1 Title

Environmental RNA mitigates fish ghosts related to fish
feeds for aquaculture in molecular ecological survey in a
bay.

5

6 Authors

- 7 Kaede Miyata^{1#}, Yasuaki Inoue^{1#}, Natsumi Kitazaki², Keisuke Nakane², Fumihito Kato³,
- 8 Hiroyuki Konishi², Masayuki Yamane¹, Koji Mine², Hiroshi Honda¹
- 9 ¹*R&D Safety Science Research, Kao Corporation, 2606 Akabane, Ichikai-Machi, Haga-*

- ¹¹ ² R&D Material Science Research, Kao Corporation, 1334 Minato, Wakayama-shi,
- 12 Wakayama 640-8580, Japan
- ³ Wakayama Prefectural Fisheries Experimental Station, 1557-20 Kushimoto, Kushimoto,
- 14 Higashimuro, Wakayama 649-3503, Japan
- 15
- 16 #co-first author
- 17 Corresponding authors: Kaede Miyata (miyata.kaede@kao.com) and Hiroshi Honda
- 18 (<u>honda.hiroshi@kao.com</u>)

¹⁰ Gun, Tochigi321-3497, Japan

20	Abstract
----	----------

The use of environmental DNA for molecular ecological surveys has become widely 21 22 utilized in ecological assessments of various water environments, from rivers to coastal 23 and marine areas. However, it is important to consider the scenarios of potential 24 contamination of environmental nucleic acids in interpreting the results. In this study, we analyzed the fish species present in the feed that may affect surveys near aquaculture 25 facilities and fish processing plants using metabarcoding analysis of environmental 26 27 DNA/RNA, and simultaneously evaluated whether the fish species present in the feed used for aquaculture in a heavily cultivated bay could be detected through metabarcoding 28 analysis, thus evaluating whether fish species present in the feed could be detected in 29 30 ecological surveys in the marine environment. A total 51 fish species (DNA: 46, RNA: 31) were detected in three type of fish feeds; detected species in DNA were more than 31 32 those in RNA and common species that detected in both of feeds and water samples in the bay is remarkably more in eDNA than eRNA. Moreover, the number of those species 33 34 detected in eDNA tended to be maintained at a greater distance from the fishpond where 35 they originated, compared to eRNA. Therefore, we conclude that environmental RNA is useful for fish ecosystem surveys in bays contaminated by fish feed because of the lower 36

37	content of RNA in the samples compared to DNA and because it is less easily detected
38	and diffused in the environment.
39	
40	Keywords: environmental RNA, false positives, fish feed, aquaculture, coastal area

42 Graphical Abstract

1. Introduction

51	BIOLOGICAL DIVERSITY (CBD), 2022; Tickner et al., 2020) as well as the Sustainable
52	Development Goals (SDGs) related to conserving marine biodiversity. However, a critical
53	challenge in the use of eDNA is the potential for false positives. This issue arises when
54	DNA from deceased organisms, such as those found in wastewater, is mistakenly detected
55	as evidence of living species in the surveyed environment (Inoue et al., 2023b; Xiong et
56	al., 2024). Therefore, it is essential to consider scenarios of nucleic acid contamination
57	when interpreting eDNA survey results.
58	

59 Coastal bay areas, with their complex ecosystems and proximity to human activities, are 60 particularly susceptible to various forms of contamination. These areas can be heavily influenced by chemical and pharmaceutical pollutants from domestic and industrial 61 62 wastewater, recreational activities, and sediment runoff from construction (Micella et al., 2024; Vikas and Dwarakish, 2015). Bays are thus critical sites for monitoring chemical 63 64 pollution impacts under the Nature Positive framework. However, this susceptibility also poses significant challenges for eDNA-based surveys. Fish nucleic acids may enter the 65 66 bay through domestic waste (Inoue et al., 2023b), fish processing plant effluents, and 67 aquaculture operations. Notably, fish feeds used in aquaculture can introduce extraneous fish nucleic acids into the environment, potentially compromising the accuracy of eDNA 68

69 surveys. Despite its importance, there has been little research on the impact of fish feed 70 on false positives in eDNA surveys. Therefore, it is necessary to gather foundational information on the nucleic acids present in fish feed and analyze their distribution within 71 72 a bay as a case study.

73

74 One promising approach to mitigate false positives in eDNA surveys is the use of environmental RNA (eRNA) (Cristescu, 2019; Yates et al., 2021). Unlike DNA, RNA 75 degrades more rapidly, making it less likely to persist in the environment and thus 76 77 reducing the risk of detecting non-living sources. Studies have shown that eRNA can yield 78 higher positive detection rates (An et al., 2023; Li et al., 2024; Miyata et al., 2022, 2021) 79 and that DNA concentrations in wastewater are significantly higher than RNA concentrations (Inoue et al., 2023b). Consequently, the amount of RNA from fish feed in 80 both the feed itself and the bay water is expected to be lower than that of DNA, suggesting 81 82 that eRNA could potentially enhance the accuracy of coastal ecosystem surveys by minimizing false positives. 83

84

85 In this study, we employed metabarcoding analysis of eDNA and eRNA to identify fish species present in aquaculture feeds and evaluate their potential impact on ecological 86

87	surveys in a heavily cultivated bay. Specifically, we aimed to (1) elucidate the species
88	composition of fish nucleic acids in fish feeds for tuna (Thunnus orientalis), Red
89	seabream (Pagrus major), and longtooth grouper (Epinephelus bruneus), (2) determine
90	the distribution range of these feeds within a bay (Kushimoto fishing port) where those
91	fishes are farmed, and (3) assess the efficacy of eRNA analysis in reducing false positives
92	attributable to fish feed. Our findings provide crucial insights for improving the accuracy
93	of eDNA-based ecological surveys in bays influenced by aquaculture activities.
94	
95	2. Materials and Methods
96	2-1. Location and water sample collection
96 97	2-1. Location and water sample collectionKushimoto fishing port in Wakayama prefecture, Japan, a bay where various fishes are
96 97 98	2-1. Location and water sample collectionKushimoto fishing port in Wakayama prefecture, Japan, a bay where various fishes are farmed was selected as a location of our study. Example of the farmed fishes are tuna
96 97 98 99	 2-1. Location and water sample collection Kushimoto fishing port in Wakayama prefecture, Japan, a bay where various fishes are farmed was selected as a location of our study. Example of the farmed fishes are tuna (<i>Thunnus orientalis</i>), red seabream (<i>Pagrus major</i>), and longtooth grouper (<i>Epinephelus</i>)
96 97 98 99 100	 2-1. Location and water sample collection Kushimoto fishing port in Wakayama prefecture, Japan, a bay where various fishes are farmed was selected as a location of our study. Example of the farmed fishes are tuna (<i>Thunnus orientalis</i>), red seabream (<i>Pagrus major</i>), and longtooth grouper (<i>Epinephelus bruneus</i>). We collected water samples (n = 12: 1 sample/site × 10 sites + 2 blank controls)
96 97 98 99 100 101	 2-1. Location and water sample collection Kushimoto fishing port in Wakayama prefecture, Japan, a bay where various fishes are farmed was selected as a location of our study. Example of the farmed fishes are tuna (<i>Thunnus orientalis</i>), red seabream (<i>Pagrus major</i>), and longtooth grouper (<i>Epinephelus bruneus</i>). We collected water samples (n = 12: 1 sample/site × 10 sites + 2 blank controls) were collected, using van dorn water sampler (SANSYO Co., LTD Company, Tokyo,
96 97 98 99 100 101 102	 2-1. Location and water sample collection Kushimoto fishing port in Wakayama prefecture, Japan, a bay where various fishes are farmed was selected as a location of our study. Example of the farmed fishes are tuna (<i>Thunnus orientalis</i>), red seabream (<i>Pagrus major</i>), and longtooth grouper (<i>Epinephelus bruneus</i>). We collected water samples (n = 12: 1 sample/site × 10 sites + 2 blank controls) were collected, using van dorn water sampler (SANSYO Co., LTD Company, Tokyo, Japan), on August 2020 at five sites (Table 1) in culture preserves (3 L per site), one site
96 97 98 99 100 101 102 103	 2-1. Location and water sample collection Kushimoto fishing port in Wakayama prefecture, Japan, a bay where various fishes are farmed was selected as a location of our study. Example of the farmed fishes are tuna (<i>Thunnus orientalis</i>), red seabream (<i>Pagrus major</i>), and longtooth grouper (<i>Epinephelus bruneus</i>). We collected water samples (n = 12: 1 sample/site × 10 sites + 2 blank controls) were collected, using van dorn water sampler (SANSYO Co., LTD Company, Tokyo, Japan), on August 2020 at five sites (Table 1) in culture preserves (3 L per site), one site in each of the four directions around the culture preserves (6 L per site), one sites in further

105	outside of the culture preserve. The lowest amount of water that would yield sufficient
106	DNA or RNA quantity was set. Purified water of 3 L/sample was filtered on site as the
107	blank control.

Water sampling point	Coordinate	The distance from the culture preserve (m)	Water sample (L)
Origin point	N33°27′ 38″,		Each 3
	E135°47' 18"	-	
East point	N33°27′ 39″,	150 200	6
East point	E135°47' 25"	150~200	
West point	N33°27′ 40″,	$150 \sim 200$	6
west point	E135°47' 11"		
South point	N33°27′ 32″,	$150 \sim 200$	6
South point	E135°47' 18"		
North a gint	N33°27′ 46″,	150 ~ 200	6
North point	E135°47' 21"		
Eurther north noint	N33°27′ 53″,	$450 \sim 500$	15
Further north point	E135°47' 27"		

109 **Table 1. The conditions of water sampling.**

112 Figure 1. Sampling points in the Kushimoto fishing port

113 Portrait acquisition date: May 11, 2018, Water collection date: August 25-27, 2020

- 115 2-1. Fish feeds used in this study.
- Feeds used for farming for tuna, red seabream, and longtooth grouper at the Kushimoto Port were used to analyze the composition of fish nucleic acids (DNA and RNA) in those feeds (Table 1 and Figure 1). The feed for tuna (product name: Eden d6) containing 68% animal-based feed such as fishmeal and krill meal was purchased from FEED ONE CO., LTD. The feed for red seabream (product name: Madai EP super8) containing 50% animal-based feed such as fish meal was purchased from MARUBENI NISSHIN FEED

122 CO., LTD. The feed for longtooth grouper (product name: Kuetarou 20) containing 69%
123 animal-based feed such as fishmeal and shrimp meal was purchased from
124 HIGASHIMARU CO., LTD. Other ingredients in fish feeds were listed in Table 2.

Product Name	Manufacturer	Target Fish Species	Ingredients
Eden d6	FEED ONE CO., LTD.	Tuna	 68% animal-based feed (fishmeal, krill meal), 12% cereals (flour, starch), 20% others (fish oil, lecithin, calcium phosphate, betaine, yeast extract, lactobacillus plantarum, citric acid)
Madai EP super8	MARUBENI NISSHIN FEED CO., LTD.	Red Seabream	50% animal-based feed (fishmeal), 23% vegetable oil cake (corn gluten meal, soybean oil cake), 17% cereals (flour, starch), 10% others (refined fish oil)
Kuetarou 20	HIGASHIMARU CO., LTD.	Longtooth Grouper	69% animal-based feed (fishmeal, shrimp meal), 15% cereals (flour, starch), 5% soy (fermented lysine meal), 11% others (feed yeast, refined fish oil, calcium carbonate, cocoa bean shells, garlic powder, seaweed powder)

Table 2. Fish feeds analyzed in the present study.

128 2-2. DNA/RNA metabarcoding analysis

Water and fish feeds sampling.

130	Water samples were filtered with Sterivex [™] filter units (0.45 µm nominal pore size;
131	Millipore, Billerica, MA, USA), and immediately after filtration, the filters were filled
132	with 1.7-2.0 mL ice-cold RNA <i>later</i> (Thermo Fisher Scientific, Waltham, MA, USA). To
133	prevent cross-contamination, new tubes and syringes were used for each filtration. The
134	samples were stored at -80°C, and purified water was filtered on-site as a blank control.
135	Fish feeds were in solid form, and one to several pellets of each were used (Eden d6:
136	356.1 mg, Madai EP super8: 632.1 mg, Kuetarou 20: 487.4 mg). These samples were
137	crushed to the powder in 1.5 mL tube and then extracted DNA and RNA.

139 DNA and RNA extraction.

140	Total eDNA/eRNA (water) or DNA/RNA (fish feeds) co-extraction were performed using
141	the RNeasy PowerSoil Total RNA Kit and the DNA Elution Accessory Kit (Qiagen,
142	Hilden, Germany). The Sterivex cartridge, which water sample was filtered, in a 50 mL
143	tube was centrifuged at 8,000-10,000 g for 3-10 min to remove RNAlater. A total of 1.5
144	mL of lysis buffer mixture (composed of 1.25 mL PowerBead solution and 0.25 mL SR1
145	solution) was added to the cartridge through the inlet. The cartridge was incubated with
146	gentle rotation at 60°C for 60 min. After incubation, the lysis buffer was collected by
147	centrifuging the Sterivex cartridge in a 50 mL tube at 8,000 g for 1 min, and the

148	supernatant was transferred into a 15 mL PowerBead tube. This tube contained 1.25 mL
149	of PowerBead solution, 0.8 mL of IRS solution, and 3.5 mL of
150	phenol/chloroform/isoamyl alcohol. The mixture was then vortexed at maximum speed
151	for 15 min. Subsequent steps followed the manufacturer's instructions, with an elution
152	volume of 100 μ L. DNA and RNA (fish feeds) were co-extracted according to the
153	manufacturer's protocol with an elution volume of 100 μ L. Following the co-extraction
154	process, the DNA samples were purified using a NucleoSpin DNA Clean-up XS kit
155	(MACHEREY-NAGEL, Düren, Germany). Prior to the cDNA synthesis, the RNA
156	samples were treated twice with DNase, ultilizing an rDNase set and a NucleoSpin RNA
157	Clean-up XS kit (MACHEREY-NAGEL, Düren, Germany). The synthesis of cDNA from
158	single-stranded RNA was carried out with a PrimeScript II 1st Strand cDNA Synthesis Kit
159	(TaKaRa Bio Inc., Shiga, Japan) according to the manufacturer's protocol. To evaluate
160	potential cross-contamination during the processes of sample filtration, DNA/RNA co-
161	extraction, and cDNA synthesis, both DNA and RNA were extracted concurrently from
162	deionized water. All DNA/RNA and cDNA samples that were extracted were promptly
163	stored at -80 °C.

164 Library preparation

165 Amplicon libraries were constructed using Takara Ex Taq Hot Start Version with fish

166	universal primer pairs for metabarcoding, MiFish-U and -E33 (Miya et al., 2015). The
167	first PCR involved a reaction mixture of 10 μ L, consisting of 6.1 μ L sterile distilled water,
168	1 μL 10 \times PCR buffer, 0.8 μL dNTP mixture, 0.5 μL of each primer (10 μM), 0.1 μL
169	Takara EX Taq HS and 1 μ L DNA or cDNA template. The thermal cycling conditions for
170	the first PCR consisted of an initial denaturation at 95 °C for 3 minutes, followed by 35
171	cycles at 98 °C for 20 seconds, 65 °C for 15 seconds and 72 °C for 20 seconds, concluding
172	with an extension at 72 °C for 5 minutes. The PCR amplification was repeated eight times
173	for each DNA and cDNA sample, and the products were purified using the AMPure XP
174	system (Beckman Coulter, Brea, CA, USA), which yielded a specific amplification of
175	approximately 380 bp fragments. For the second PCR, 0.5 μ M primer pairs with MiSeq
176	adaptor sequences and 8 bp index sequences at both ends of the amplicons were employed.
177	The thermal cycling profile for this round included an initial step at 94°C for 2 minutes,
178	followed by 10-12 cycles of 94°C for 30 seconds, 60°C for 30 seconds and 72°C for 30
179	seconds, concluding with an extension at 72°C for 5 minutes. The resulting PCR products
180	were purified using the AMPure XP system (Beckman Coulter) and equal volumes of the
181	purified amplicons were mixed. Finally, the library was sequenced using 2 \times 300 bp
182	paired-end sequencing on an Illumina MiSeq platform with a MiSeq V3 Reagent Kit
183	(Illumina, San Diego, CA, USA).

184 Bioinformatics analysis of high-throughput sequencing data

185	The FASTX Barcoding Splitter, part of the FASTX-Toolkit v. 0.0.14
186	(http://hannonlab.cshl.edu/fastx_toolkit/; Hannon Laboratory, University of Cambridge
187	Cambridge, UK), was utilized to isolate the sequencing reads that perfectly matched the
188	primers employed. The sequences of the primers, along with 120 bp from the 3' end, were
189	eliminated, and any chimeric sequences were filtered out using the QIIME 2 v. 2020.8
190	(https://qiime2.org/) package that incorporates DADA2
191	(https://benjjneb.github.io/dada2/dada-installation.html). This process generated a
192	sequence table, which is a matrix containing amplicon sequence variants (ASVs) and the
193	count of reads for each species per sample. For taxonomic classification, a BLASTN
194	search v. 2.9.0 (https://blast.ncbi.nlm.nih.gov/Blast.cgi) was conducted against the
195	MitoFish database v. 3.53 (http://mitofish.aori.utokyo.ac.jp/; University of Tokyo, Tokyo
196	Japan) as well as the reference data relevant to the MiFish metabarcoding analysis.
197	

198 2-3. Data analysis including statistics.

Composition of fish DNA/RNA in each fish feed and water samples was displayed using
balloon plot, bar chart, heatmap, and Venn diagram, stacked bar chart. First, Venn diagram
was employed to analyze fish numbers detected by eDNA/eRNA metabarcoding in each

fish feed and bar graph was used to visualize the amount of read numbers in metabarcoding analysis. Then, duplication of fish species detected in feed and water samples for each metabarcoding analysis. Finally, Relationship between distance from the fish tank (origin point) and the number of reads of water samples for each fish were evaluated using heatmap analysis.

- 207
- 208 **3. Results**

209 **3-1.** Composition of fish nucleic acids in each fish feed

Venn plots show the number of detected species and bar graphs show read numbers of
eDNA and eRNA metabarcoding for top ten species detected, respectively, for (a) tuna,
(b) red seabream, and (c) longtooth grouper. Cyan: eDNA; Magenta: eRNA. *: Detected

in all three feeds.

The feed instructions did not specify which animal based feed was derived from which 217 218 fish; Metabarcoding analysis revealed the fish species that comprised the diet. A total of 219 51 fish species (DNA: 46, RNA: 31) were detected, including 25 (DNA: 22, RNA: 18) in 220 the feed for tuna, 28 (DNA: 22, RNA: 23) in the feed for red seabream, and 30 (DNA: 29, 221 RNA: 7) in the bait for longtooth grouper. Although the detected species in eDNA is 222 equivalent to that in eRNA in the feed for red seabream, that in eDNA in the feeds for 223 tuna and longtooth grouper is less than eRNA in those. Focucing on the Top 10 species 224 with high read numbers in eDNA/eRNA metabarcoding analysis, Engraulis ringens (Peruvian anchoveta), Pleurogrammus azonus (Okhotsk atka mackerel), Sprattus 225 226 muelleri (New Zealand sprat), Sardinops melanostictus (Pacific sardine), Gadus morhua 227 (Atlantic cod), Scomber japonicus (Pacific chub mackerel), Clupea pallasii (Pacific 228 herring), Oncorhynchus keta (Chum salmon), Gadus chalcogrammus (Alaska pollock), 229 and Trachurus mediterraneus (Mediterranean scad) in tuna feeds, Sardinops 230 melanostictus (Pacific sardine), Gadus chalcogrammus (Alaska pollock), Engraulis 231 ringens (Peruvian anchoveta), Sprattus muelleri (New Zealand sprat), Scomber japonicus (Pacific chub mackerel), Clupea pallasii (Pacific herring), Thunnus obesus (Bigeye tuna), 232

233	Katsuwonus pelamis (Skipjack tuna), Trachurus mediterraneus (Mediterranean scad),
234	and Engraulis japonicus (Japanese anchovy) in red seabream feeds, Engraulis ringens
235	(Peruvian anchoveta), Scomber japonicus (Pacific chub mackerel), Decapterus
236	macrosoma (Shortfin scad), Mugil hospes (Hospe Mullet), Auxis rochei (Bullet tuna),
237	Pleurogrammus azonus (Okhotsk atka mackerel), Katsuwonus pelamis (Skipjack tuna),
238	Etrumeus teres (Round herring), Gadus chalcogrammus (Alaska pollock), and Thunnus
239	obesus (Bigeye tuna) in longtooth grouper feeds were detected. Engraulis ringens
240	(Peruvian anchoveta), Scomber japonicus (Pacific chub mackerel), and Gadus
241	chalcogrammus (Alaska pollock) were detected in all feeds.

3-2. Fish nucleic acids detected in the bay and the comparison with those in fish
feeds

Figure 3. Comparison of detected fish species between fish feeds and water samples.

247 a) Venn diagram for whole samples, b) Venn diagram for the tuna feed, c) Venn diagram

- 248 for the seabream feed, d) Venn diagram for the longtooth grouper feed
- 249

250 Table 3. Fish list common to fish feeds and water samples.

- 251 Species were also indicated in Figure 3 a. For all DNA and RNA.
- 252

Scientific name	English name
eDNA metabarcoding	
Pagrus major	Red seabream
Trachurus mediterraneus	Mediterranean scad
Scomber japonicus	Pacific chub mackerel
Sardinops melanostictus	Pacific sardine
Thunnus alalunga	Albacore

Seriola quinqueradiata	Japanese amberjack
Seriola dumerili	Greater amberjack
eRNA metabarcoding	
Engraulis japonicus	Japanese anchovy
Trachurus mediterraneus	Mediterranean scad
Thunnus obesus	Bigeye tuna

254

255	Metabarcoding analysis in the bay revealed a total of 57 fish species (DNA: 41, RNA:
256	24), of which 5 (DNA: 4, RNA: 1) were detected in the feed for tuna, 9 (DNA: 7, RNA:
257	3) in the feed for red seabream, and 9 (DNA: 7, RNA: 0) in the feed for longtooth grouper
258	overlapped with the fish species detected in the feeds (Figure 3 and Table 3). Overlapped
259	species of eDNA between water and feed samples were relatively more than those of
260	eRNA. These species can cause high estimates of abundance when they are actually
261	present and false positives when they are not.

262

263 **3.3 Transportation effects of eDNA/eRNA in fish feeds.**

We focused on the species detected in both food and water samples and analyzed the relationship between distance from the aquaculture facility using these diets and the number of water sample reads for target fishes. For eDNA, seven fish were detected at the starting point and three to five of the seven fish were detected at 175 and 475 m from 268 the origin point. For eRNA, three fish were detected at the origin point and no species 269 were detected at 175 and 475 m. As the number of duplicated species and the number of reads for fish detected in food and water were high at 0 m compared to 475 m, these fish 270271 might be false positives. Although these fishes are common species and might habit in 272 the sites, these fish species might have a low abundance and the false positives may be 273 due to fish feeds. Since the number of detectable DNA/RNA fragments decreases with distance from the origin point, both DNA and RNA are less detectable at greater distances 274 275 due to dilution and degradation by diffusion. However, environmental DNA was 276 considered to be at greater risk of causing false positives over a wider geographic area.

277

Figure 4. Relationship between distance from the fish tank (origin point) and the

281	Heatmap of log10-transformed read numbers in (left; cyan) eDNA or (right; magenta)
282	eRNA from water. Darker colors indicate higher values. White indicates absence.
283	Columns correspond to each species. Distance from the culture preserve; 0 m: at the origin
284	point, 175m: east, west, south, and north point, 475 m: further north point.

286 Discussion

In this study, we demonstrated that fish feed used in aquaculture contains various fish 287 nucleic acids and is a significant source of false positives that threatens ecosystem studies 288 289 around the Bay. Considering that the fish are fed several times a week with food 290 equivalent to several percent of their body weight, the amount of food spilled is not negligible. Most of the food is expected to be fed to the fish, but even if only a few percent 291 292 is left uneaten, the amount would be negligible. Also, since DNA is widely used to analyze 293 the biological composition of at least the contents of the digestive tract (Alberdi et al., 294 2019), nucleic acids would be released as feces without degradation after being fed. 295 296 We hypothesized that the amount of RNA in fish feeds and the amount of RNA derived

from fish diets in waters samples could be less than the amount of these DNAs, based on differences in ease of degradation in the environment (Jo et al., 2022; Kagzi et al., 2022; 299 Wood et al., 2020). Consistent with that prediction, the number of fish species in the diet 300 detected by environmental DNA was less than or equal to those detected by environmental RNA. Of those species, the number of species detected in the environment was also less 301 302 with eRNA than with eDNA. Although not strictly comparable, the number of reads 303 detected in fish feeds in the metabarcoding analysis tended to be lower for eRNA than for 304 eDNA, and similar tendency was observed in the environmental water samples. Based on 305 the above, it is possible that environmental RNA may have been more degraded than 306 environmental DNA during the fish feed production process or after entering the 307 environment after feeding. Thus, environmental RNA metabarcoding has the potential to 308 provide fewer false positives in coastal ecosystem studies.

309

We focused on environmental nucleic acid contamination (Inoue et al., 2023b) arising from the aquaculture industry in coastal areas and demonstrated the utility of environmental RNA-based surveys in this study. Although distancing from the point source of contamination is a necessary idea, a new approach should be considered to identify the false positive influx scenarios and the types of nucleic acids they contain. Inoue et al. (Inoue et al., 2023a) first reported a computational model that can estimate the amount and ratio of eDNA/eRNA in river water, and various other environmental

317	modeling methods related to eDNA have been developed (Andruszkiewicz et al., 2019;
318	Carraro et al., 2023, 2020; Fukaya et al., 2022). Moreover, environmental exposure
319	analysis model for chemical substances enabling connection bays and rivers have also
320	been reported (Miyake et al., 2014; Nishioka et al., 2019; Yamane et al., 2024). If
321	environmental modeling allows species-specific estimates of the levels of contaminating
322	nucleic acids, it will improve the accuracy of molecular ecological surveys using
323	eDNA/eRNA and accelerate their implementation in the construction of biodiversity
324	conservation strategies.

1 / 4

1

2010

325

1 1.

017

1

. 1

1 . 1 .

This study analyzed the usefulness of environmental RNA in reducing false positives in terms of the number of fish detected and changes in the number of reads in metabarcoding analysis; however, quantitative RT-PCR quantification is needed to determine exact amount of nucleic acids in their feeds. Quantitative metabarcoding (Tsuji et al., 2022) should be used to compare the amounts in the aquatic environment among sampling sites. In addition, analysis of more fish feeds and accumulation of examples of analyses in bays are needed.

334	In conclusion, by identifying the species composition of fish nucleic acids in the food of
335	each species and analyzing the distribution of these foods in the bay, we tested whether
336	eRNA analysis is effective in reducing false positives caused by fish food. The number
337	of fish detected was higher for environmental DNA in both food and water samples.
338	Therefore, the identification of nucleic acid species in fish diets is an important analysis
339	item to be considered in ecological surveys, and environmental RNA was shown to be
340	effective in reducing false positives. Regarding the effectiveness of environmental RNA
341	in reducing false positives, further systematic analysis of composition in wastewater and
342	aquaculture feed as possible sources should be conducted to elucidate the quantitative
343	relationship with the species detected in the environment.
344	
345	References
346	Alberdi, A., Aizpurua, O., Bohmann, K., Gopalakrishnan, S., Lynggaard, C., Nielsen,
347	M., Gilbert, M.T.P., 2019. Promises and pitfalls of using high-throughput
348	sequencing for diet analysis. Mol. Ecol. Resour. 19, 327–348.
349	https://doi.org/10.1111/1755-0998.12960
350	An, H.E., Mun, M.H., Kim, C.B., 2023. Metabarcoding by Combining Environmental
351	DNA with Environmental RNA to Monitor Fish Species in the Han River, Korea.

352	Fishes 8, 550.	. https://doi.org	/10.3390/FISHES8110550/S1
		1 0	,

353	Andruszkiewicz, E.A., Koseff, J.R., Fringer, O.B., Ouellette, N.T., Lowe, A.B.,
354	Edwards, C.A., Boehm, A.B., 2019. Modeling environmental DNA transport in the
355	coastal ocean using Lagrangian particle tracking. Front. Mar. Sci. 6, 476826.
356	https://doi.org/10.3389/FMARS.2019.00477/BIBTEX
357	Carraro, L., Blackman, R.C., Altermatt, F., 2023. Modelling environmental DNA
358	transport in rivers reveals highly resolved spatio-temporal biodiversity patterns.
359	Sci. Reports 2023 131 13, 1-14. https://doi.org/10.1038/s41598-023-35614-6
360	Carraro, L., Mächler, E., Wüthrich, R., Altermatt, F., 2020. Environmental DNA allows
361	upscaling spatial patterns of biodiversity in freshwater ecosystems. Nat. Commun.
362	2020 111 11, 1-12. https://doi.org/10.1038/s41467-020-17337-8
363	CONVENTION ON BIOLOGICAL DIVERSITY (CBD), 2022. DECISION
364	ADOPTED BY THE CONFERENCE OF THE PARTIES TO THE
365	CONVENTION ON BIOLOGICAL DIVERSITY 15/29. Biodiversity and health
366	The.
367	Cristescu, M.E., 2019. Can Environmental RNA Revolutionize Biodiversity Science?
368	Trends Ecol. Evol. 34, 694–697. https://doi.org/10.1016/j.tree.2019.05.003
369	Fukaya, K., Kondo, N.I., Matsuzaki, S. ichiro S., Kadoya, T., 2022. Multispecies site

370	occupancy modelling and study design for spatially replicated environmental DNA
371	metabarcoding. Methods Ecol. Evol. 13, 183–193. https://doi.org/10.1111/2041-
372	210X.13732
373	Goldberg, C.S., Turner, C.R., Deiner, K., Klymus, K.E., Thomsen, P.F., Murphy, M.A.,
374	Spear, S.F., McKee, A., Oyler-McCance, S.J., Cornman, R.S., Laramie, M.B.,
375	Mahon, A.R., Lance, R.F., Pilliod, D.S., Strickler, K.M., Waits, L.P., Fremier,
376	A.K., Takahara, T., Herder, J.E., Taberlet, P., 2016. Critical considerations for the
377	application of environmental DNA methods to detect aquatic species. Methods
378	Ecol. Evol. 7, 1299–1307. https://doi.org/10.1111/2041-210X.12595
379	Inoue, Y., Miyata, K., Honda, H., 2023a. WO2023171758 FISH ECOLOGICAL
380	SURVEY METHOD IN FRESHWATER ENVIRONMENT.
381	Inoue, Y., Miyata, K., Yamane, M., Honda, H., 2023b. Environmental Nucleic Acid
382	Pollution: Characterization of Wastewater Generating False Positives in Molecular
383	Ecological Surveys. ACS ES T Water 3, 756–764.
384	https://doi.org/10.1021/acsestwater.2c00542
385	Jo, T., Tsuri, K., Hirohara, T., Yamanaka, H., Toshiaki Jo, C., 2022. Warm temperature
386	and alkaline conditions accelerate environmental RNA degradation. Environ. DNA
387	00, 1–13. https://doi.org/10.1002/EDN3.334

388	Kagzi, K., Hechler, R.M., Fussmann, G.F., Cristescu, M.E., 2022. Environmental
389	RNA degrades more rapidly than environmental DNA across a broad range of pH
390	conditions . Mol. Ecol. Resour. 1-11. https://doi.org/10.1111/1755-0998.13655
391	Li, W., Jia, H., Zhang, H., 2024. Evaluating the effectiveness of the eRNA technique in
392	monitoring fish biodiversity – A case study in the Qingdao offshore, China. Glob.
393	Ecol. Conserv. 51, e02888. https://doi.org/10.1016/J.GECCO.2024.E02888
394	Micella, I., Kroeze, C., Bak, M.P., Strokal, M., 2024. Causes of coastal waters pollution
395	with nutrients, chemicals and plastics worldwide. Mar. Pollut. Bull. 198, 115902.
396	https://doi.org/10.1016/J.MARPOLBUL.2023.115902
397	Miya, M., Sato, Y., Fukunaga, T., Sado, T., Poulsen, J.Y., Sato, K., Minamoto, T.,
398	Yamamoto, S., Yamanaka, H., Araki, H., Kondoh, M., Iwasaki, W., 2015. MiFish,
399	a set of universal PCR primers for metabarcoding environmental DNA from
400	fishes : detection of more than 230 subtropical marine species Subject Category :
401	Subject Areas : R. Soc. Open Sci. 2, 150088. https://doi.org/10.1098/rsos.150088
402	Miyake, Y., Kobayashi, T., Kameya, T., Managaki, S., Amagai, T., Masunaga, S., 2014.
403	Comparison study on observed and estimated concentrations of perfluorooctane
404	sulfonate using a fate model in Tokyo Bay of Japan. J. Environ. Sci. Health. A.
405	Tox. Hazard. Subst. Environ. Eng. 49, 770–776.

https://doi.org/10.1080/10934529.2014.882192 406

407	Miyata, K., Inoue, Y., Amano, Y., Nishioka, T., Nagaike, T., Kawaguchi, T., Morita,
408	O., Yamane, M., Honda, H., 2022. Comparative environmental RNA and DNA
409	metabarcoding analysis of river algae and arthropods for ecological surveys and
410	water quality assessment. Sci. Rep. 12, 1–16. https://doi.org/10.1038/s41598-022-
411	23888-1
412	Miyata, K., Inoue, Y., Amano, Y., Nishioka, T., Yamane, M., Kawaguchi, T., Morita,
413	O., Honda, H., 2021. Fish environmental RNA enables precise ecological surveys
414	with high positive predictivity. Ecol. Indic. 128, 107796.
415	https://doi.org/10.1016/J.ECOLIND.2021.107796
416	Nishioka, T., Iwasaki, Y., Ishikawa, Y., Yamane, M., Morita, O., Honda, H., 2019.
417	Validation of AIST-SHANEL Model Based on Spatiotemporally Extensive
418	Monitoring Data of Linear Alkylbenzene Sulfonate in Japan: Toward a Better
419	Strategy on Deriving Predicted Environmental Concentrations. Integr. Environ.
420	Assess. Manag. 15. https://doi.org/10.1002/ieam.4167
421	Tickner, D., Opperman, J.J., Abell, R., Acreman, M., Arthington, A.H., Bunn, S.E.,
422	Cooke, S.J., Dalton, J., Darwall, W., Edwards, G., Harrison, I., Hughes, K., Jones,
423	T., Leclère, D., Lynch, A.J., Leonard, P., McClain, M.E., Muruven, D., Olden,

424	J.D., Ormerod, S.J., Robinson, J., Tharme, R.E., Thieme, M., Tockner, K., Wright,
425	M., Young, L., 2020. Bending the Curve of Global Freshwater Biodiversity Loss:
426	An Emergency Recovery Plan. Bioscience 70, 330–342.
427	https://doi.org/10.1093/BIOSCI/BIAA002
428	Tsuji, S., Inui, R., Nakao, R., Miyazono, S., Saito, M., Kono, T., Akamatsu, Y., 2022.
429	Quantitative environmental DNA metabarcoding shows high potential as a novel
430	approach to quantitatively assess fish community. Sci. Reports 2022 121 12, 1–11.
431	https://doi.org/10.1038/s41598-022-25274-3
432	Vikas, M., Dwarakish, G.S., 2015. Coastal Pollution: A Review. Aquat. Procedia 4,
433	381-388. https://doi.org/10.1016/j.aqpro.2015.02.051
434	Wood, S.A., Biessy, L., Latchford, J.L., Zaiko, A., von Ammon, U., Audrezet, F.,
435	Cristescu, M.E., Pochon, X., 2020. Release and degradation of environmental
436	DNA and RNA in a marine system. Sci. Total Environ. 704, 135314.
437	https://doi.org/10.1016/j.scitotenv.2019.135314
438	Xiong, W., MacIsaac, H.J., Zhan, A., 2024. An overlooked source of false positives in
439	eDNA-based biodiversity assessment and management. J. Environ. Manage. 358,
440	120949. https://doi.org/10.1016/J.JENVMAN.2024.120949

Yamane, M., Honda, H., Murata, M., Kawaguchi, T., Ishikawa, Y., 2024. Global-441

- 442 SHANEL Asia model predicting chemical concentration in rivers with high spatio-
- temporal resolution, suitable for climate change scenarios. J. Environ. Manage.
- 444 370. https://doi.org/10.1016/J.JENVMAN.2024.122335
- 445 Yates, M.C., Derry, A.M., Cristescu, M.E., 2021. Environmental RNA: A Revolution in
- 446 Ecological Resolution? Trends Ecol. Evol. 36, 601–609.
- 447 https://doi.org/10.1016/J.TREE.2021.03.001
- 448

449 Acknowledgement

We thank Mr. Takamitsu Kawaguchi (Bioindicator Co., Ltd.) to organize ecological information such as scientific names. We gratefully acknowledge the contribution of members of Wakayama Prefectural Fisheries Experimental Station., Japan, in investigation in the sea.

454

455 Author Contributions

456 Kaede Miyata: Conceptualization, Methodology, Investigation, Visualization, Writing-

457 original draft, Writing-review & editing. Yasuaki Inoue: Methodology, Investigation,

- 458 Writing—original draft, Writing—review & editing. Natsumi Kitazaki: Writing—review
- 459 & editing. Keisuke Nakane: Writing-review & editing. Fumihito Kato: Investigation,

460	Writing-review & editing. Hiroyuki Konishi: Writing-review & editing. Masayuki
461	Yamane: Writing-review & editing. Koji Mine: Writing-review & editing. Hiroshi
462	Honda: Conceptualization, Methodology, Investigation, Visualization, Writing-review
463	& editing, Project administration.
464	