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Abstract 27 

In a warming and rapidly changing world, biodiversity is increasingly threatened by 28 

more frequent, severe, and larger fires. Variation in the life history attributes and habitat 29 

preferences of species mean that they may be affected differently by fire, and hence, decision 30 

makers must account for this. Understanding how fire affects the distribution of important 31 

areas of habitat and refuges for biodiversity can help guide appropriate conservation and 32 

management actions. In 2019-20 Australia suffered widespread and devastating megafires, 33 



known as the Black Summer, and the East Gippsland region in state of Victoria was heavily 34 

affected. To estimate impacts of the fires on fauna within the region, we used a joint species 35 

distribution model fitted to data from 967 camera trap sites to estimate variation in the 36 

occurrence for 40 native and invasive animal species. We focused on the influence of the fire 37 

regime, lethal control of introduced red foxes (Vulpes vulpes), timber harvesting, 38 

precipitation, and soil gradients, on wildlife. We then predicted the spatial distribution of 39 

each native animal species in the dataset for three time periods: 1) in 2017 prior to the Black 40 

Summer megafires, 2) in 2022 following the 2019/2020 wildfires and 3) in 2030. This 41 

allowed us to estimate changes in the patterns of occurrence for each species attributable to 42 

fire. Finally, we used spatial conservation prioritisation to identify priority conservation areas 43 

(‘fire refuges) and identify where potential threats (e.g. invasive species) might co-occur with 44 

these areas. We found that fire regime variables, including time since fire and repeat short-45 

interval fires, influence occurrence patterns for ~50% of species and this meant that the 46 

megafires influenced predicted occurrence patterns. Half of the mammal species (mostly 47 

small and medium-sized ground-dwelling mammals) were positively associated with a 48 

topographic wetness index, as were four bird species. Spatial conservation prioritisation also 49 

suggested that while there were some shifts in the location of fire havens due to the 50 

megafires, some large areas of high-conservation value persisted after fire. These areas were 51 

disproportionately likely to be long-unburnt (>= 80 years) with fewer repeat burns, have high 52 

fox baiting intensity, and low probabilities of introduced red fox and feral cat (Felis catus) 53 

occurrence. This suggests maintaining older vegetation in landscapes and managing predation 54 

pressure by invasive predators will be important to maintaining the identified high priority 55 

refuges. Our study presents a useful approach for guiding fire management before and after 56 

large disturbance events, and could be expanded to test the response of species and 57 

communities to forecasts of future fire regime scenarios. Predictive approaches such as this 58 

study will be essential for managers to understand the possible outcomes of management 59 

actions on biodiversity during a time of rapid global change.  60 

  61 

Introduction 62 

Fire affects species’ distributions and the community structure of many ecosystems 63 

globally (Jones & Tingley 2022). Some plant and animal species are adapted to fire regimes, 64 

including the environmental heterogeneity that fire creates (Smith, Bull & Driscoll 2013; 65 

Furnas, Goldstein & Figura 2022). However, as fire regimes change, and interact with other 66 



threats (Abatzoglou, Williams & Barbero 2019; Keith et al. 2022), fire is emerging as a major 67 

driver of global extinction risk (Kelly et al. 2020; Doherty et al. 2024).  68 

Animal species show diverse responses to fire due largely to its impact on habitat 69 

resources (Fox 1982). As a result, the availability and location of suitable habitat for animal 70 

species may change over time in fire-prone landscapes (Reside et al. 2019). This poses a 71 

significant challenge for conservation, as species' shifting distributions also change the 72 

locations of areas with high conservation value, particularly when other dynamic threats—73 

such as invasive species or human land use (e.g., timber harvesting)—co-occur and interact 74 

with fire (Doherty et al. 2022). The challenge is magnified by extreme fire events, including 75 

megafires (>100,000 ha) and gigafires (>1,000,000 ha), which transform species' 76 

distributions across vast areas (Linley et al. 2022). Extreme wildfires are becoming common 77 

across the globe (Cunningham, Williamson & Bowman 2024), including the 2019 Amazon 78 

wildfires, Australia’s 2019/2020 Black Summer wildfires, and 2020 to 2021 California 79 

megafires. During such large, intense fires, it is crucial for managers to identify which 80 

species are most affected and which areas of the landscape are impacted (Legge et al. 2022). 81 

Forecasts are increasingly used in ecology and conservation to guide management 82 

(Mouquet et al. 2015). Forecasts allow managers to anticipate future conditions, including 83 

disturbance, enabling informed decision-making in the face of environmental change (Dietze 84 

et al. 2018). In ecology, forecasts often link baseline data on species occurrences or 85 

abundances across space or time to biophysical or environmental data, and sometimes a 86 

management action or disturbance of interest, then project these data to future environmental 87 

conditions or possible management scenarios (Penman et al. 2015; Briscoe et al. 2019; 88 

Connell et al. 2019). However, robust forecasts require models that are parameterised with 89 

robust empirical or field-collected data (Greenville et al. 2018). As fire regimes change, there 90 

is an increasing need for flexible and adaptive approaches that accurately estimate species’ 91 

responses to large disturbances (e.g. megafires) and explicitly link these predictions to 92 

guidance for managers.  93 

Our study aims to a) develop a field data-driven framework for forecasting fauna 94 

community responses to future fire regimes using baseline data that can be updated as new 95 

data are collected post-disturbance, and b) use these forecasts to identify fire havens where 96 

managers should focus management effort at a given point in time, including by potentially 97 

excluding future fires (e.g. bushfires and/or planning burning) or managing co-occurring 98 

threats. We demonstrate our approach by using it to understand how a wildlife assemblage in 99 

East Gippsland, Australia, is shaped by fire, and to forecast how species occurrence patterns 100 



and areas of high conservation importance were affected by 2019/2020 wildfires. Finally, we 101 

evaluate the quality of fire refuges by predicting their vulnerability to six invasive species 102 

known to influence food and shelter resources for native species in East Gippsland. 103 

Methods 104 

Study region 105 

Our study focussed on the forests of East Gippsland, Victoria, Australia, an area 106 

spanning ~1 million hectares. The study region experiences a temperate climate, with mean 107 

annual precipitation ranging of 630–1156 mm (BoM 2020), and is made up of numerous 108 

vegetation types, including wet eucalypt forest, mixed eucalypt species foothill forest, coastal 109 

heathland, rainforest, and dry woodland (Cheal 2010). 110 

There are a range of forest management practices that occur within our study area. 111 

The fire regime in the region is a mix of wildfires and planned burning of a range of 112 

severities. Fire return intervals range from <5 years to ~20 years (DELWP 2020b). In East 113 

Gippsland, the frequency and severity of fire influences the structure of vegetation, and 114 

therefore, habitat for fauna. Timber harvesting has also occurred within State Forests over 115 

several decades at a range of intensities, including both clear fell and regrowth thinning. 116 

Predation by introduced red foxes (Vulpes vulpes) and feral cats (Felis catus) is a major threat 117 

to native mammals within the study region, and lethal fox control has occurred in the region 118 

since the late 1990s, later becoming more extensive through the Southern Ark program 119 

(Dexter & Murray 2009).  120 

  121 

Camera trapping 122 

To understand the distribution of wildlife species in East Gippsland, we used a large 123 

camera trapping dataset collected across 967 sites that spanned the range of vegetation types, 124 

fire histories and land tenures (e.g. National Parks and State Forests). Cameras were deployed 125 

between June 2016 and June 2017 for a minimum of 30 days to maximise detections. Each 126 

camera was baited with a lure staked 1-2 metres in front of the camera. For a full summary of 127 

camera site selection procedures, refer to Robley et al. (2022). From this camera dataset, we 128 

then collated presence-absence data for each of the species detected on the camera traps, with 129 

the aim of including in community modelling species that were detected at more than 10 130 

sites. 131 

 132 

Covariate development 133 



To understand the drivers of species’ distributions in East Gippsland, we developed a 134 

series of covariates representing key disturbances and forest management drivers (e.g. fire, 135 

timber harvesting and lethal fox control), and biogeographic and habitat variables (e.g. mean 136 

annual precipitation, topographic wetness index and soil composition) (Table 1). Because we 137 

were interested in predicting species’ distributions across the study region and some species 138 

in our dataset, such as Antechinus spp. have small home ranges (0.5-3 Ha; Lazenby-Cohen & 139 

Cockburn 1991), we developed these covariates with pixels at a common resolution of 50 m.  140 

To model species’ responses to the fire regime, we developed two fire-related 141 

covariates due to their hypothesised effect on vegetation structure, which then influences 142 

species occurrence (Swan et al. 2015). We use a directed acyclic graph to illustrate the 143 

hypothesised causal relationship using a causal model with the key relationships between 144 

time since fire, repeat fire, vegetation structure and fauna occurrence (Figure S8.1) (Ferraro, 145 

Sanchirico & Smith 2019; Arif & MacNeil 2022). First, for each pixel, we calculated the 146 

number of years since it had last burnt (i.e. time since fire) using maps of all past fires 147 

(DELWP 2020a). For pixels with no fire history, we arbitrarily assigned the year of last fire 148 

as 1900 as large (but unmapped) fires occurred throughout Gippsland in the early 1900s. We 149 

also used the fire history data to calculate the mean number of times that pixels within 500 m 150 

of each camera site that has been burnt in the 20 years prior to survey. Because the maps of 151 

past fires can be inaccurate, particularly for fires that had been mapped without considering 152 

satellite imagery (i.e. most fires before the 1990s), we used a burn cover model of south-153 

eastern Victoria to mask out vegetation unlikely to burn in most fires from the mapped fire 154 

history, such as gullies and other wet vegetation (Bluff & McCarthy 2018). Using this 155 

approach to edit the fire history data produces more accurate estimates of burnt locations 156 

within East Gippsland (Lucas Bluff & Luke Smith pers. comm.). However, it is important to 157 

note that many fires from before ~1970 have not been mapped at all and so fire mapping 158 

before this time is incomplete for the East Gippsland region (Bluff 2014). This may bias the 159 

fire history dataset, in that the fire mapping may mean that some sites identified as ~100 160 

years post-fire may be closer to ~50 years post-fire.  161 

Timber harvesting is another prominent disturbance within the study region that 162 

influences vegetation structure at both the site and landscape-scale (Alexander, Scotts & 163 

Loyn 2002). To quantify variation in timber harvesting across the study region, we calculated 164 

the proportion of pixels within 500 m of each camera site that were harvested in the 40 years 165 

prior to survey using clearfell techniques. Lethal fox control is undertaken throughout the 166 

study region by regularly deploying permanent poison bait stations along roadsides, spaced 167 



on average every 0.7 km along roads. To quantify the spatial variation in fox baiting 168 

intensity, we quantified the density (number of baits per km2) of poison bait stations within 5 169 

km of each camera site.  170 

As a proxy for landscape-scale variation in resource availability and variation in 171 

habitat type, we collated data on the average annual precipitation at each camera site (BoM 172 

2020). To represent local scale variation in resource availability and habitat type, we used the 173 

topographic wetness index at each site (Gallant & Austin 2012). The modelled percentage of 174 

clay and carbon in the soil at each site was also used to represent variation in habitat types 175 

across the study region, as soil type is highly associated vegetation type and structure in the 176 

region (Grundy et al. 2015).  177 

Finally, before inclusion in further analysis, we assessed whether any pairs of 178 

covariates were strongly correlated (using Spearman’s correlation test, with a threshold of rs 179 

> 0.7).  All covariate pairs had correlation coefficients of rs <0.7 and rs >-0.7.  180 

 181 

Table 1: Description of each covariate included in the joint-species distribution modelling framework, and 182 

the range and units of their values. 183 

Covariate Description Range  

Time since fire The time (years) since each site was last burned by fire of any 

severity. Where no fires had been mapped, we assigned a year of 

last fire as 1900 (122 years post-fire).  

0 – 122 

Mean repeat burn The average number of times a pixel within 500 m of a site has 

been burnt in the 20 years prior to survey 

0 – 2.11  

Bait Intensity The density of fox baiting stations (number per km2) within 500 

m of a site 

0 – 20 

Harvest prop 40 The proportion of a 500m buffer around each site that has been 

clear-fell harvested in the 40 years prior to survey. 

0 – 0.93 

Mean rainfall The mean annual precipitation at each site (mm per annum) 630.6 – 1156 

Topographic 

wetness index 

The topographic wetness index describes the relative wetness of 

the site, based on how both local and landscape-scale topography 

(e.g. slope) and placement within a catchment influences water 

flow (index). 

4.95 – 11.26 

Clay The modelled percentage (by mass, 0-0.05 m depth) of soil in a 

location made up of clay  

9.20 – 20.58 

Carbon The modelled percentage (by mass, 0-0.05 m depth) of soil in a 

location made up of carbon  

1.96 – 7.58 

 184 

Joint-species distribution modelling 185 

To identify the key drivers of the spatial distribution of the East Gippsland fauna 186 

community, we used a spatial joint-species distribution model implemented in the R package 187 

Hmsc—hierarchical modelling of species communities (Ovaskainen et al. 2017; Tikhonov et 188 

al. 2020). Joint-species distribution models (jSDM) simultaneously estimate species’ 189 

responses to model covariates, as well as correlations between the occurrence patterns of each 190 



individual species. The approach implemented by Tikhonov et al. (2020) uses a spatial factor 191 

dimension reduction approach and a Nearest Neighbour Gaussian Process with 10 nearest 192 

neighbours in a Bayesian framework to efficiently deal with large, spatially-autocorrelated 193 

datasets (e.g. many sites and species). The environmental variable component of our model 194 

included covariates relating to the fire regime, lethal control of red foxes, spatial variation in 195 

precipitation and soil characteristics (Table 1 & 2). We also included a spatial component in 196 

the model to account for spatial autocorrelation between camera trap locations (Table 2). All 197 

covariates were scaled using the base R scale function prior to modelling, and we used 198 

uninformative priors.  199 

 200 

Table 2: Environmental and spatial model formulae of the joint species distribution model used to estimate 201 

species’ occurrences across the study region in East Gippsland, Victoria 202 

Model Component Model Formula 

Environmental ~ time since fire + time since fire2 + mean repeat burn + bait intensity + harvest prop 

40 + mean rainfall + topographic wetness index + clay + carbon 

Spatial covariates Easting, Northing 

 203 

The model was implemented as a spatial factor jSDM using the species’ presence-absence 204 

data with a probit error distribution and used Markov Chain-Monte Carlo sampling for four 205 

chains, with 25,000 iterations each, as well as a burn in of 25,000 iterations. We retained 206 

every 100th iteration of each chain, giving a total number of 1000 posterior samples (250 per 207 

chain). To ensure model convergence, we ensured the Gelmin-Rubin statistic was below 1.1 208 

for each parameter (Gelman, Hwang & Vehtari 2014) and examined trace plots for all major 209 

values to ensure adequate mixing. To evaluate model predictive performance for each 210 

species, we report the root mean squared error (RMSE) and the area under the receiver 211 

operating curve (AUC) following k-fold cross validation with 4 folds, all implemented within 212 

the hmsc package and framework (Ovaskainen et al. 2017; Tikhonov et al. 2020).  213 

 214 

Spatial prioritisation 215 

To identify the most important locations within the study area for the 40 native 216 

species in our study (i.e. excluding invasive species) immediately before and after the Black 217 

Summer fires, we used the systematic conservation planning program Zonation (v5) 218 

(Moilanen et al. 2005). We produced Zonation rank maps using predicted species occurrence 219 

probabilities for a) fire histories in 2017 (pre-Black Summer), b) fire histories in 2022 220 

(immediately post-Black Summer), and c) fire histories 10 years post-Black Summer 221 

(calculated by adding 8 years to all values in the 2022 fire history map, and assuming no 222 



additional fires following 2022). We chose this time horizon as the natural fire return interval 223 

in these forests is typically greater than 10 years (Cheal 2010). 224 

Zonation ranks pixels across the study region based on their contribution to the 225 

conservation of each individual species in the analysis, determined by the probability of 226 

occurrence of each species identified by the joint-species distribution models. The output of a 227 

Zonation analysis is a complementarity-based ranking of conservation priority for the entire 228 

study region of interest, where the highest-ranking cells have values closer to 1 and lowest 229 

ranking cells have values closer to 0. In our prioritisation, we used the ‘Core Area Zonation’ 230 

algorithm which identifies high ranking areas that have a high probability of occurrence for 231 

rare species (i.e. species with relatively restricted distributions within the study region being 232 

modelled) (Moilanen et al. 2014). Therefore, for this algorithm, cells that are relatively less 233 

species rich can be ranked highly if they are important for a single species. We did not apply 234 

any weightings to any species (e.g. conservation status) for the purposes of our study. As our 235 

goal was to rank sites by their relative conservation importance (rather than an explicit 236 

management action) immediately before and after the 2019/2020 wildfires (Moilanen et al. 237 

2014; Selwood, Cunningham & Mac Nally 2019), we did not consider cost in our Zonation 238 

problem formulation.  239 

We defined ‘high-ranking locations’ as the 20% of the study region with the highest 240 

Zonation ranking (i.e. values above 0.8). We used this threshold to identify locations in the 241 

study region that were high-ranking before, 1 year after, and 10 years after the 2019/2020 242 

wildfires.  243 

Finally, to provide some general insight into the potential drivers of the 1 year post-244 

fire Zonation ranking beyond the individual species distributions, we built a beta regression 245 

model of 10,000 random spatial point samples of the Zonation rank (as rank data are bounded 246 

between 0 and 1) and six scaled covariates—time since fire, baiting intensity, mean repeat 247 

burn (Table 1) and predictions from the joint-species distribution model for three invasive 248 

species of conservation concern in the study region: the red fox, feral cat and sambar deer 249 

(Rusa unicolor). All covariates were fitted as 3rd order polynomials to account for non-linear 250 

relationships with zonation rank. To account for spatial autocorrelation between residuals, we 251 

included an auto-covariate calculated from the zonation ranking using the R package spdep 252 

(Bivand et al. 2015), with a neighbourhood radius of 10,000 cells. The model was fit using 253 

the package brms with four chains and 3000 iterations (Bürkner 2017). Model convergence 254 

was assessed by interpreting the effective sample size, Rhat values and diagnostic plots 255 

(Gelman & Rubin 1992).  256 



Results 257 

Species modelling 258 

Thirty-four native and six invasive species were detected by the camera traps at 20 or 259 

more sites across the study region and were therefore eligible for inclusion in our joint-260 

species distribution model. The most frequently detected species were the black wallaby 261 

(Wallabia bicolor; 747 sites out of 1196) and superb lyrebird (Menura novaehollandiae; 580 262 

sites), whereas species such as fallow deer (Dama dama) and crimson rosella (Platycercus 263 

elegans) were detected at less than 25 (~2% of sites) sites (Table S1).  264 

The joint-species distribution model revealed a range of influential drivers of species 265 

occurrence patterns across the East Gippsland study region. Time since fire had significant 266 

associations with one third of mammal species (Figure S3), and 31% of bird species (Figure 267 

S4). For most bird and mammal species, the time since fire relationship was a negative 268 

quadratic relationship, with occurrence peaking at intermediate time since fire ages (Figures 269 

S3 and S4). For the invasive species in the joint-species distribution model, time since fire 270 

was only influential for sambar deer (positive quadratic shape) (Figure S5). Eight mammal 271 

and reptile species (e.g. long-footed potoroo Potorous longipes, long-nosed bandicoot 272 

Perameles nasuta, and short-beaked echidna Tachyglossus aculeatus) and nine bird species 273 

(e.g. wonga pigeon Leucosarcia melanoleuca, white-browed scrub-wren Sericornis frontalis) 274 

were positively associated with fox baiting intensity (Figure S3). Of the native species, only 275 

dingoes and spot-tailed quolls were negatively associated with fox baiting intensity, whereas 276 

all invasive species, except sambar deer, were negatively associated with fox baiting intensity 277 

(Figure S5). Soil clay and carbon content and topographic wetness index were important for 278 

>50% of native mammal and reptile species (Figure S3). Soil carbon content influenced more 279 

bird species distributions than clay content, and 50% of the bird species modelled were 280 

positively associated with topographic wetness index (Figure S4). Three-quarters of native 281 

mammal, reptile and bird species modelled were associated with rainfall (Figure S3, S4).  282 

Based on the model coefficients, at least ten native mammals and reptiles, and six bird 283 

species, are predicted to have experienced changes in their spatial patterns of occurrence 284 

when comparing their modelled distribution at the time of survey (2017) with their forecast 285 

distribution (2022 and 2030). For example, the superb lyrebird is forecast to have seen large 286 

areas decrease in occurrence probability and other parts increase (Figure 1). For other species 287 

predicted decreases in occurrence probability are forecast to be as much as 30% (Figure 2; 288 

Bassian thrush). Other species are predicted to have increased in occurrence probability (e.g. 289 



long-nosed bandicoot), in some places by up to 40%. Model fit for each species was 290 

generally good, with almost all (45/48) species having an AUC > 0.7 (Table S2).  291 

 292 

 293 

Figure 1: Predicted distributions of probability of occurrence from the joint-species distribution model for 294 

the superb lyrebird (Menura novaehollandiae) [a, b], the long-nosed bandicoot [c,d] and the Bassian thrush 295 

[e,f] for the the year 2017 (pre-Black Summer) and the predicted change in probability of occurrence 296 

between 2017 and 2022 (post-Black Summer), respectively.  297 

 298 

 299 



 300 

Figure 2: Predicted area of occurrence-weighted habitat (000’s of Ha) for three example species, the 301 

Bassian thrush, the long-nosed bandicoot and the superb lyrebird (Menura novaehollandiae) for the years 302 

2017 (pre-Black Summer), 2022 (post-Black Summer) and 2030.  303 

 304 

Spatial prioritisation 305 

Our prioritisations using predictions of 34 native species distributions in both 2017 306 

and 2022 revealed shifts in the distribution of high-ranking habitat for the modelled fauna 307 

species following the 2019/2020 Black Summer megafires (Figure 3), demonstrated by the 308 

areas that became highly ranked habitat in the 2022 and 2030 scenarios (Figure 3).  309 

Three key areas remained high ranking in both prioritisations—the Errinundra region 310 

in the centre of the study region, the Upper Snowy River region in the northwest of the study 311 

region, and coastal heathland along the southern coast of the study region (Figure 3). High-312 

ranking locations in the 2017 prioritisation that did not appear in the 2022 prioritisation were 313 

scattered throughout the study region, with some larger areas occurring in coastal habitat that 314 

was burnt during the 2019/2020 wildfires (Figure 3). Many of the high-ranking locations that 315 

only appeared in the 2022 prioritisation were also scattered through the region, aside from a 316 

large block of unburnt habitat near the Martins Creek Nature Conservation Reserve in the 317 

central west of the study region (Figure 3).  318 

High-ranking locations for native species from the 2022 analysis with current fire 319 

history information are more likely to have lower feral cat and red fox occurrence, but higher 320 

sambar deer occurrence (Figure 4). Further, high ranking locations are more likely to be long-321 

unburnt, have lower repeat fire and higher fox baiting intensity (Figure 4).  322 

 323 



 324 

Figure 3: a) Priority rankings from Core Area Zonation analyses using predicted species distributions for 325 

the year 2017 (pre-Black Summer) for a fauna community in East Gippsland, Victoria, Australia. Values 326 

closer to 1 are relatively higher ranked in terms of conservation importance compared with values closer to 327 

0. Rankings for the 2022 and 2030 scenarios are in Figure S6. Locations of change in the highest ranked 328 

(Top 20%) locations by Core Area Zonation between b) 2017 and 2022, and c) 2017 and 2030 for a fauna 329 

community in East Gippsland, Victoria, Australia. Yellow locations are within the Top 20% ranking in 330 

both 2017 and 2022, green locations became highly ranked in 2022, blue locations were highly ranked in 331 

2017 but not in 2022. Grey locations never occurred in the high ranks for either 2017 or 2022.  332 

 333 

 334 

 335 

Figure 4: Expected conservation value from the 2022 Zonation analysis against six covariates, including 336 

a) time since fire (years), b) baiting intensity, c) repeat burns, d) feral cat occurrence, e) sambar deer 337 

occurrence, f) red fox occurrence. Shaded bands represent 95% confidence intervals, and the black line 338 

represents the mean predicted relationship. 339 



Discussion 340 

Large, intense fires are become increasingly common across much of the world 341 

(Cunningham, Williamson & Bowman 2024). As such, land managers must employ planning 342 

approaches that are dynamic, flexible and adaptable to changing conditions (Rhodes et al. 343 

2022). Our study provides a framework for using field data and spatial conservation planning 344 

to forecast the effects of megafire on individual species and animal communities. To achieve 345 

this, we bring together methods developed to forecast species’ responses to disturbances such 346 

as fire (Connell et al. 2019; Verdon & Clarke 2022), and conservation planning approaches 347 

that informed the short-term responses to the Australian 2019/2020 wildfires (Geary et al. 348 

2021; Ward et al. 2022). Our results show that, while a large portion of the study region 349 

remained high ranking in the years following the megafires, there was also considerable 350 

turnover (i.e. some areas lowering in ranking and some areas increasing in ranking) due to the 351 

forecasted changes in species’ occurrences.  352 

Species’ responses to fires and the overall fire regime are often highly contextual 353 

(Nimmo et al. 2019) and modelling them often assumes a causal relationship between fire 354 

variables and species occurrence, driven by the effect of fire on vegetation structure (Figure 355 

S1) (Swan et al. 2015). Our model forecasts help to identify species expected to have been 356 

positively or negatively affected by the 2019/2020 wildfires as well as their potential 357 

recovery trajectories. By explicitly modelling the correlative relationships between species 358 

occurrences, fire regime variables (such as time since fire and fire interval), and other 359 

environmental factors, our approach enables managers to better understand fine-scale patterns 360 

of refuges and provides critical insights for their management. Further, these forecasts can be 361 

readily updated with newly collected data from subsequent post-fire surveys (Dietze et al. 362 

2018).  363 

Our prioritizations using the species’ forecasts revealed that locations of conservation 364 

importance following the Black Summer wildfires were more likely to contain vegetation that 365 

was over 80 years post-fire and had been burnt less than three times in the previous 20 years. 366 

Vegetation older than 80 years is considered mature for several of the vegetation types within 367 

this region (Cheal 2010). Therefore, maintaining sufficient vegetation within this age range 368 

and reducing fire frequency may be important actions for conserving fauna species in this 369 

study, such as the Bassian thrush and superb lyrebird.  370 

Co-occurring threats, such as invasive species, can influence the value of fire refuges 371 

(Robinson et al. 2013; Reside et al. 2019). By jointly modelling occurrence of native species, 372 



as well as invasive species that threaten these species, we are also able to identify the 373 

invasive species that are likely to co-occur in identified areas of high conservation 374 

importance. Our results suggest that feral cats and red foxes were less likely to occur in high-375 

ranking locations after the 2019/2020 wildfires, compared with lower ranking locations. For 376 

red foxes, this is likely reflective of decades of lethal fox control that has reduced fox 377 

occurrence and abundance in the study region and subsequent increases in the abundance of 378 

some native fauna (Dexter & Murray 2009; Robley et al. 2022). To maximise the persistence 379 

of native species, ensuring that feral cats remain excluded from high-value locations should 380 

be a key consideration for managers, under both normal conditions and during post-fire 381 

recovery.  382 

The results of our joint-species distribution model also revealed some insights 383 

relevant to the management of the fauna community considered in our study. Our results 384 

confirm the results of previous studies in the region that fox baiting is negatively associated 385 

with fox occurrence, and positively associated with the occurrence of some small and 386 

medium-sized mammals (e.g. long-footed potoroo) (Dexter & Murray 2009). It is also worth 387 

noting that a negative association between baiting intensity and the probability of dingo and 388 

spot-tailed quoll occurrence does not demonstrate a causal relationship. For example, spot-389 

tailed quoll presences were geographically concentrated in the north-west of the study area. 390 

While this area has lower baiting intensity for logistical reasons, it is also distinctive across a 391 

range of environmental variables beyond the scope of this study. For both bird and mammal 392 

species in our analysis, topographic wetness index was an important covariate, suggesting a 393 

preference for gullies and other wet areas typically characterised by dense vegetation with 394 

favourable microclimates and abundant food resources (Reside et al. 2019). As feral cat and 395 

feral pig occurrence was also positively associated with wetter areas, this requires 396 

management attention as feral pigs are predators of small vertebrates, and can simplify 397 

vegetation structure (Bengsen, West & Krull 2017), which may in turn aid feral cat hunting 398 

success (McGregor et al. 2015). 399 

While our approach has generated some insights into the management of the East 400 

Gippsland fauna community following the 2019/2020 wildfires, care is needed when 401 

interpreting our results, especially in a management context. Our intention was to 402 

demonstrate a method, rather than to develop an accurate management plan. The spatial 403 

prioritisation component of our study assumes that each species’ relationship with time since 404 

fire has been characterised accurately (see Figure S1). As our approach uses a single 405 

historical field dataset collected using one survey method (camera trapping) to model 406 



correlative relationships, there may be considerable uncertainty in the relationships between 407 

some species’ occurrences and time since fire, especially when camera traps are not an 408 

effective survey method (e.g. arboreal mammals). Further, our analysis only considers 35 409 

mammal and bird species, and one reptile species, for which data were available, and so the 410 

identified high-ranking locations are only relevant for these species. Lastly, the severity of 411 

the Black Summer megafires were extreme, having been preceded by significant rainfall 412 

deficits over three years in East Gippsland (Nolan et al. 2020). As our model was 413 

parametrised by relating fire history characteristics with species occurrences, forecasting 414 

responses to fires outside the historical fire regime will be uncertain.  415 

Rapid and substantial climate and environmental change will require conservation 416 

managers to explicitly build flexibility into conservation planning approaches and 417 

acknowledge that conservation priorities might need to change in response to large events, 418 

such as fires (Rhodes et al. 2022), or incursions of invasive species. Our study outlines a 419 

dynamic framework for forecasting individual species responses to a range of drivers and 420 

identifying how locations of conservation importance shift following a large wildfire. As our 421 

approach is easily updateable with new field data and can also be used to forecast individual 422 

species and community responses to future fire regimes (sensu Connell et al. 2019), it 423 

provides land managers with the ability to pre-plan and make decisions before the next fires 424 

occur as well as closely manage the identified important refuges in the interim. Two 425 

particular future applications are of interest to fire managers: 1) Using scenario analysis to 426 

identify areas for protection from future fire or areas that need to be burnt to maintain an 427 

appropriate mix of fire age classes in the landscape, and 2) Ensuring important areas are 428 

spread geographically throughout the region to maintain species’ metapopulations and 429 

minimise the risk of losing all important locations during a single large, severe disturbance in 430 

the future. This information will be vital to help managers to better prepare biodiversity for a 431 

future of climate and disturbance extremes (Wintle, Legge & Woinarski 2020).  432 
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Supplementary Information 1 444 

 445 
 446 

Figure S1: Directed acyclic graph illustrating the hypothesised causal relationship between time-since-447 

fire, vegetation structure and the number of times a site was burnt in this study, and their effects on species 448 

occurrence probabilities. Dashed lines indicate hypothesised causal relationships assumed but not 449 

explicitly tested in this study, and solid lines indicate the associations tested in this study that are assumed 450 

to be representative of the causal relationships.  451 

 452 

Table S1: Number of sites each species that was included in the joint-species distribution model was 453 

detected. Total number of sites in the analysis was 967. 454 

 455 
Species Common Name Species Scientific Name Count of Sites 

Detected 

Black Wallaby Wallabia bicolor 747 

Superb Lyrebird Menura novaehollandiae 580 

Common Wombat Vombatus ursinus 516 

Mountain Brushtail Possum Trichosurus cunninghami 440 

Feral Cat Felis catus 371 

Common Brushtail Possum Trichosurus vulpecula 344 

Long-footed Potoroo Potorous longipes 285 

Agile Antechinus Antechinus agilis 242 

Grey Shrike-thrush Colluricincla harmonica 228 

Lace Monitor Varanus varius 184 

Long-nosed Bandicoot Perameles nasuta 184 

Bassian Thrush Zoothera lunulata 174 

Short-beaked Echidna Tachyglossus aculeatus 167 

Wonga Pigeon Leucosarcia melanoleuca 140 

Red-necked Wallaby Macropus rufogriseus 128 

White-browed Scrubwren Sericornis frontalis 120 

Pied Currawong Strepera graculina 116 

Eastern Yellow Robin Eopsaltria australis 102 

Red Fox Vulpes vulpes 94 

Superb Fairy-wren Malurus cyaneus 89 

Dusky Antechinus Antechinus swainsonii 88 

Sambar Deer Rusa unicolor 86 

Pilotbird Pycnoptilus floccosus 70 

Dingo Canis dingo 66 

Spotted Quail-thrush Cinclosoma punctatum 64 

Horse Equus ferus caballus 59 



Satin Bowerbird Ptilonorhynchus violaceus 46 

White-throated Treecreeper Cormobates leucophaea 45 

Eastern Grey Kangaroo Macropus giganteus 44 

European Rabbit Oryctolagus cuniculus 43 

Laughing Kookaburra Dacelo novaeguineae 43 

White-winged Chough Corcorax melanorhamphos 43 

Eastern Whipbird Psophodes olivaceus 40 

Bush Rat Rattus fuscipes 35 

Grey Currawong Strepera versicolor 35 

Long-nosed Potoroo Potorous tridactylus 29 

Feral Pig Sus scrofa 25 

Spot-tailed Quoll Dasyurus maculatus 25 

Common Ringtail Possum Pseudocheirus peregrinus 23 

Eastern Pygmy-possum Cercartetus nanus 21 

 456 

 457 

 458 



 459 
Figure S2: Covariates included in the joint species distribution model used to predict the 460 

occurrence of fauna species throughout the study region in East Gippsland, Australia.  461 



 462 

Figure S3: Model coefficients and 90% credible intervals for each native mammal and reptile species and 463 

environmental covariate within the joint-species distribution model for the East Gippsland fauna 464 

community in Victoria, Australia. Coefficients with closed circles indicate covariates where the credible 465 

intervals do not overlap zero, and open circles indicate covariates where the credible intervals do overlap 466 

zero.  467 

 468 



 469 

Figure S4: Model coefficients and 90% credible intervals for each native bird species and environmental 470 

covariate within the joint-species distribution model for the East Gippsland fauna community in Victoria, 471 

Australia. Coefficients with closed circles indicate covariates where the credible intervals do not overlap 472 

zero, and open circles indicate covariates where the credible intervals do overlap zero. 473 

 474 



 475 

Figure S5: Model coefficients and 90% credible intervals for each invasive species and environmental 476 

covariate within the joint-species distribution model for the East Gippsland fauna community in Victoria, 477 

Australia. Coefficients with closed circles indicate covariates where the credible intervals do not overlap 478 

zero, and open circles indicate covariates where the credible intervals do overlap zero. 479 

 480 

 481 

Figure S6: Priority rankings from Core Area Zonation analyses using predicted species distributions for a) 482 

the year 2017 (pre-Black Summer), b) the year 2022 (post-Black Summer) and c) 2030 (10 years post-483 

Black Summer) for a fauna community in East Gippsland, Victoria, Australia. Values closer to 1 are 484 

relatively higher ranked in terms of conservation importance compared with values closer to 0. Rankings 485 

for the 2022 and 2030 scenarios are in Figure S6. 486 

 487 

 488 

a) 2017 Rank

0 1

b) 2022 Rank

0 1

c) 2030 Rank

0 1



Table S2: Model diagnostics for each species contained within the joint-species distribution 489 

model. AUC: Area Under the Curve, RMSE: Root Mean Squared Error, TjurR2:  Tjur R2.  490 

 491 
Species AUC RMSE TjurR2 

Horse 0.98 0.17 0.45 

Pilotbird 0.97 0.18 0.34 

Pig 0.95 0.14 0.17 

Spot-tailed Quoll 0.93 0.15 0.11 

Eastern Yellow Robin 0.92 0.25 0.2 

White-browed Scrubwren 0.92 0.26 0.25 

Eastern Pygmy-possum 0.92 0.14 0.07 

European Rabbit 0.91 0.18 0.19 

Long-nosed Potoroo 0.91 0.15 0.08 

Eastern Grey Kangaroo 0.91 0.18 0.17 

White-winged Chough 0.89 0.18 0.16 

Eastern Whipbird 0.88 0.18 0.1 

Long-footed Potoroo 0.87 0.35 0.31 

Bassian Thrush 0.86 0.31 0.22 

Red-necked Wallaby 0.86 0.29 0.2 

Superb Fairy-wren 0.85 0.25 0.12 

Red Fox 0.83 0.27 0.16 

Common Brushtail Possum 0.83 0.39 0.29 

Satin Bowerbird 0.83 0.2 0.07 

Mountain Brushtail Possum 0.82 0.41 0.25 

Wonga Pigeon 0.82 0.31 0.11 
White-throated Treecreeper 0.81 0.2 0.05 

Spotted Quail-thrush 0.79 0.23 0.07 

Lace Monitor 0.79 0.35 0.12 

Dusky Antechinus 0.79 0.27 0.08 

Agile Antechinus 0.78 0.38 0.16 

Superb Lyrebird 0.78 0.44 0.2 

Bush Rat 0.77 0.18 0.04 

Common Ringtail Possum 0.77 0.14 0.02 

Dingo 0.76 0.24 0.07 

Sambar Deer 0.76 0.27 0.08 

Long-nosed Bandicoot 0.76 0.35 0.1 

Grey Shrike-thrush 0.75 0.39 0.08 

Pied Currawong 0.72 0.3 0.05 

Grey Currawong 0.72 0.18 0.02 

Short-beaked Echidna 0.72 0.35 0.07 

Black Wallaby 0.7 0.45 0.1 

Feral Cat 0.68 0.46 0.06 

Common Wombat 0.62 0.49 0.03 

Laughing Kookaburra 0.61 0.2 0.01 

  492 

 493 

Table S3: Estimated regression coefficients, error and credible intervals from the beta 494 

regression model used to explain patterns of conservation value identified in the Zonation 495 

analysis. Q2.5 and Q97.5 represent the lower and upper 95% credible intervals, respectively.  496 

 497 

 Estimate Est.Error Q2.5 Q97.5 

Intercept 0.01 0.01 -0.01 0.03 

polyCat_s31 -20.93 1.92 -24.66 -17.21 

polyCat_s32 25.10 0.97 23.20 27.01 

polyCat_s33 -5.01 0.95 -6.84 -3.17 

polySambar_s31 0.19 2.57 -4.77 5.11 

polySambar_s32 30.37 1.22 28.05 32.82 



polySambar_s33 -13.35 1.04 -15.37 -11.38 

polyRed.Fox_s31 50.13 3.27 43.67 56.65 

polyRed.Fox_s32 -1.73 1.36 -4.38 0.97 

polyRed.Fox_s33 -11.84 1.27 -14.26 -9.27 

polytsf_s31 17.77 1.05 15.78 19.84 

polytsf_s32 12.57 1.17 10.34 14.86 

polytsf_s33 -1.59 0.88 -3.33 0.16 

polybait_s31 30.52 1.15 28.27 32.75 

polybait_s32 9.13 0.93 7.29 10.94 

polybait_s33 -5.51 0.83 -7.11 -3.93 

polyrepeatburn_s31 6.78 0.88 5.05 8.44 

polyrepeatburn_s32 -1.43 0.87 -3.12 0.27 

polyrepeatburn_s33 -4.88 1.01 -6.90 -2.93 

polyautocov_s31 53.94 1.09 51.86 56.11 

polyautocov_s32 -6.49 0.92 -8.27 -4.69 

polyautocov_s33 -2.00 0.87 -3.71 -0.30 

 498 
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