and migration as possible outcomes which may preserve 43 

population persistence (Shaw et al., 2005; McDowell et al., 2020; Münchinger et al., 2023).  44 

However, migration rates are likely too slow to match the pace of climate change (Malcolm et 45 

al., 2002; Iverson et al., 2004; Brecka et al., 2018).  As a result, research has focused on 46 

identifying adaptations which would allow for the persistence of populations in the face of 47 

climate change. Adaptations are phenotypic characteristics associated with higher fitness within 48 

a population in a given environment. These can occur through adaptive plasticity, whereby an 49 

individual’s plastic response increases fitness or through adaptive evolution whereby traits which 50 

confer high fitness are preferentially passed on from one generation to the next. Although both 51 

adaptive plasticity and adaptive evolution can contribute to population persistence most work to 52 

date focuses on adaptive plasticity and we know little about the potential for adaptive evolution 53 

in trees (henceforth, adaptive potential). Indeed, in recent years many studies have aimed to 54 

assess adaptive capacity in the face of climate change by solely quantifying adaptive plasticity of 55 

phenotypic traits using locally adapted populations from warm and dry environments (Andrés-56 

Hernández et al., 2023; Blasini et al., 2021; Challis et al., 2022; Robert et al., 2024). However, 57 



recent meta-analyses on adaptive capacity have highlighted the need to also examine the role of 58 

adaptive evolution to provide a more comprehensive assessment of population adaptive capacity 59 

in the face of climate change (Lindner et al., 2010; Royer-Tardif et al., 2021). As a result, 60 

research on the adaptive potential of important tree species is required to determine whether 61 

populations will be able to persist in their current environments. However, a missing piece of the 62 

puzzle remains; in order to assess the adaptive potential of a population we need to understand 63 

how selection on populations might shift with climate change. Once we understand how 64 

selection is likely to shift, we can then identify populations which may have a higher adaptive 65 

potential than others in the face of climate change. Here I first ask how selection on Picea 66 

mariana shifts with climate in the Canadian boreal forest and then ask whether different P. 67 

mariana provenances have different adaptive potentials to warmer and drier environments.  68 

Over the next 100 years, the climate of the boreal forest is expected to get warmer and drier 69 

(Figure 1). Current emission trends suggest that continued increase in greenhouse gas emission 70 

over time is likely. Trends modelled using this climate scenario (CanESM2 RCP 8.5 model) 71 

show warming temperatures across the boreal forest, with most regions experiencing a ~ 4 ºC 72 

increase in mean annual temperature (Boucher et al., 2020). In addition to warming, water 73 

availability in environments is predicted to decrease. Water availability in environments depends 74 

on the interplay between evaporation, due to temperature and irradiation, and levels of 75 

precipitation. Water availability is reflected by the climate moisture index (CMI), which is the 76 

difference between annual precipitation and potential evapotranspiration. While a decrease in 77 

CMI is predicted across most of the boreal forest (with the exception of the most eastern 78 

regions), in the western regions CMI is expected to reach negative values, which indicate that a 79 



closed canopy forest would not be maintained in this region. Yet exactly how these shifts in 80 

environmental conditions will affect boreal tree species remains unclear.  81 

 82 

Figure 1. Projections of annual mean temperature (ºC) and Climate Moisture Index (CMI) for 83 

the 1981 – 2010 and 2071 – 2100 periods based on the CanESM2 RCP 8.5 model. Grey line 84 

represents the range of the Canadian boreal forest. Figure adapted from Boucher et al. (2020). 85 

In the boreal forest the response of P. mariana to warming has not been uniform, with 86 

warming expected to increase the growth rates of trees in the northern boreal forest where water 87 

is not limiting, and southern regions expected to face increased drought stress and thus lower 88 

growth rates and higher mortality (Sniderhan et al., 2021). Indeed, many studies have found 89 

productivity to increase in response to warming (Gamache & Payette, 2004) and many others 90 

have found it to decrease (Hogg et al., 2005; Girardin et al., 2016; Robert et al., 2024). An 91 

advance of the timing of spring since 1950 has been documented for most of North America 92 

(Cayan et al., 2001; Sniderhan et al., 2021) however for southern latitudes, productivity is more 93 



water limited (Chagnon et al., 2022). Changes in temperature can change the length of the 94 

growing season, an important determinant of forest productivity in temperate and boreal forests 95 

(Kimball et al., 2004). Water limitation in the southern regions of the boreal forest can be further 96 

exacerbated by increases in temperature increasing water loss from the environment which 97 

negatively impacts growth and increases mortality from the leaves in dryer sites, unless stomata 98 

close (Shaw et al., 2005; Peng et al., 2011; Choat et al., 2018; Chagnon et al., 2022; Münchinger 99 

et al., 2023). Research on the impact of climate change on P. mariana focuses mainly on 100 

changes in growth. Looking at growth integrates the response of the entire phenotype and is thus 101 

informative of the overall impacts of climate change on individual- and population-level 102 

performance, but we do not know which traits are driving this response. Here, I address this by 103 

measuring which traits are under selection in a natural population and are thus driving this 104 

change in growth response.  105 

I expect selection from warmer and dryer climates to act on traits related to water use, 106 

photosynthesis, structural support and temperature regulation (Aubin et al., 2016; Boisvert-107 

Marsh et al., 2020; Sniderhan et al., 2021). Water is required in the photosynthetic pathway and 108 

is the main chemical component of live plant cells. It is also required to maintain turgor and 109 

therefore support the softer tissues, as well as to transport the nutrients across the plant tissues. 110 

Low water availability in environments has been shown to decrease forest productivity, as such, 111 

trees have shown adaptations to cope with this environmental stress. Therefore, in environments 112 

with low water availability traits representing water conservation strategies are likely to confer 113 

higher performance and be the targets of selection. Trees must balance resource allocation 114 

between growth, reproduction, and structural support. A portion of the tree’s energy is invested 115 

in building strong wood and bark to support height and canopy spread. Temperature limited trees 116 



exposed to warming temperatures may develop weaker wood. This is because elevated 117 

temperatures accelerate growth and as a consequence reduces investment in structural support 118 

leading to lower wood and branch density. This makes them more vulnerable to break under 119 

mechanical stress, such as during storms (Ahrens et al., 2020). Temperature (heat) controls the 120 

rate of plant metabolism, which in turn determines the rate of photosynthesis. Most biological 121 

metabolic activity takes place within the range of 0–50° C (Hopkins & Hüner, 2004). The 122 

optimal tree productivity coincides with 15–25 °C, which is the optimal range of photosynthesis 123 

(Hopkins & Hüner, 2004). Temperatures become lethal over 44°C (Schulze et al., 2002). 124 

However, it is important to note that plants have been shown to thermoregulate, whether it is to 125 

maintain stable tissue temperatures or to produce heat to attract pollinators, there is evidence that 126 

plant temperatures are not just passively tracking ambient temperatures. The “leaf homeothermy 127 

hypothesis” states that specific suites of leaf traits have evolved to buffer variation in 128 

temperature and maintain leaf temperatures within a narrower range of variation around the 129 

metabolic optima for photosynthesis (Michaletz et al., 2015). In theory, the warmer an 130 

environment is, the more cooling the leaves will need to maintain this metabolic optimum. As 131 

such, in the range of temperatures that decrease plant metabolic activity, I expect enhanced leaf 132 

cooling to confer higher performance and thus be a target of selection in such an environment.  133 

In addition to the adaptive value of individual traits, phenotypic integration may affect 134 

population response to selection. Specifically, when the phenotype is highly integrated, (i.e. trait 135 

covariance is strong) then the response to selection of one trait will be affected by selection on 136 

the other trait.  A population’s response to climate change can either facilitate or impede the 137 

adaptive evolution of the population depending on the magnitude and direction of trait 138 

covariance. Adaptive evolution is constrained when trait covariances are strong such that the 139 



response to selection is determined largely by the direction of maximum trait covariation rather 140 

than the direction of selection (Figure 2A) (Björklund, 1996; Schluter, 1996).  When integration 141 

is strong and the direction of maximum trait covariation conflicts with the direction of selection, 142 

then the response to selection is weak. However, when phenotypic integration is strong and 143 

selection is aligned with the direction of maximum trait covariation, then the response to 144 

selection can be greater than in a population with no integration present (Figure 2B) (Björklund, 145 

1996). Last, when there is no covariance between traits under selection, the trait values of the 146 

populations can evolve independently (Figure 2C). Provided that adequate heritable trait 147 

variation is present in the population, this can benefit populations as their response to climate 148 

change can proceed unconstrained by trait covariation (Via & Lande, 1985).  149 



 150 

Figure 2. Hypothetical fitness landscapes for trait covariance that impedes (A) facilitates (B) or 151 

leaves response to selection unconstrained (C). Contour lines represent the topography of the 152 

fitness landscape with the top right corner representing the adaptive peak. 153 



P. mariana is well adapted to tolerate cold environments, it is one of the species which marks 154 

the northern tree line of Canada and is particularly well adapted to waterlogged, poorly drained 155 

and rich organic soils (Burns, 1990), which contrast with the warming and drying climate. 156 

However, this generalist species grows on a wide range of soil conditions and is present along 157 

the entire range of the boreal forest (Burns, 1990). It is thus unclear how this cold- and wet-158 

adapted species will persist in warmer and drier conditions that are expected to accompany 159 

climate change (Robert et al., 2024).  160 

Here I ask, how does selection on P. mariana change along a spatial climate gradient, and do 161 

different P. mariana populations have trait covariances that accelerate or impede response to 162 

selection in a warm and dry environment? In each of three common garden sites which span a 163 

spatial temperature and water availability gradient, I studied seven provenances from across P. 164 

mariana’s range. I first assess for each site the strength and direction of selection on a set of 165 

traits associated with plant response to temperature and drought and then I assess which of the 166 

seven provenances, if any, have higher potential for adaptive evolution in the warmest and driest 167 

site.  168 

 169 

METHODS 170 

STUDY SITES  171 

This research makes use of three sites from a range wide P. mariana provenance trial 172 

started in 1967 (Morgenstern and Kokocinski, 1976). Sites included in my research were selected 173 

based on the following criteria: sites containing the same planted provenances, sites including 174 

provenances that span as much of P. mariana’s range as possible, and sites which fall along a 175 

spatial temperature and water availability gradient.  176 



The three sites selected are located near Petawawa, Ontario (PET); Chapleau, Ontario 177 

(LAU); and Chibougamau, Quebec (CHI). Five provenances are common to all three sites and 178 

two provenances, (6856 and 6979) are common to PET and CHI only. The provenances included 179 

in this research span the southern latitudes of the boreal forest, from Newfoundland to Alberta 180 

(Figure 3). The sites selected fall along a spatial temperature and water availability gradient 181 

(Figure 4). Site climates were defined with BioSIM data using the yearly averages from 1980-182 

2020 (Fortin, 2022). 183 

The warmest and driest of the three sites, PET, is characterized by a mean annual 184 

temperature (MAT) of 4.7 ºC and a climate moisture index (CMI) of -1 (Table 1). The 185 

intermediate site, LAU, has moderate MAT (1.5 ºC) and CMI (9). The coldest and dampest site, 186 

CHI, is characterized by a MAT of -0.4 ºC and a CMI of 27. In addition to temperature and water 187 

availability, sites were characterized by soil water holding capacity (WHC), total annual 188 

precipitation (TAP), spacing between trees, and survival of provenances (Table 1).  189 

Each provenance trial was set up with at least three blocks. Within a block, 16 trees per 190 

provenance were planted in a 4x4 grid forming small plots with consistent spacing between the 191 

trees (Morgenstern and Kokocinski, 1976) (Figure 5). Spacing between trees differed among 192 

sites (Table 1).  193 



 194 

Figure 3. Location of each site (green) and provenance (purple) used in this study. Approximate 195 

range of the boreal forest shown in red.   196 

  197 

 198 

 199 



 200 

Figure 4. Visualization of the temperature (MAT) and water availability (CMI) between the sites 201 

used in this study. 202 

 203 



 204 

Figure 5. Representation of provenance trial experimental set up (Morgenstern & Kokocinski, 205 

1976). Numbers represent provenance IDs. Each provenance is planted once per block in a 4x4 206 

grid of 16 trees. 207 

  208 

 209 

 210 



Table 1. Table of site characteristics for PET, LAU and CHI.   211 

Characteristic  PET  LAU  CHI  

Mean Annual Temperature (ºC)  4.7  1.5  -0.4  

Climate Moisture Index   -0.9  9.0  27.2  

Total Annual Precipitation (mm)  841.6  842.3  975.5  

Water Holding Capacity (%)  77.7  78.1  62.4  

Spacing between trees (m)  1.8 x 1.8  1.8 x 1.8  2.4 x 3  

Survival  42 %  

(n = 336) 

65 % 

(n = 240) 

78 % 

(n = 672) 

 212 

GROWTH DATA  213 

Height data was collected by Natural Resources Canada in 2022 for PET, 2023 for LAU and 214 

2016 for CHI. The height of each individual tree was measured using a secant scale clinometer 215 

(Suunto, PM-5), commonly used in forestry to determine stand height. Relative growth rate 216 

(RGR; m/yr) over an individual’s lifetime was calculated as the height of the tree divided by the 217 

age at the time of measurement. 218 

TRAIT DATA  219 

Individual trees were sampled from at least three blocks at each site. Branch samples were 220 

collected from PET in July 2022 and May 2023 (n = 143), from LAU in July 2023 (n = 156) and 221 

from CHI in July 2022 (n = 132). Since I only considered fully mature needles and some samples 222 

were not yet mature at the time of collection, needles that emerged during the year of collection 223 

(yr 0) were not considered. For tree branch sampling, it is common practice to sample the most 224 



sun-exposed branches of a tree in order to standardize the light environment however, the height 225 

and geometry of many trees prevented the collection of branches from the top of the crown. 226 

Therefore, I standardized for branch position in the crown. Each sampling morning, branches 227 

containing at least four years of complete growth were cut from the bottom of the top third of 228 

foliar branches using a 13.7 m telescopic pole pruner (HV-245 Tel-O-Pole). To keep the 229 

branches hydrated, the cut ends were placed in florist tubes filled with water. The branches were 230 

then placed in plastic bags with a damp paper towel, and stored in a cooler with ice until time-231 

sensitive traits were measured indoors in the afternoon (Garnier et al., 2001).  232 

I measured 10 traits associated with tree response to temperature, water availability, or 233 

both. Three traits, Huber value (HV), water use efficiency (WUE) and needle carbon to nitrogen 234 

ratio (CN) were measured at the branch level. The other seven traits were measured for each of 235 

the four most recent years of mature growth. Branch level trait values were calculated from year-236 

level trait values by taking an abundance-weighted average. The relative abundance was 237 

calculated from dry biomass, with needle biomass for needle traits and twig biomass for twig 238 

traits. For example, the branch-level mean needle length (NL) was weighted by the total dry 239 

needle biomass for each year of growth and twig specific density (TSD) was weighted by the 240 

total dry twig biomass for each year of growth. Traits were classified by association with 241 

structure, photosynthesis, or water use in plants (Table 2).  242 

To characterize investment in structural support at the needle and branch levels, leaf dry matter 243 

content (LDMC; g/g) and twig specific density (TSD; g/cm3) were measured (Poorter et al., 244 

2010; Bartlett et al., 2012). The LDMC of 12 needles from each growth year was measured as 245 

needle dry mass divided by fresh mass, measured using analytical balances (10-4 g AG104 Metler 246 

Toledo from Switzerland, and 10-6 g XSR205 Metler Toledo, as needed). Needles were dried 247 



using a forced air oven at 60 ºC to a constant weight or for a minimum of 72 hours. To measure 248 

TSD, after removing the needles from the branch, the volume was measured for three fresh twigs 249 

per growth year. Since the twigs varied in size within a growth year, the three twigs were 250 

randomly sampled from a subset excluding the largest and smallest sizes. Twig fresh volume was 251 

measured using the water immersion method (Sukul et.al., 1993). After fresh measurements, the 252 

twigs were dried at 60 ºC to constant weight for at least 72 hours and dry weight for three twigs 253 

was measured using analytical balances (10-4 g AG104 Metler Toledo from Switzerland, and 10-6 254 

g XSR205 Metler Toledo, as needed). TSD was calculated for each of the three branches as twig 255 

dry mass (g) divided by twig fresh volume (cm3) and averaged. Additionally, total dry twig 256 

biomass was measured for each growth year and used for abundance-weighted trait averaging.  257 

Huber value (HV; mm/g), the ratio of sap-wood diameter to needle weight, was measured to 258 

characterize water supply per water demand at the branch level (Carter & White, 2009). Two 259 

perpendicular diameter measurements were taken at the base of the fourth oldest year of 260 

complete growth using electronic calipers (±0.01 cm, Series 500 ABSOLUTE Digimatic 261 

Caliper) and averaged. All needles were removed from the branch and dried at 60 ºC to constant 262 

weight. The total mass of needles for each branch was measured with the Mettler Toledo AG104 263 

Analytical Balance. A high value for HV indicates a liberal water supply per needle weight 264 

whereas a low value for HV reflects conservative water supply per needle weight. HV was 265 

calculated as branch base diameter (mm) divided by the dry mass of the needles supplied by that 266 

branch (g).   267 

To characterize water use and regulation at the needle level, water use efficiency (WUE; ‰) and 268 

stomatal density (SD; count/cm) were measured. To measure WUE, I used carbon isotope ratio 269 

(δ13C), which is commonly used to estimate intrinsic water use efficiency (Ma et al., 2023). 270 



During photosynthesis, 12CO2 is preferentially fixed over 13CO2 for various reasons, the main one 271 

being that the enzyme RuBisCO discriminates against 13CO2 and only binds it when 12CO2 is 272 

limited, which occurs when stomata are closed (Farquhar et al., 1982; Lambers et al., 2008). The 273 

ratio of 13C to 12C present in plant tissue, therefore reflects the amount of time leaves spent with 274 

their stomata closed, and δ13C gives the 13C isotope composition relative to the primary reference 275 

scale of Vienna Pee Dee Belemnite. Needles from all growth years were combined and ground 276 

into a fine powder using a ball mill grinder to ensure a homogenous mixture. Analysis of carbon 277 

isotopes was performed at the Environmental Isotope Laboratory at the University of Waterloo. 278 

The analysis for 13C isotope measurements was done by combustion conversion of sample 279 

material to gas through a 4010 Elemental Analyzer (Costech Instruments, Italy) coupled to a 280 

Delta Plus XL (Thermo-Finnigan, Germany) continuous flow isotope ratio mass spectrometer 281 

(CFIRMS). To determine the homogeneity of the ground needle samples, duplicate 282 

measurements were performed for 34 samples, spaced at regular intervals throughout the 283 

measurement process. To measure SD images of needle abaxial surface were taken using Leica 284 

EZ4 W stereo microscope at 35X magnification and the microscope imaging software LAS X for 285 

Life Sciences (Leica Microsystems, 2021). Since stomata were not clearly visible over the full 286 

length of the needles, the number of stomata along the maximum length possible was recorded 287 

along with stomata count using WinSeedle Software (Regent Instruments, 2020). 288 

Needle cooling (NC; ºC), the needle temperature relative to ambient temperature, was measured 289 

to assess needle thermal regulatory ability. Under the ‘limited leaf homeothermy’ hypothesis 290 

leaves buffer environmental variation by controlling internal leaf temperature to maintain the 291 

optimal temperature range for the photosynthesis reaction (Michaletz et al., 2015). These 292 

measurements were taken while the branches were secured in a florist tub full of water to 293 



maintain needle transpiration. Needle temperature was measured indoors, on-site, a few hours 294 

after sample collection, using a thermal camera, TCAM-300 (Infrared Camera INC, 2021). To 295 

validate the thermal camera’s measurements, a high accuracy temperature sensor (TS, ± 0.1 ºC, 296 

TMP117 High-Accuracy, Low-Power, Digital Temperature Sensor) was included in each image. 297 

The sensor plate of the TS was placed inside each thermal image and its temperature was 298 

recorded when each thermal picture was taken. The difference between the temperature recorded 299 

on the TS and the temperature of the sensor plate on the thermal camera was used as an 300 

adjustment for all temperature readings in each thermal image. Needle cooling was measured for 301 

each of the four most recent complete years of growth and was calculated as needle temperature 302 

minus ambient temperature.  303 

To characterize photosynthetic ability of the needles, the concentration of chlorophyll 304 

(CHL; mg/m2) was measured using a chlorophyll content meter: CCM-300 (Opti-Sciences). The 305 

CCM-300 uses the fluorescence ratio technique to measure total chlorophyll content (Gitelson et 306 

al., 1999). A few hours after sample collection, CHL was measured for healthy needles from 307 

each of the four most recent years of mature growth.   308 

Leaf mass per area (LMA; mg/cm3) represents the leaf level cost of light interception and in 309 

global interspecific comparisons is an important indicator of plant carbon-use strategies 310 

(Gutschick & Wiegel, 1988; Grime, 2001; Westoby et al., 2002). To measure needle fresh area 311 

(cm3), 12 needles from each of the four most recent years of complete growth were haphazardly 312 

selected and scanned using the STD4800 Scanner for WinRhizo and WinSeedle and area was 313 

measured using WinSeedle software (Regent Instruments, 2020). Needles were dried in a VWR 314 

Forced Air Incubator at 60 ºC to a constant weight for a minimum of 72 hours and needle dry 315 

weight was measured using analytical balances (10-4 g AG104 Metler Toledo from Switzerland, 316 



and 10-6 g XSR205 Metler Toledo, as needed). LMA was calculated for each growth year as the 317 

weight of the 12 needles over their area.  318 

Needle length (NL; mm) is an indicator of the size of the needle and affects a plant's light 319 

capture, water balance, and thermal stability (Perez-Harguindeguy et al., 2013). To measure NL 320 

needles were scanned using the STD4800 Scanner for WinRhizo and WinSeedle and the length 321 

of the needle was measured using WinSeedle software (Regent Instruments, 2020). NL was 322 

measured for 12 needles from each of the four most recent full years of growth and the average 323 

length of the needles was calculated for each growth year.  324 

  325 

 326 

 327 

 328 

 329 

 330 

 331 

 332 

 333 

 334 

 335 

 336 



Table 2. Traits measured, abbreviations, units, and associated physiological function(s).   337 

Trait  Unit  Function  

Leaf dry matter content (LDMC)  g g-1  Structural investment  

Twig specific density (TSD)  g cm-3  Structural investment  

Huber value (HV)  mm2 g-1  Water use and transport   

Water use efficiency (WUE)  ‰ Water use and transport   

Stomata density (SD)  count cm-1  Water use and transport  

Needle cooling ability (NC)  ºC  Photosynthesis   

Chlorophyll concentration (CHL)  mg m-2  Photosynthesis  

Needle carbon to nitrogen ratio (CN)  g g-1  Photosynthesis  

Leaf mass per area (LMA)  mg cm-3  Structure + Photosynthesis  

Needle length (NL)  mm  Structure + Photosynthesis + 

Water use and transport  

 338 

STATISTICAL ANALYSIS 339 

All statistical analyses were conducted in R version 4.4.0 (R Core Team, 2024). Two percent of 340 

all data was missing due to lost samples or measurement errors. In PET, 3% of the data was 341 

missing, in LAU, <1% of the data was missing and in Chibougamau, 3% of the data was 342 

missing. Missing values were imputed for each site using linear predictive models. Traits as 343 

predictors which yielded models with the highest predictive power for missing values were 344 



identified using the “dredge()” function from the “MuMIn” package. Data were only imputed 345 

when the prediction model R2 value was above 0.6. Otherwise, the missing values were left as 346 

NA. After imputation, there was less than 0.01% data missing from each site for sample sizes of 347 

n = 142 trees in PET, n = 151 trees in LAU, and n = 132 trees in CHI. 348 

To identify significant differences in survival among sites and among provenances within sites 349 

one-way ANOVAs were used. Due to missing provenances in LAU (6956 and 6979) a two-way 350 

ANOVA to accommodate both Site and Provenance as factors was not possible. Principal 351 

component analyses (PCAs) were conducted on trait data within each site using the “PCA()” 352 

function of the “FactoMineR” package to assess trait covariance strength and structure.  353 

Standardized selection gradients were measured for each site by regressing relativized RGR onto 354 

all 10 standardized traits and their two-way interactions using multiple linear regression models 355 

using the function “lme()” from the “nlme” package (Connor 1988). Traits were standardized by 356 

taking the z-scores for all trait values within each site. Additionally, RGR was relativized by 357 

dividing RGR values within a site by the mean RGR value for that site. In this method, the 358 

partial regression coefficients represent the strength and direction of selection, referred to as 359 

selection gradients (β) (Lande and Arnold, 1983). To control for the effect of different lineages, 360 

provenance was included as a random factor in each model.  361 

Differences in selection between the two most extreme sites, PET and CHI, were assessed 362 

using t-tests to determine statistical significance using the “tsum.test()” function from the 363 

“BDSA” library. Additionally, selection gradients that changed directionally with the climate 364 

gradient were interpreted as being driven by the climate gradient.  365 



In order to test whether trait integration was aligned with the direction of selection, 366 

significant selection gradients in PET were used to create performance surfaces (trait1 x trait2 x 367 

RGR) using the “geom_contour()” function in “ggplot” library. The performance surface is a 368 

topographic map of selection and allows us to visualize the peaks and valleys of performance in 369 

relation to traits. Smooth contour lines were generated using the “interp()” function from the 370 

“akima” library. This helped to remove noise from the data so trends in the performance surface 371 

could be better identified. For each provenance, significant correlations between the residuals of 372 

the traits were determined using the Pearson Correlation Coefficient from the “cor.test()” 373 

function from the “stats” library. The residuals of the traits from the regression models were 374 

collected using the “residuals()” function from the “stats” library. Significant correlations 375 

between phenotypic traits were later assessed to determine if integration might facilitate a 376 

provenance’s response to selection.  377 

 378 

 379 

 380 

 381 

RESULTS 382 

SURVIVAL  383 

Average survival was significantly lower in Petawawa (42%) than in the other two sites 384 

(LAU: 65%, CHI: 69%) (Figure 6). In terms of differences in provenance survival, in Petawawa 385 

there was no significant difference among the survival of provenances (One-way ANOVA, 386 

F(6,14)= 1.113, p = 0.403). However, in Chapleau and Chibougamau the survival of some 387 



provenances differed. In Chapleau, it was significantly lower in provenance 6907 (39.58%) than 388 

in provenance 6855 and 6859 (83.33% and 79.17% respectively; One-way ANOVA, F(4,10) = 389 

3.491, p = 0.0495). In Chibougamau provenance 6979 had significantly lower average survival 390 

(45.00%) than provenances 6855, 6856 and 6907 (83.75%, 77.50%, and 77.50% respectively) 391 

(One-way ANOVA, F(6,28) = 2.492, p = 0.0466).  392 



 393 

 394 

Figure 6. Average percent survival of individual trees in each of the three study sites. Red star 395 

represents significantly different site (PET: n = 336, LAU: n = 240, CHI: n = 672).   396 



TRAIT SELECTION ALONG THE CLIMATE GRADIENT  397 

All 10 traits measured experienced significant selection in at least one site, either alone or in 398 

interaction with another trait, hereafter referred to a trait interaction and represented by 399 

trait1*trait2 (Figure 7). Many traits were under selection, with a total of 17 significant selection 400 

gradients across all 3 sites. Across sites, most of the selection gradients (β) were for trait 401 

interactions (12 out of 17). In Petawawa, most β were positive (6 out of 7) and in Chibougamau 402 

most β were negative (7 out of 9). Here a positive trait interaction β indicates that individuals 403 

with high performance are associated with high values of both traits. For example, in PET high 404 

CHL is associated with high performance only in individuals that also have high LDMC. A 405 

negative trait interaction β indicates that individuals with high performance are associated with a 406 

high value in the first trait combined with low values in the second trait, and vice-versa (low 407 

value in the first trait combined with a high trait value for the second trait). For example, in PET 408 

individuals with high performance either had high NL and low CN values, or low NL and high 409 

CN values. The traits and trait interactions under selection differed among sites. In Petawawa, 410 

three traits were under significant or marginally significant selection: WUE (β = 0.044, p <0.01) 411 

CN (β = 0.029, p = 0.10) and NL (β = 0.028, p = 0.17). Four trait interactions were under 412 

significant or marginally significant selection: WUE*HV (β = 0.025, p = 0.01) CHL*LDMC (β 413 

= 0.023, p = 0.06), CN*HV (β = 0.021, p = 0.06) and NL*CN (β = -0.022, p = 0.01) (Figure 7). 414 

In Chapleau selection only acted on LC*LMA (β = -0.037, p = 0.04) (Figure 7). In CHI only one 415 

trait was significantly under selection TSD (β = -0.068, p = 0.03) and 8 trait interactions were 416 

under significant or marginally significant selection: CHL*HV (β = -0.097, p = 0.02), CHL*TSD 417 

(β = 0.083, p = 0.05), NL*LC (β = -0.069, p = 0.03), NL*SD (β = -0.087, p = 0.05), LC*TSD (β 418 

= 0.055, p = 0.03), WUE*HV (β = -0.068, p = 0.03) and WUE*TSD (β = -0.080, p = 0.03) and 419 

LDMC*HV (β = -0.068, p = 0.07). 420 



 421 

Figure 7. Significant and marginally significant selection gradients (β) for each of the three sites. 422 

Error bars represent standard error.   423 



DIFFERENCES IN SELECTION ASSOCIATED WITH CLIMATE  424 

To identify differences associated with climate, I identified the β changing directionally with 425 

the climate gradient among the three sites. Here I make the assumption that changes that occur 426 

directionally along our climate gradient are likely due to climate. While I acknowledge that there 427 

are many factors that vary among natural environments, directional changes along our gradient 428 

are most likely due to differences in climate, because the other factors known to differ among the 429 

sites do not differ directionally (Table 1). Selection gradients in Petawawa that varied 430 

directionally with climate are WUE, CN, WUE*HV, and CN*HV (Figure 8). The selection 431 

gradients for WUE and WUE*HV significantly differed between PET and CHI (two-sample t-432 

test, p = 0.046; two-sample t-test, p = 0.025, respectively; Figure 8). The selection gradients for 433 

CN and CN*HV were marginally different between PET and CHI (two-sample t-test, p = 0.060, 434 

p = 0.092; Figure 8) 435 



 436 

Figure 8. 95% Confidence intervals of βs in each site for βs under significant selection in 437 

Petawawa.  438 



PHENOTYPIC INTEGRATION IN P. MARIANA PROVENANCES 439 

In general, traits showed weak covariation. For the experiment wide PCA on trait values, 440 

together the first two principal components accounted for only 34.1% of total trait variation 441 

(Figure 9). The site-specific PCAs for PET and LAU are different from each other and from the 442 

experiment wide PCA. The amount of variance explained by the first two axes of the site-443 

specific PCA remained low (PET: 32.5%; LAU 37.5%; CHI: 41.6%) (see Supplementary 444 

Information Appendix S1 Table S3 for loadings).  445 



 446 

Figure 9. PCA of trait values among all the sites as well as for individual sites. Tell us what the 447 

circles mean. PCAs of trait values among all sites (A), in PET (B), in LAU (C) and in CHI (D).  448 

 449 

Most traits under selection in PET are not correlated, except for three trait pairs with 450 

significant covariances in one or two provenances: WUE and NL in 6804, CN and HV in 6979 451 



and 6855. The covariance between WUE and NL in provenance 6804 is largely perpendicular to 452 

the direction of selection (Pearson’s correlation, t = -0.194, df = 20, p = 0.021, r = -0.53, Figure 453 

10A). Similarly, the covariances between needle CN and HV for provenances 6855 and 6979 are 454 

largely perpendicular to the direction of selection (Pearson’s correlation, t = -2.75, df = 20, p = 455 

0.012, r = -0.52, Figure 10C & D) (Pearson’s correlation, t = -2.30, df = 11, p = 0.042, r = -0.57).  456 

 457 



Figure 10. Significant intra-provenance trait covariances in traits under climate-linked selection. 458 

DISCUSSION  459 

The differences in climate among the sites in this study were large enough to adequately 460 

detect differences in selection. Further, the directional change in selection along the climate 461 

gradient are consistent with the expectation that selection at each site is partly driven by climate 462 

(Linhart & Grant, 1996). The lower survival of P. mariana individuals in the warmer and drier 463 

site (PET), suggests that the climate at his site is stressful for the trees and leads to stronger 464 

selection than in cooler climates. Additionally, the traits under selection in each site showed 465 

significant differences between selection gradients in the warmest site (PET) and the coldest site 466 

(CHI). These changes in selection on traits in these two sites confirm that the climate gradient 467 

used in this research is broad enough to register the influence of climate on patterns of selection.  468 

P. mariana experienced lower survival in the hottest and driest site, indicating that the fitness 469 

of these trees is likely lower in a warm and dry environment. The low survival in a warm and dry 470 

environment provides insight into the strength of selection on the full phenotype before selection 471 

was measured for individual traits. In principle, within a generation, the adaptive plasticity of a 472 

population could help to maintain survival and thus fitness in the face of climate change 473 

(Bradshaw, 1965; C. D. Schlichting, 1986; Sultan, 1987; Van Tienderen, 1991; C. Schlichting, 474 

1998; Kingsolver et al., 2001). Although the provenances did exhibit trait plasticity (Figure S1), 475 

the low survival rate in Petawawa indicates that the adaptive plasticity of the P. mariana 476 

provenances to hot and dry environments is insufficient to maintain survival at levels similar to 477 

those in cooler climates. If findings from this spatial climate gradient apply to the temporal 478 

effects of climate change on P. mariana in general, this will likely result in a lower abundance of 479 

P. mariana individuals as climates increase in temperature and decrease in water availability.  480 



First, the lower survival in the warmer and drier site resulted in weaker selection gradients in 481 

Petawawa than at the other sites. Weak selection gradients despite strong selection can occur 482 

because of low variation in trait values (resulting in survivor bias) (Mitchell-Olds & Shaw, 1987; 483 

Wade & Kalisz, 1990). In other words, mortality of individuals led to an underestimate of the 484 

selection gradients.  Further, since biomass is often allocated in priority to the most limiting 485 

resource a common response to water limitation is a shift in biomass allocation to belowground 486 

growth (Poorter et al., 2012). If belowground allocation increases plastically with water 487 

limitation, then height-based RGR would become an increasingly poor indicator of performance 488 

in increasingly water-limited sites. Thus, the weaker selection gradients in PET could be an 489 

artifact of aboveground relative growth rate becoming an increasingly imperfect indicator of 490 

performance at the drier site.  491 

The magnitude of selection in this study is smaller than the values from the body of 492 

literature. Selection gradients for natural populations typically range from negative one to one, 493 

with a mean of 0.22 and median of 0.16 (Kingsolver et al., 2001), whereas the largest selection 494 

gradient in this study is 0.07 in CHI and the smallest is 0.021 in PET. To contrast this, 495 

experimental studies have been shown to detect stronger selection than observational studies 496 

since they can impose more extreme environmental conditions than are naturally present (Caruso 497 

et al., 2017). As such the pressures faced in the natural environment may be less severe resulting 498 

in lower selection pressures. However, selection in the present study was lower than what is 499 

typically observed in natural environments. One possible explanation is that all the provenances 500 

used in this study originated from the southern latitudes of P. mariana’s range, where 501 

environmental conditions may not differ drastically from those experienced in previous 502 

generations. As a result, the fitness of the present individuals may have been somewhat impacted 503 



but not to a large extent, leading to relatively moderate fitness levels for surviving individuals. 504 

This aligns with findings that lower fitness tends to result in larger selection gradients (Caruso et 505 

al., 2017). Therefore, the low selection gradients in this study indicate that the fitness of 506 

surviving individuals is high compared to other selection studies in the literature. Again, this is 507 

likely due to the mortality in the experiments, removing low performing individuals before this 508 

study took place.  509 

Response to selection for the P. mariana provenances under study is largely 510 

unconstrained by phenotypic covariance. Phenotypic integration is unlikely to hinder or facilitate 511 

response to selection of P. mariana in warmer climates. Not only is the overall strength of trait 512 

integration weak, as shown by the PCAs performed within site, but very few of the provenances 513 

showed intra-provenance covariation for the four climate-linked selection gradients. A corollary 514 

of the lack of trait integration in all provenances is that their integration does not differ, and none 515 

of the studied provenances show higher adaptive potential compared to others. The three 516 

instances where trait covariation was present in fact showed integration that would slow down 517 

evolutionary response to selection. However, given the rarity of these instances, overall, I do not 518 

expect integration to play a meaningful role in black spruce response to selection from warming 519 

climates. Over the long term given unknown future environmental change, low integration is 520 

beneficial as is provides more flexibility for the phenotype to respond to selection. 521 

REFERENCES 522 

Ahrens, C. W., Andrew, M. E., Mazanec, R. A., Ruthrof, K. X., Challis, A., Hardy, G., Byrne, 523 

M., Tissue, D. T., & Rymer, P. D. (2020). Plant functional traits differ in adaptability and 524 

are predicted to be differentially affected by climate change. Ecology and Evolution, 525 

10(1), 232–248. https://doi.org/10.1002/ece3.5890 526 



Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., 527 

Kitzberger, T., Rigling, A., Breshears, D. D., Hogg, E. H. (Ted), Gonzalez, P., Fensham, 528 

R., Zhang, Z., Castro, J., Demidova, N., Lim, J.-H., Allard, G., Running, S. W., Semerci, 529 

A., & Cobb, N. (2010). A global overview of drought and heat-induced tree mortality 530 

reveals emerging climate change risks for forests. Forest Ecology and Management, 531 

259(4), 660–684. https://doi.org/10.1016/j.foreco.2009.09.001 532 

Andrés-Hernández, A. R., Luna-Vega, I., & Rodríguez-Ramírez, E. C. (2023). Functional traits 533 

and adaptive capacity of cloud forest Ternstroemia species in response to climatic 534 

variation. Flora, 307, 152383. https://doi.org/10.1016/j.flora.2023.152383 535 

Aubin, I., Boisvert-Marsh, L., Kebli, H., McKenney, D., Pedlar, J., Lawrence, K., Hogg, E. H., 536 

Boulanger, Y., Gauthier, S., & Ste-Marie, C. (2018). Tree vulnerability to climate 537 

change: Improving exposure-based assessments using traits as indicators of sensitivity. 538 

Ecosphere, 9(2), e02108. https://doi.org/10.1002/ecs2.2108 539 

Aubin, I., Munson, A. D., Cardou, F., Burton, P. J., Isabel, N., Pedlar, J. H., Paquette, A., Taylor, 540 

A. R., Delagrange, S., Kebli, H., Messier, C., Shipley, B., Valladares, F., Kattge, J., 541 

Boisvert-Marsh, L., & McKenney, D. (2016). Traits to stay, traits to move: A review of 542 

functional traits to assess sensitivity and adaptive capacity of temperate and boreal trees 543 

to climate change. Environmental Reviews, 24(2), 164–186. https://doi.org/10.1139/er-544 

2015-0072 545 

Barrett, R. D. H., & Schluter, D. (2008). Adaptation from standing genetic variation. Trends in 546 

Ecology & Evolution, 23(1), 38–44. https://doi.org/10.1016/j.tree.2007.09.008 547 

Bartlett, M. K., Scoffoni, C., Ardy, R., Zhang, Y., Sun, S., Cao, K., & Sack, L. (2012). Rapid 548 

determination of comparative drought tolerance traits: Using an osmometer to predict 549 



turgor loss point. Methods in Ecology and Evolution, 3(5), 880–888. 550 

https://doi.org/10.1111/j.2041-210X.2012.00230.x 551 

Björklund, M. (1996). The importance of evolutionary constraints in ecological time scales. 552 

Evolutionary Ecology, 10(4), 423–431. https://doi.org/10.1007/BF01237727 553 

Blasini, D., Koepke, D., Grady, K., Allan, G., Gehring, C., Whitham, T., Cushman, S., & 554 

Hultine, K. (2021). Adaptive trait syndromes along multiple economic spectra define cold 555 

and warm adapted ecotypes in a widely distributed foundation tree species. Journal of 556 

Ecology, 109(3), 1298–1318. https://doi.org/10.1111/1365-2745.13557 557 

Boisvert-Marsh, L., Royer-Tardif, S., Nolet, P., Doyon, F., & Aubin, I. (2020). Using a Trait-558 

Based Approach to Compare Tree Species Sensitivity to Climate Change Stressors in 559 

Eastern Canada and Inform Adaptation Practices. Forests, 11(9), Article 9. 560 

https://doi.org/10.3390/f11090989 561 

Boucher, D., Gauthier, S., Thiffault, N., Marchand, W., Girardin, M., & Urli, M. (2020). How 562 

climate change might affect tree regeneration following fire at northern latitudes: A 563 

review. New Forests, 51(4), 543–571. https://doi.org/10.1007/s11056-019-09745-6 564 

Bradshaw, A. D. (1965). Evolutionary Significance of Phenotypic Plasticity in Plants. In E. W. 565 

Caspari & J. M. Thoday (Eds.), Advances in Genetics (Vol. 13, pp. 115–155). Academic 566 

Press. https://doi.org/10.1016/S0065-2660(08)60048-6 567 

Brecka, A., Shahi, C., & Chen, H. (2018). Climate change impacts on boreal forest timber 568 

supply. Forest Policy and Economics, 92, 11–21. 569 

https://doi.org/10.1016/j.forpol.2018.03.010 570 

Burns, R. M. (1990). Silvics of North America. U.S. Department of Agriculture, Forest Service. 571 



Carter, J. L., & White, D. A. (2009). Plasticity in the Huber value contributes to homeostasis in 572 

leaf water relations of a mallee Eucalypt with variation to groundwater depth. Tree 573 

Physiology, 29(11), 1407–1418. https://doi.org/10.1093/treephys/tpp076 574 

Caruso, C. M., Martin, R. A., Sletvold, N., Morrissey, M. B., Wade, M. J., Augustine, K. E., 575 

Carlson, S. M., MacColl, A. D. C., Siepielski, A. M., & Kingsolver, J. G. (2017). What 576 

Are the Environmental Determinants of Phenotypic Selection? A Meta-analysis of 577 

Experimental Studies. The American Naturalist, 190(3), 363–376. 578 

https://doi.org/10.1086/692760 579 

Cayan, D. R., Kammerdiener, S. A., Dettinger, M. D., Caprio, J. M., & Peterson, D. H. (2001). 580 

Changes in the Onset of Spring in the Western United States. Bulletin of the American 581 

Meteorological Society, 82(3), 399–415. 582 

Chagnon, C., Wotherspoon, A. R., & Achim, A. (2022). Deciphering the black spruce response 583 

to climate variation across eastern Canada using a meta-analysis approach. Forest 584 

Ecology and Management, 520, 120375. https://doi.org/10.1016/j.foreco.2022.120375 585 

Challis, A., Blackman, C., Ahrens, C., Medlyn, B., Rymer, P., & Tissue, D. (2022). Adaptive 586 

plasticity in plant traits increases time to hydraulic failure under drought in a foundation 587 

tree. Tree Physiology, 42(4), 708–721. https://doi.org/10.1093/treephys/tpab096 588 

Choat, B., Brodribb, T. J., Brodersen, C. R., Duursma, R. A., López, R., & Medlyn, B. E. (2018). 589 

Triggers of tree mortality under drought. Nature, 558(7711), 531–539. 590 

https://doi.org/10.1038/s41586-018-0240-x 591 

Choat, B., Jansen, S., Brodribb, T. J., Cochard, H., Delzon, S., Bhaskar, R., Bucci, S. J., Feild, T. 592 

S., Gleason, S. M., Hacke, U. G., Jacobsen, A. L., Lens, F., Maherali, H., Martínez-593 

Vilalta, J., Mayr, S., Mencuccini, M., Mitchell, P. J., Nardini, A., Pittermann, J., … 594 



Zanne, A. E. (2012). Global convergence in the vulnerability of forests to drought. 595 

Nature, 491(7426), Article 7426. https://doi.org/10.1038/nature11688 596 

de Lafontaine, G., Napier, J. D., Petit, R. J., & Hu, F. S. (2018). Invoking adaptation to decipher 597 

the genetic legacy of past climate change. Ecology, 99(7), 1530–1546. 598 

Farquhar, G., O’Leary, M. H. O., & Berry, J. (1982). On the relationship between carbon isotope 599 

discrimination and the intercellular carbon dioxide concentration in leaves. Australian 600 

Journal of Plant Physiology, 9, 121–137. 601 

Gamache, I., & Payette, S. (2004). Height growth response of tree line black spruce to recent 602 

climate warming across the forest-tundra of eastern Canada. Journal of Ecology, 92(5), 603 

835–845. https://doi.org/10.1111/j.0022-0477.2004.00913.x 604 

Garnier, E., Shipley, B., Roumet, C., & Laurent, G. (2001). A standardized protocol for the 605 

determination of specific leaf area and leaf dry matter content. Functional Ecology, 606 

15(5), 688–695. https://doi.org/10.1046/j.0269-8463.2001.00563.x 607 

Girardin, M. P., Hogg, E. H., Bernier, P. Y., Kurz, W. A., Guo, X. J., & Cyr, G. (2016). Negative 608 

impacts of high temperatures on growth of black spruce forests intensify with the 609 

anticipated climate warming. Global Change Biology, 22(2), 627–643. 610 

https://doi.org/10.1111/gcb.13072 611 

Grime, J. (2001). Plant Strategies, Vegetation Processes, and Ecosystem Properties. In Biological 612 

Conservation—Biol Conserv (Vol. 107). https://doi.org/10.1016/S0006-3207(02)00055-1 613 

Gutschick, V. P., & Wiegel, F. W. (1988). Optimizing the Canopy Photosynthetic Rate by 614 

Patterns of Investment in Specific Leaf Mass. The American Naturalist, 132(1), 67–86. 615 

https://doi.org/10.1086/284838 616 



Hogg, E. (Ted), Brandt, J. P., & Kochtubajda, B. (2005). Factors affecting interannual variation 617 

in growth of western Canadian aspen forests during 1951-2000. Canadian Journal of 618 

Forest Research, 35(3), 610–622. https://doi.org/10.1139/x04-211 619 

Hopkins, W.G. and Hüner, N.P. (2004) Introduction to Plant Physiology. 3rd Edition, John 620 

Wiley & Sons, Inc, Hoboken. - References—Scientific Research Publishing. (n.d.). 621 

Retrieved September 17, 2024, from 622 

https://www.scirp.org/reference/referencespapers?referenceid=1590176 623 

Iverson, L. R., Schwartz, M. W., & Prasad, A. M. (2004). How Fast and Far Might Tree Species 624 

Migrate in the Eastern United States Due to Climate Change? Global Ecology and 625 

Biogeography, 13(3), 209–219. 626 

Kaulesar Sukul, D. M., den Hoed, P. T., Johannes, E. J., van Dolder, R., & Benda, E. (1993). 627 

Direct and indirect methods for the quantification of leg volume: Comparison between 628 

water displacement volumetry, the disk model method and the frustum sign model 629 

method, using the correlation coefficient and the limits of agreement. Journal of 630 

Biomedical Engineering, 15(6), 477–480. https://doi.org/10.1016/0141-5425(93)90062-4 631 

Kimball, J. S., McDonald, K. C., Running, S. W., & Frolking, S. E. (2004). Satellite radar remote 632 

sensing of seasonal growing seasons for boreal and subalpine evergreen forests. Remote 633 

Sensing of Environment, 90(2), 243–258. https://doi.org/10.1016/j.rse.2004.01.002 634 

Kingsolver, J. G., Hoekstra, H. E., Hoekstra, J. M., Berrigan, D., Vignieri, S. N., Hill, C. E., 635 

Hoang, A., Gibert, P., Beerli, P., & Travis, E. J. (2001). The Strength of Phenotypic 636 

Selection in Natural Populations. The American Naturalist, 157(3), 245–261. 637 

https://doi.org/10.1086/319193 638 



Lambers, H., Raven, J. A., Shaver, G. R., & Smith, S. E. (2008). Plant nutrient-acquisition 639 

strategies change with soil age. Trends in Ecology & Evolution, 23(2), 95–103. 640 

https://doi.org/10.1016/j.tree.2007.10.008 641 

Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., Seidl, R., 642 

Delzon, S., Corona, P., Kolström, M., Lexer, M. J., & Marchetti, M. (2010). Climate 643 

change impacts, adaptive capacity, and vulnerability of European forest ecosystems. 644 

Forest Ecology and Management, 259(4), 698–709. 645 

https://doi.org/10.1016/j.foreco.2009.09.023 646 

Linhart, Y. B., & Grant, M. C. (1996). Evolutionary significance of local genetic differentiation 647 

in plants. Annual Review of Ecology, Evolution, and Systematics, 27(Volume 27, 1996), 648 

237–277. https://doi.org/10.1146/annurev.ecolsys.27.1.237 649 

Malcolm, J. R., Markham, A., Neilson, R. P., & Garaci, M. (2002). Estimated migration rates 650 

under scenarios of global climate change. Journal of Biogeography, 29(7), 835–849. 651 

https://doi.org/10.1046/j.1365-2699.2002.00702.x 652 

McDowell, N. G., Allen, C. D., Anderson-Teixeira, K., Aukema, B. H., Bond-Lamberty, B., 653 

Chini, L., Clark, J. S., Dietze, M., Grossiord, C., Hanbury-Brown, A., Hurtt, G. C., 654 

Jackson, R. B., Johnson, D. J., Kueppers, L., Lichstein, J. W., Ogle, K., Poulter, B., Pugh, 655 

T. A. M., Seidl, R., … Xu, C. (2020). Pervasive shifts in forest dynamics in a changing 656 

world. Science, 368(6494), eaaz9463. https://doi.org/10.1126/science.aaz9463 657 

Michaletz, S. T., Weiser, M. D., Zhou, J., Kaspari, M., Helliker, B. R., & Enquist, B. J. (2015). 658 

Plant Thermoregulation: Energetics, Trait–Environment Interactions, and Carbon 659 

Economics. Trends in Ecology & Evolution, 30(12), 714–724. 660 

https://doi.org/10.1016/j.tree.2015.09.006 661 



Mitchell-Olds, T., & Shaw, R. G. (1987). Regression Analysis of Natural Selection: Statistical 662 

Inference and Biological Interpretation. Evolution, 41(6), 1149–1161. 663 

https://doi.org/10.1111/j.1558-5646.1987.tb02457.x 664 

Morgenstern, E. K., & Kokocinski, G. H. (1976). Range-wide, cooperative black spruce 665 

provenance study, Morgenstern and Kokocinski, 1976 (Special Joint Report 2). 666 

Environment Canada. 667 

Münchinger, I. K., Hajek, P., Akdogan, B., Caicoya, A. T., & Kunert, N. (2023). Leaf thermal 668 

tolerance and sensitivity of temperate tree species are correlated with leaf physiological 669 

and functional drought resistance traits. Journal of Forestry Research, 34(1), 63–76. 670 

https://doi.org/10.1007/s11676-022-01594-y 671 

Peng, C., Ma, Z., Lei, X., Zhu, Q., Chen, H., Wang, W., Liu, S., Li, W., Fang, X., & Zhou, X. 672 

(2011). A drought-induced pervasive increase in tree mortality across Canada’s boreal 673 

forests. Nature Climate Change, 1(9), 467–471. https://doi.org/10.1038/nclimate1293 674 

Perez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-675 

Harte, M. S., Cornwell, W. K., Craine, J. M., Gurvich, D. E., Urcelay, C., Veneklaas, E. 676 

J., Reich, P. B., Poorter, L., Wright, I. J., Ray, P., Enrico, L., Pausas, J. G., de Vos, A. C., 677 

… Cornelissen, J. H. C. (2013). New handbook for standardised measurement of plant 678 

functional traits worldwide. https://doi.org/10.1071/BT12225 679 

Poorter, H., Niklas, K. J., Reich, P. B., Oleksyn, J., Poot, P., & Mommer, L. (2012). Biomass 680 

allocation to leaves, stems and roots: Meta-analyses of interspecific variation and 681 

environmental control. New Phytologist, 193(1), 30–50. https://doi.org/10.1111/j.1469-682 

8137.2011.03952.x 683 



Poorter, L., McDonald, I., Alarcón, A., Fichtler, E., Licona, J.-C., Peña-Claros, M., Sterck, F., 684 

Villegas, Z., & Sass-Klaassen, U. (2010). The importance of wood traits and hydraulic 685 

conductance for the performance and life history strategies of 42 rainforest tree species. 686 

New Phytologist, 185(2), 481–492. https://doi.org/10.1111/j.1469-8137.2009.03092.x 687 

Robert, E., Lenz, P., Bergeron, Y., de Lafontaine, G., Bouriaud, O., Isabel, N., & Girardin, M. 688 

(2024). Future carbon sequestration potential in a widespread transcontinental boreal tree 689 

species: Standing genetic variation matters! Global Change Biology, 30(6). 690 

https://doi.org/10.1111/gcb.17347 691 

Royer-Tardif, S., Boisvert-Marsh, L., Godbout, J., Isabel, N., & Aubin, I. (2021). Finding 692 

common ground: Toward comparable indicators of adaptive capacity of tree species to a 693 

changing climate. Ecology and Evolution, 11(19), 13081–13100. 694 

https://doi.org/10.1002/ece3.8024 695 

Schlichting, C. D. (1986). The evolution of phenotypic plasticity in plants. Annual Review of 696 

Ecology, Evolution, and Systematics, 17(Volume 17,), 667–693. 697 

https://doi.org/10.1146/annurev.es.17.110186.003315 698 

Schlichting, C. (with Pigliucci, M.). (1998). Phenotypic evolution: A reaction norm perspective. 699 

Sinauer. 700 

Schluter, D. (1996). Adaptive Radiation Along Genetic Lines of Least Resistance. Evolution, 701 

50(5), 1766–1774. https://doi.org/10.2307/2410734 702 

Shaw, J. D., Steed, B. E., & DeBlander, L. T. (2005). Forest Inventory and Analysis (FIA) 703 

Annual Inventory Answers the Question: What Is Happening to Pinyon-Juniper 704 

Woodlands? Journal of Forestry, 103(6), 280–285. https://doi.org/10.1093/jof/103.6.280 705 



Sniderhan, A. E., Mamet, S. D., & Baltzer, J. L. (2021). Non-uniform growth dynamics of a 706 

dominant boreal tree species (Picea mariana) in the face of rapid climate change. 707 

Canadian Journal of Forest Research, 51(4), 565–572. https://doi.org/10.1139/cjfr-2020-708 

0188 709 

Sultan, S. E. (1987). Evolutionary Implications of Phenotypic Plasticity in Plants. In M. K. 710 

Hecht, B. Wallace, & G. T. Prance (Eds.), Evolutionary Biology: Volume 21 (pp. 127–711 

178). Springer US. https://doi.org/10.1007/978-1-4615-6986-2_7 712 

Van Tienderen, P. H. (1991). Evolution of Generalists and Specialist in Spatially Heterogeneous 713 

Environments. Evolution, 45(6), 1317–1331. https://doi.org/10.2307/2409882 714 

Via, S., & Lande, R. (1985). Genotype-environment interaction and the evolution of phenotypic 715 

plasticity. Evolution, 39(3), 505–522. https://doi.org/10.1111/j.1558-716 

5646.1985.tb00391.x 717 

Wade, M. J., & Kalisz, S. (1990). The Causes of Natural Selection. Evolution, 44(8), 1947–1955. 718 

https://doi.org/10.1111/j.1558-5646.1990.tb04301.x 719 

Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A., & Wright, I. J. (2002). Plant Ecological 720 

Strategies: Some Leading Dimensions of Variation Between Species. Annual Review of 721 

Ecology, Evolution, and Systematics, 33(Volume 33, 2002), 125–159. 722 

https://doi.org/10.1146/annurev.ecolsys.33.010802.150452 723 


