1	
2	
3	
4	A curated benchmark dataset for molecular identification based on
5	genome skimming
6	
7	Renata C. Asprino ^{1,2,3} , Liming Cai ^{3,4,5} , Yujing Yan ³ , Peter J. Flynn ³ , Lucas C. Marinho ^{1,3,6} ,
8	Xiaoshan Duan ^{3,7} , Christiane Anderson ⁸ , Goia M. Lyra ⁹ , Charles C. Davis ³ , and Bruno A. S.
9	de Medeiros ^{10,11,12}
10	
11	Affiliations
12 13	1. Programa de Pós-Graduação em Botânica, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil
14	2. Botany, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
15	3. Department of Organismic and Evolutionary Biology, Harvard University Herbaria,
16	Harvard University, Cambridge, Massachusetts 02138, USA
17	4. Department of Integrative Biology, The University of Texas at Austin, Austin, Texas
18	78712, USA
19	5. University of Florida, Gainesville, USA
20	6. Departamento de Biologia, Universidade Federal do Maranhão, São Luís, Maranhão,
21	Brazil
22 23	7. College of Forestry, Northwest Agriculture & Forestry University, Yangling 712100, Shaanxi, China
24	8. University of Michigan Herbarium, Ann Arbor, Michigan 48108, USA
25 26	9. Departamento de Biologia Vegetal, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
27	10. Field Museum of Natural History, Chicago, Illinois 60605, USA
28	11. Smithsonian Tropical Research Institute, Panama City, Panama
29	12. Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts
30	02138, USA
31	
32	
33	Corresponding authors:
34 25	Bruno A. S. de Medeiros, <u>bdemedeiros@fieldmuseum.org</u> Charles C. Davis, cdavis@oeb.harvard.edu
35	
36	
37	
38 39	
33	

41 Abstract

42

43 Genome skimming is a promising sequencing strategy for DNA-based taxonomic 44 identification. However, the lack of standardized datasets for benchmarking genome skimming tools presents a challenge in comparing new methods to existing ones. As part 45 of the development of varKoder, a new tool for DNA-based identification, we curated 46 47 four datasets designed for comparing molecular identification tools using low-coverage 48 genomes. These datasets comprise vast phylogenetic and taxonomic diversity from 49 closely related species to all taxa currently represented on NCBI SRA. One of them 50 consists of novel sequences from taxonomically verified samples in the plant clade Malpighiales, while the other three datasets compile publicly available data. All include 51 raw genome skim sequences to enable comprehensive testing and validation of a variety 52 53 molecular species identification methods. We also provide the two-dimensional 54 graphical representations of genomic data used in varKoder. These datasets represent a 55 reliable resource for researchers to assess the accuracy, efficiency, and robustness of 56 new tools to varKoder and other methods in a consistent and reproducible manner. 57

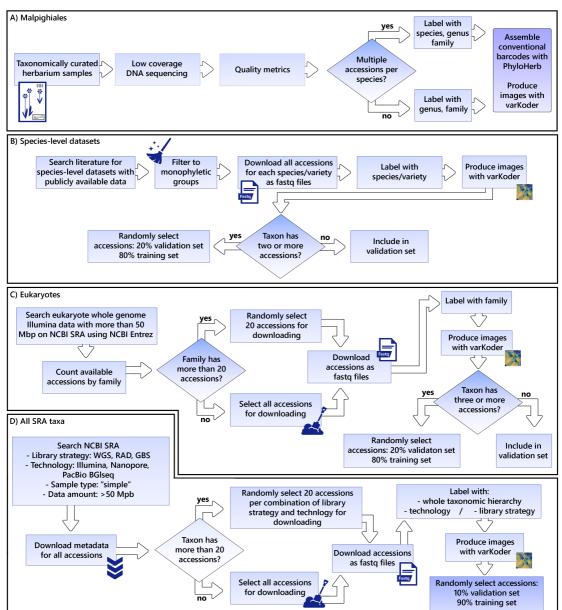
59 Background & Summary

60 Genome skimming has become a versatile tool for biodiversity science, with broad-61 reaching applications spanning phylogenetics to species identification^{1,2,3,4,5}. Low-62 coverage genomic sequencing facilitates the assembly of both traditional DNA-marker 63 barcodes⁶ as well as barcodes that include entire organellar genomes and many nuclear 64 65 ribosomal genes^{3,7}. These DNA barcodes are important for many uses, such as authenticating plant species of human use^{8,9}. One major advantage of genome skimming 66 67 protocols in relation to PCR-based approaches is that they are robust to DNA quality, being ideal for specimens from Natural History collections, which may present degraded 68 DNA¹⁰. More recently, genome skimming data are being applied for innovative assembly-69 70 and alignment-free species identification^{1,11,12}. A large number of methods^{1,12,13,14,15,16,17,18,19,20} have been developed to apply molecular identification and, 71 72 typically, their accuracy and efficiency are evaluated with a custom dataset. The 73 customized nature of such datasets is potentially problematic because the success of a 74 given method may be dataset-dependent. 75 76 We believe this problem can be solved with a readily accessible and well-annotated 77 benchmark dataset. Specifically, the use of benchmarking datasets plays an essential role in both testing novel methods and guiding the improvement of existing methods by 78 allowing unbiased method comparison and reduced errors due to data variation^{21,22}. 79 Benchmarking datasets also help to identify and address potentially confounding 80 81 variables affecting the performance of different methods. These datasets are of 82 widespread interest to computer scientists across different disciplines, each addressing 83 unique challenges within their respective fields. Fields as diverse as text transcription^{23,24}, medical diagnostics^{25,26}, and bioinformatics^{27,28} have invested in 84 developing standardized datasets to facilitate the validation and comparison of 85 analytical tools. 86 87 88 A few such datasets also exist in the field of genomics, notably targeted to the tasks of 89 orthology, variant and function prediction. For the former case, OrthoBench^{29,30} has 90 emerged as the standard benchmarking dataset against which orthogroup inference algorithms have been tested for over a decade. The major benchmark dataset for variant 91 92 prediction is VariBench²¹, which supports the development and evaluation of computational methods for interpreting genetic variants, crucial for improving disease 93 94 diagnosis and understanding genetic differences across various applications. Finally, 95 there is a newly curated collection of benchmark datasets for genomic functional 96 sequence classification in humans, mice, and roundworms²², facilitating the development 97 and evaluation of machine learning models predicting function from DNA sequence data. 98 These models play a crucial role in interpreting vast amounts of genomic data, particularly in human genome investigations, and facilitate discoveries in genetics that 99 have significant implications for medicine and other biological fields. 100 101 Another critical challenge in biodiversity and genomic science is the development of 102 103 DNA-based taxonomic identification methods. In this case, however, we lack a publicly 104 available benchmark dataset similar to those described above. As part of developing 105 varKoder, a new method of DNA-based taxonomic identification based on low-coverage

genomic reads¹ (i.e., genome skimming), we have created a number of curated datasets
for organisms spanning different taxonomic ranks and phylogenetic depths, from closely
related populations, species, to all taxa represented on the NCBI Sequence Read Archive
(SRA, https://www.ncbi.nlm.nih.gov/sra/).

110

To facilitate future comparisons of emerging DNA barcoding methods, here we provide 111 112 these datasets with metadata and instructions for data access. These datasets are useful for both conventional DNA barcodes^{31,32,33,34,35} and alternative methods that rely on low-113 coverage genomic sequencing (i.e., DNA signatures^{1,36}). They include accession numbers 114 for raw reads that can be applied to any genome skimming method, and the image 115 116 representations of these genomes that were used in varKoder development, to allow full reproducibility. These data will enable future comparisons to our newly developed 117 118 approach using the same data that we applied for testing. The datasets made available in 119 this data descriptor include the following: (1) newly sequenced and expert-curated lowcoverage whole genome sequencing for species in the flowering plant clade Malpighiales, 120 spanning divergences from closely related species to families, and with samples labeled 121 at species, genus and family levels (2) species-level datasets for plants, animals, fungi 122 and bacteria obtained from the literature, and samples labeled at the species level or 123 below (3) a dataset including all eukaryotic families from the NCBI SRA, labeled at the 124 family level and (4) a dataset with all taxa available from the NCBI SRA, labeled with 125 126 their complete taxonomic classification.


127

The newly sequenced Malpighiales data was used to extensively compare varKoder¹ to
alternative species identification tools relying on low-coverage genome sequencing,
including Skmer¹², iDeLUCS³⁷, and conventional barcodes assembled with PhyloHerb³⁸.
The other datasets have been used to test varKoder performance in different contexts,
some of them outside the domain of existing methods. For example, neither conventional
barcodes or Skmer can be applied to all taxa on NCBI SRA. Metrics and comparisons for
these methods are detailed in de Medeiros et al.¹.

136 Methods

137

Each of the four datasets includes sequencing data and image representations derived
from them (i.e., varKodes and ranked frequency chaos game representations¹). Figure 1
provides an overview of the sampling strategy for each dataset and the workflow used to
assemble them.

143

Figure 1. An overview of data collection and the workflow used to create and curate
each dataset. The datasets were compiled from newly generated sequences or from
publicly available data, following filtering and processing steps shown here.

- 147
- 148

149 Taxon sampling with varying phylogenetic depths

150

Malpighiales dataset. This newly generated dataset tests hierarchical classification from
species to family level in plants. Plants exhibit notoriously complex genomic

architectures³⁹ that challenge the performance of conventional DNA barcoding⁴⁰,

rendering them a good test case for molecular identification tools. This dataset includes

three flowering plant families, all members of the large and morphologically diverse

156 order Malpighiales^{41,42,43}: Malpighiaceae, Elatinaceae, and Chrysobalanaceae. See below

157 for laboratory methods applied for collecting these newly generated sequences.

159 The Malpighiaceae data are the most taxonomically sampled and include 287 accessions 160 representing 195 species, which were sampled from 277 herbarium specimens and ten silica-dried field collections. Among these data, the genus *Stigmaphyllon* were 161 comprehensively sampled to build, validate, and test identification methods at shallower 162 163 phylogenetic depths. A total of 100 Stigmaphyllon samples were collected, including 10 164 accessions per species across 10 species. One main advantage of sampling Stigmaphyllon 165 is that its taxonomy has been extensively revised, resulting in a diverse and clearly classified set of samples^{44,45}. Moreover, the *Stigmaphyllon* clade represents a wide array 166 of divergence times that span distantly- (34.1 Myr) to very closely-related (0.6 Myr) 167 species^{1,46}. 168

169

170 The focus for the remainder of the sampling in Malpighiales (Malpighiaceae,

171 Chrysobalanaceae, and Elatinaceae) is to identify a given sample to genus or family. In

this case, among the non-*Stigmaphyllon* samples we included 3–9 species per genus

- representing 30 genera of Malpighiaceae, eight of Chrysobalanaceae, and one of
 Elatinaceae. Each sample representative was labeled with its corresponding genus and
- 175 family identification.
- 176

Species- and subspecies-level datasets. To test shallow-level classification at species or
lower taxonomic ranks, we compiled four datasets from publicly available genome
skimming data from the NCBI SRA using NCBI Entrez. These datasets include one

180 bacterial species and one genus each from plants, animals, and fungi.

181

182 First, we included a dataset from *Mycobacterium tuberculosis*, the species of pathogenic 183 bacteria that causes tuberculosis. The bacterial set consisted of clinical isolates from five 184 distinct, monophyletic lineages of M. tuberculosis (1.2.2.1, 2.2.1.1.1, 3.1.2, L4.1.i1.2.1, and 185 L4.3.i2) with seven clinical isolates per lineage, totaling 35 samples. This dataset enables 186 testing identification tools on an extremely recently diverged, clinically relevant bacterial lineage⁴⁷. This dataset of clinical isolates from human-adapted lineages 187 exhibited 99.9% sequence similarity despite key differences in phenotypes, including 188 drug resistance, virulence, and transmissibility⁴⁷. *Mycobacterium tuberculosis* has 189 diversified quite rapidly in humans, with nine monophyletic lineages. Divergence time 190 191 estimates for the most recent common ancestor of *M. tuberculosis* are <6,000 years ago⁴⁸. 192 The validation set included 3–6 different samples from the five training lineages as well 193 as 1-4 samples from lineages not included in the training set (2.1, 4.10.i1, and 194 4.6.2.1.1.1.1), totaling 25 validation samples.

195

196 For plants, we included a dataset from a well-delineated clade of mycoheterotrophic 197 orchids⁴⁹ (genus *Corallorhiza*), that allows for assessing the infraspecific taxa variation. Corallorhiza striata includes several well-known and easily identifiable varieties. For the 198 199 Corallorhiza training set, we included five species (or varieties) with at least five samples 200 per species/variety (for *C. bentleyi*, *C. striata* var. *involuta*, *C. striata*), except for *C. striata* 201 var. vreelandii and C. striata var. striata, for which we included six and seven samples each, respectively, totaling 28 samples. The validation set included 2-11 different 202 203 samples from three of the five training species/varieties (C. striata, C. striata var. striata, 204 and *C. striata* var. *vreelandii*) as well as one sample from *C. trifida* which was not included in the training set, totaling 18 validation samples. 205

For animals, we assembled a *Bembidion* beetle dataset, which includes well-known
closely-related cryptic species that were the target of extensive low-coverage wholegenome sequencing^{50,51}. The training set included five samples for each of five species
including *B. breve, B. ampliatum, B. lividulum, B. saturatum,* and *B. testatum,* totaling 25
samples. The validation set included 1–4 different samples from the five training species
as well as from species not included in the training set including *B. aeruginosum, B. curtulatum, B. geopearlis, B. neocoerulescens,* and *B. oromaia,* totaling 18 samples.

214

For fungi, we used *Xanthoparmelia*, a lichen-forming fungal genus whose species are 215 216 poorly understood and which often form paraphyletic species groupings⁵². Samples for 217 Bembidion, Corallorhiza, and Mycobacterium tuberculosis isolates all formed 218 monophyletic groups, whereas Xanthoparmelia species did not. Since the 219 Xanthoparmelia species were paraphyletic, we subsampled only monophyletic groups 220 for model training. In this case, four species included three samples per species (X. camtschadalis, X. mexicana, X. neocumberlandia, and X. coloradoensis) and one species 221 222 included five samples (X. chlorochroa) for the training set, totaling 17 samples. One 223 potential confounding factor is that *Xanthoparmelia* is a lichen-forming fungus and thus 224 genome-skim data represents a chimera of fungal and algal genomes representing both 225 partners in this unique symbiosis. Species of the algal symbiont *Trebouxia* are flexible 226 generalists across fungal Xanthoparmelia species. Since these genome skims are a mix of 227 both algal photobiont and fungus, we expect this to be a challenging identification

problem because of the more generalist nature of *Trebouxia*⁵³. The validation set
included 1–3 different samples from the five training species as well as one sample from

230 species not included in the training set including *X. maricopensis, X. plittii, X. psoromifera,*231 *X. stenophylla, X. sublaevis*, totaling 15 validation samples.

232

233 *Eukaryote family-level dataset.* We retrieved DNA sequencing data from the NCBI SRA on 234 March 7, 2023 using NCBI Entrez, filtering for whole genome sequencing data with random library selection from Eukaryotes (taxid:2759), requiring fastq file availability 235 236 and DNA as biomolecular type. For each record, we collected taxonomic information 237 using NCBI's Taxonomy database to retrieve family and kingdom classification. Records 238 were filtered to include only those sequenced on the Illumina platform with more than 239 50 million sequenced bases. To ensure balanced representation across taxa, we 240 randomly selected one sequencing run per taxon, and then randomly selected up to 20

taxa per family. For each sample, we used fastq-dump

242 (https://hpc.nih.gov/apps/sratoolkit.html) to download 500,000 reads, skipping the

243 first 10,000 reads for each accession. The resulting dataset comprises 8,222 accessions,

including families of animals (5,642 accessions, 1,426 families), plants (2,705 accessions,

- 245 401 families) and fungi (1,572 accessions, 363 families).
- 246

247 *All-taxa dataset.* We retrieved DNA sequencing data from the NCBI SRA using NCBI

Entrez on January 9, 2024 and the following criteria: (1) fastq file availability, (2) DNA as

biomolecular type, (3) library strategies limited to Genotyping by Sequencing (GBS),

250 Restriction site Associated DNA sequencing (RAD-Seq), or Whole Genome Sequencing

251 (WGS), (4) sample type "simple", (5) sequencing platform including Illumina, Oxford

252 Nanopore, PacBio SMRT, or BGISEQ, (6) more than 50 million sequenced bases. For each

- 253 record, we collected taxonomic information of the full taxonomic hierarchy using NCBI's 254 Taxonomy database. To ensure balanced representation across taxa and methodologies, we randomly selected up to 20 records for each unique combination of taxonomic ID. 255 library strategy, and sequencing platform to avoid overrepresentation of model species 256 such as humans, mice, and *Escherichia coli*. For each sample, we calculated a target 257 258 number of reads estimated to yield 60 million bases from the SRA record metadata, 259 approximately three times the amount needed for 20 million bases of quality-filtered sequence. We then used fastq-dump to download that number of spots per sample (or at 260 least 10,000 spots, if the estimated number was smaller than that). The resulting dataset 261 includes 253,820 accessions including 28,636 taxonomic labels. 262
- 263

265

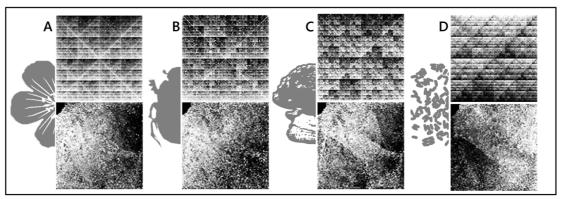
264 Laboratory methods for newly generated data

- 266 For our newly sequenced Malpighiales data we used total genomic DNA extractions. We isolated total genomic DNA from 0.01–0.02 g of silica-dried leaf material or, more 267 commonly, herbarium collections using the Maxwell 16 DNA Purification Kit (Promega 268 Corporation, Inc., WI, USA) and quantified it using the Qubit 4.0 Fluorometer (Invitrogen, 269 CA, USA), with the Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, Inc., MA, USA). 270 Our sampling of herbaria followed the guidelines for effective and ethical sampling of 271 272 these resources outlined by Davis et al.⁵⁴. Genomic libraries were prepared using ca. 70 273 ng of genomic DNA where possible, using 1/8 reactions of the Kapa HyperPlus Library 274 Preparation Kit (Roche, Basel, Switzerland). Libraries were indexed by using the IDT for 275 Illumina TruSeq DNA unique dual 8 bp barcodes (Illumina Inc., San Diego, CA, USA) or 276 the Nextflex-Ht barcodes (Bioo Scientific Corporation, TX, USA) for multiplexing up to 277 384 samples per sequencing lane. For library preparation, the genomic DNA was sheared by enzymatic fragmentation to 350–400 base pairs (bp). Libraries' 278 concentrations were verified with the Qubit 4.0 Fluorometer, using the Qubit dsDNA HS 279 280 Assay Kit (Invitrogen, CA, USA), and average sizes of DNA fragments were verified with the High Sensitivity HSD1000 ScreenTape Assay in the 2200 TapeStation (Agilent 281 Technologies, Waldbronn, Germany). Libraries were diluted into 0.7 nM or 1.0 nM and 282 pooled together. We used Real-Time PCR (BioRad CFX96 Touch, BioRad Laboratories, 283 Hercule, USA) with the NEBNext Library Quant Kit (New England Biolabs, Ipswich, USA) 284 for verifying the final concentration of the libraries' pools. Sequencing of libraries was 285 286 conducted using the Illumina Hi-Seq 2500 or the Illumina NovaSeq 6000 (Illumina Inc., 287 San Diego, CA, USA) for 125 bp or 150 bp pair-ended reads, at The Bauer Core Facility at 288 Harvard University, MA, USA.
- 289

290 Extracting conventional barcodes from genome skimming data

291

For the Malpighiales dataset, we assembled conventional barcodes. To recover the
traditional plant barcodes *rbcL*, *matK*, *trnL*-F, *ndh*F, and ITS from our Malpighiales
genome skim data, we applied GetOrganelle v1.7.7.0⁵⁵ and PhyloHerb v1.1.1³⁸ to
automatically assemble and extract these DNA markers, respectively. Briefly, the
complete or subsampled genome skim data were first assembled into plastid genomes or
nuclear ribosomal regions using GetOrganelle⁵⁵ with its default settings. Next,
PhyloHerb³⁸ was applied to extract the relevant barcode genes using its built-in BLAST


299 database.

301 Creation of varKode and CGR images from genome skimming data

302

In addition to raw sequence data, we provide image representations of the genome 303 304 signature (Figure 2) implied by these data for all samples included here. See our 305 companion paper¹ for details on how these images are generated. In all cases, pixels in 306 these images represent individual k-mer sequences. Brightness represents the frequency of a k-mer, transformed to ranks and digitized to 8 bits. The two kinds of representation 307 provided differ in how k-mers are mapped to pixels. VarKodes are a compact 308 representation in which k-mer counts and their reverse complements are combined. The 309 310 mapping of k-mers to pixels in an image attempts to place more similar k-mers closer together in the image space. Ranked frequency chaos game representation (rfCGR) 311 312 images are similarly produced, but the mapping of k-mers to pixels follows the chaos 313 game representation⁵⁶. rfCGRs present a fractal pattern, while varKodes generally present gradients spanning the whole image. In both cases, we used the "varKoder 314 image" command to generate varKodes, and then used "varKoder convert" to generate 315 316 rfCGRs from these varKodes. In all cases, we used k-mers of size seven, which were determined to yield optimal balance between classification accuracy and computing 317 318 effort¹. These k-mer counts were used to generate images and we normalized counts by 319 ranking and then rescaling and quantizing ranks to integer numbers ranging from 0 to 320 255, which are the brightness levels supported by a png image. All images are saved in 321 png format, including built-in exif metadata with the labels assigned to each sample. 322 After producing images, we split datasets into training and validation sets. The following 323 specific settings have been used for each dataset described below.

324

325

Figure 2. Demonstration of the two types of image representations of the genome
signature included in our datasets. Examples of rfCGRs (top) and varKodes (bottom) are
shown for four different clades: plants (a), animals (b), fungi (c), and bacteria (d). rfCGRs
are larger images, and their relative sizes are shown to scale. In each case, both images
were produced from the same sequence data. a) Local ID 1089 (plant, *Triaspis hypericoides*) b) SRA Accession SRR15249224 (beetle, *Mesosa* sp.). c) SRA Accession
SRR15292413 (fungus, *Amania* sp.). d) SRA Accession SRR2101396 (Bacteria,

- 333 Mycobacterium tuberculosis).
- 334
- 335
- *Malpighiales.* varKodes have been produced from data amounts varying from 500Kbp to
 200 Mbp and k-mer size of 7. We applied leave-one-out cross-validation in all tests

- following de Medeiros et al.¹, so the dataset has not been split into training and
- 339 validation sets. All accessions have been labelled with their genus and family
- identification. For species in the genus *Stigmaphyllon*, we additionally labeled accessionswith their species identity.
- 342

343 Species- and subspecies-level datasets. varKodes have been produced from data amounts 344 varying from 500 Kbp to the maximum amount of data available for each accession and k-mer size of 7. All accessions have received a single label: their species or variety name. 345 For species or varieties represented by at least four accessions, we randomly chose 20% 346 of the accessions for the validation set (with a minimum of 1) and 80% for the training 347 348 set. For species or varieties with three or less accessions, they were only included in the 349 validation set, to test whether a multi-label model correctly predicted no labels for that 350 accession.

351

352 *NCBI SRA Eukaryotes.* varKodes have been produced from data amounts varying from

353 500Kbp to 10Mbp and k-mer size of 7. All accessions have received a single label: their

family name. For families represented by at least three accessions, we randomly chose

20% of the accessions for the validation set (with a minimum of 1) and 80% for the

training set. Families with less than two accessions were only included in the validationset, to test whether a multi-label model correctly predicted no labels for that accession.

358

359 *NCBI SRA all-taxa.* varKodes have been produced from data amounts varying from

500Kbp to 20Mbp and k-mer size of 7. All accessions received multiple labels, including:
(1) all NCBI taxonomy IDs related to that accession (i.e., the full taxonomic hierarchy, as
separate labels), (2) the library strategy, and (3) the sequencing platform. We randomly
selected 10% of the accessions for the validation set, regardless of their labels. Next, we
removed from the validation set any labels not present in at least one accession in the
training set.

366

367 Data Records

368

The dataset is available at Harvard Dataverse and the NCBI Sequence Read Archive. The 369 Harvard Dataverse repository⁵⁷ includes metadata tables, processed conventional DNA 370 371 barcodes, and DNA signature images (varKodes and rfCGRs). New sequences (i.e., Malpighiales) have been uploaded to NCBI SRA under SRP47912858. All remaining 372 sequence data were already publicly available on NCBI SRA and can be retrieved from 373 374 the accession numbers in the metadata tables. The complete dataset comprises four 375 major components, summarized below. See Methods for details on each dataset 376 composition.

377

To maximize the utility of our datasets for benchmarking molecular identification tools,

379 we provide comprehensive metadata for each sample. The metadata is organized in a

380 consistent format across all datasets to enable easy comparison and reuse in future

investigations. Each dataset—Malpighiales, Species and subspecies-level (*Bembidion*

beetles, *Corallorhiza* orchids, *Xanthoparmelia* fungi, *Mycobacterium* tuberculosis),

383 Eukaryote families and All SRA taxa—includes a metadata table detailing the raw

sequencing data for each sample, with taxonomic-, sequencing-, and sample-related

- information. All datasets share 17 common metadata fields (**Table 1**). The Malpighiales
- dataset, the only one containing new sequence data, includes five additional fields that
- 387 provide more specific details on voucher information (**Table 2**). The metadata is
- $\label{eq:2} 388 \qquad \mbox{provided in the Harvard Dataverse repository} {}^{57}\!.$

389

Table 1. Description of common metadata fields for all datasets.

FIELD	DESCRIPTION
SRA_Run_ID	The unique identifier for the run in the NCBI SRA.
Local_ID	A unique identifier assigned to each sample as used in Medeiros et al. ¹ . This serves as a local reference for linking metadata, sequence data and images.
Tax_ID	The taxonomic identifier associated with the organism, as per the NCBI taxonomy.
Taxon	The scientific name of the organism from which the sample was derived.
Taxonomy_Superkingdom	Taxonomic classification at the Superkingdom level (i.e., Eukaryota, Bacteria, Viruses or Archaea).
Taxonomy_Kingdom	Taxonomic classification at the Kingdom level.
Taxonomy_Family	Taxonomic classification at the Family level.
BioSample_ID	The unique identifier for the sample in NCBI's BioSample database, linking to additional metadata.
Download_Path	URL to reads on the NCBI SRA.
Library_Strategy	Sequencing strategy (e.g., WGS, RAD-Seq).
Library_Source	DNA source (i.e., genomic DNA or metagenomic).
Library_Layout	Configuration of sequencing reads: SINGLE (single- end) or PAIRED (paired-end).
Seq_Platform	Sequencing Platform, such as Illumina, PacBio, Oxford Nanopore, etc.
Seq_Model	Sequencing Instrument (e.g., Illumina NovaSeq 6000)
Size_MB	Amount of SRA sequencing data in millions of base pairs (MB)
Labels	All the labels assigned to a given accession, combined as a string separated by semicolon.
Set	Set in de Medeiros et al. ¹ . For the Malpighiales dataset, this column has empty values since samples were evaluated with cross-validation. For other datasets: "train" for training set, "valid" for validation set and "valid_notrain" for accessions used in validation but with taxonomic labels not included in the training set, to test for false positives.

392

Table 2. Description of additional metadata fields exclusive in the Malpighiales dataset.

FIELD

Taxonomy_Genus	Labels the genus to which the sample belongs, to support identification to genus level.
Voucher	Information on the collector and the collection number, which links the sample to its voucher specimen.
Collector	The name of the individual(s) responsible for collecting the specimen.
CollectorID	The specific number associated with the collector's collection for this sample.
Collection	The acronym of the collection where the herbarium voucher of the sample is deposited.

395

396 Malpighiales

This dataset contains 287 newly sequenced accessions from three families in the order 397 Malpighiales. This includes families Malpighiaceae (251 accessions representing 31 398 genera), Elatinaceae (6 accessions for 1 genus), and Chrysobalanaceae (30 accessions for 399 8 genera). Malpighiaceae includes *Stigmaphyllon* with the most comprehensive species 400 sampling: 10 species and 10 accessions sampled per species. *Stigmaphyllon* accessions 401 402 are labeled with species, genus and family. All other accessions are labeled with genus and family. This dataset is used for benchmarking molecular identification tools from 403 404 species to family levels under a realistic scenario of uneven diversity and sequencing 405 effort. The data provided includes raw sequencing data, processed conventional 406 barcodes (*rbcL*, *matK*, *trnL*-F, *ndh*F, and ITS), and image representations (varKodes and 407 rfCGRs).

408

409 Species- and subspecies-level datasets

410 This is composed of four datasets from published data of four clades – *Bembidion* beetles

411 (43 accessions from 10 species), *Corallorhiza* orchids (46 accessions from 6

- 412 species/varieties), *Xanthoparmelia* fungi (32 accessions from 10 species), and
- 413 *Mycobacterium* bacteria (60 accessions from 8 lineages). In each case, we include raw
- 414 sequencing data and image representations. These datasets are suitable for
- 415 benchmarking species-level identification, as well as variety, strain, or subspecies.
- 416

417 **Eukaryote families**

418 We compiled a dataset for identifying eukaryote families from the NCBI Sequence Read

- 419 Archive. This includes 9,910 accessions from 2,182 families of animals, plants and fungi.
- 420 Of these, 861 families (517 Metazoa, 197 plants, 147 fungi), represented by 8,222
- 421 accessions, had at least three accessions available and were included in the training set.
- 422 We include sequence data and image representations. This dataset serves to benchmark
- 423 family-level identification tools at a large scale.
- 424
- 425

426 All SRA taxa

- 427 This is the largest dataset compiled from the NCBI Sequence Read Archive, containing
- data including all the taxonomic hierarchy and multiple sequencing methods (253,820 428
- 429 accessions including 28,636 taxonomic labels, three labels for library strategy, and four
- 430 labels for sequencing platform). We include sequence data and image representations.
- 431 This is the largest and most heterogeneous dataset provided here, benchmarking
- 432 identification at all taxonomic levels across different sequencing methodologies.
- 433
- 434 For raw sequence data, we provide accession numbers to NCBI SRA runs. These can be downloaded in conventional formats (such as fastq) using the SRA toolkit 435 (https://github.com/ncbi/sra-tools).
- 436 437
- 438 Processed conventional barcodes are provided as fasta files. Each fasta file is named 439 after the gene region represented and includes individual sequences named after the 440 SRA accession number.
- 441

442 Image representations are provided as png images. These images follow a file name convention that is interpreted by **varKoder** and include information about accession 443

- 444 number, k-mer size, type of representation and amount of DNA sequence data used to
- 445 produce the image: "[local ID]@[sequence base pairs]+[representation]+k[k-mer
- 446 size].png". For example, the file "SRR9036258@00010000K+varKode+k7.png"
- 447 represents accession with local ID SRR9036258, 10 Mbp (i.e., 10,000 Kbp) of sequence
- 448 data, varKode representation and k-mer size of 7. Labels associated with accession can
- 449 be found in the metadata tables and also as image metadata contained in the png file. 450 varKoder is able to read this image metadata, and it is also visible through general
- 451 purpose programs that handle image metadata, such as exiftool (https://exiftool.org).
- 452

Technical Validation 453

454

We measured sequencing success using various quality metrics for raw reads and the 455 plastid assemblies produced from them. These include the sequencing yield, percentage 456 457 of bases with a quality score above 30, average GC content of the raw sequencing output, 458 whether plastid assemblies were complete and the assembly size. Raw read metrics 459 were estimated with fastp v. 0.23.2⁵⁹ and assembly metrics with GetOrganelle. These metrics were calculated for the newly sequenced data of Malpighiales' representatives to 460 ensure robustness and reliability of the sequencing results. A summary of these metrics 461 are provided in Table S1. 462

463

464 We have not further validated sequences that were already publicly available. In that case, we used data as downloaded from NCBI following the filters specified in materials 465 466 and methods.

467

Usage Notes 468

- 469
- See de Medeiros et al.¹ for a complete account of how these datasets have been used to 470 471 develop and test varKoder. NCBI accession numbers can be used to download associated
- 472 sequence data with the SRA toolkit (<u>https://github.com/ncbi/sra-tools</u>). Conventional

473 barcode sequences in the fasta format can be used for sequence alignment and search.

474 varKode and rfCGR images can be used as input to varKoder or other programs

475 processing images in the PNG format. Conventional barcode sequences and PNG images

476 can be found in the Harvard Dataverse repository⁵⁷ accompanying this article.

477

478 Code Availability

479

The code used to retrieve and process sequence data used here is available in a github
repository (https://github.com/brunoasm/varKoder_development), archived in
FigShare (https://doi.org/10.6084/m9.figshare.8304017)⁶⁰. The source code for
varKoder, which can process sequence data into varKodes and rfGRS, as well as train and
use neural networks, is available at https://github.com/brunoasm/varKoder_development), archived in

485

486 Acknowledgments

487

488 BdM was supported by the Harvard University Museum of Comparative Zoology, the 489 Smithsonian Tropical Research Institute and the Walder Foundation. RCA and LCM were 490 supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil 491 (CAPES) – Finance Code 001. LC was supported by Harvard University and by a Stengl 492 Wyer scholarship from the University of Texas at Austin. PF was supported by LVMH 493 Research, Dior Science and NSF PRFB. YY was supported by a postdoctoral fellowship from Harvard University Herbaria. CCD was supported by Harvard University, LVMH 494 495 Research, Dior Science, and National Science Foundation grants DEB-1355064 and DEB-496 0544039. Computations were performed at the Harvard Cannon Cluster and the Field 497 Museum Grainger Bioinformatics Center. We thank the Bauer Core Facility, and 498 especially Claire Reardon, at Harvard University for providing technical support during 499 the laboratory process. We thank Kylee Peterson for assistance in obtaining the newly 500 sequenced data. Newly generated sequence data were collected under Harvard 501 University's binding Participation Agreement.

502

503 Author contributions

504

505 Renata C. Asprino compiled the herbarium samples, collected and curated the new DNA506 sequence data, prepared the data repositories and wrote the manuscript.

507 Liming Cai curated the new DNA sequence data, processed conventional barcodes and508 wrote the manuscript.

509 Yujing Yan collected and curated the new DNA sequence data and wrote the manuscript.

510 Peter J. Flynn collected, curated and processed the species-level datasets and wrote the511 manuscript.

512 Lucas C. Marinho collected and curated the new DNA sequence data, and prepared

513 figures.

- 514 Xiaoshan Duan contributed to conceive the workflow, collected and curated the new
- 515 DNA sequence data.
- 516 Christiane Anderson helped to conceive the sampling and compiled the herbarium517 samples.
- 518 Goia M. Lyra compiled the herbarium samples and collected the new DNA sequence data.
- 519 Charles C. Davis designed the research, funded new DNA sequencing, compiled the
- herbarium samples, collected and curated the new DNA sequence data, and wrote themanuscript.
- 522 Bruno A. S. de Medeiros designed the research, designed varKodes, wrote the program
 523 *varKoder*, curated the large SRA datasets, prepared the data repositories and wrote the
 524 manuscript.
- 525 All authors revised and approved the manuscript.

527 **Competing interests**

528

526

529 CCD declares that he is supported by LVMH Research and Dior Science, a company
530 involved in the research and development of cosmetic products based on floral extracts.
531 He also serves as a member of Dior's Age Reverse Board. No other authors declare
532 competing interests.

533

534 **References**

535 536

537

538

539

540

541 542

543

- 1. de Medeiros, B. *et al.* A universal DNA barcode for the Tree of Life. Preprint at <u>https://doi.org/10.32942/X24891</u> (2024).
- 2. Dodsworth, S. Genome skimming for next-generation biodiversity analysis. *Trends Plant Sci.* **20**, 525–527 (2015).
- 3. Coissac, E., Hollingsworth, P. M., Lavergne, S. & Taberlet, P. From barcodes to genomes: extending the concept of DNA barcoding. *Mol. Ecol.* **25**, 1423–1428 (2016).
- 4. Zeng, C.-X. *et al.* Genome skimming herbarium specimens for DNA barcoding and phylogenomics. *Plant Methods* **14**, 43 (2018).
- 5455.Quattrini, A. M. *et al.* Skimming genomes for systematics and DNA barcodes546of corals. *Ecol. Evol.* **14**, e11254 (2024).
- 547
 548
 548
 549
 6. Liu, S. *et al.* SOAPBarcode: revealing arthropod biodiversity through assembly of Illumina shotgun sequences of PCR amplicons. *Methods Ecol. Evol.* 4, 1142–1150 (2013).
- Gillett, C. P. D. T., Crampton-Platt, A., Timmermans, M. J. T. N., Jordal, B. H.,
 Emerson, B. C., & Vogler, A. P. Bulk de novo mitogenome assembly from
 pooled total DNA elucidates the phylogeny of weevils (Coleoptera:
 Curculionoidea). *Mol. Biol. Evol.* 31, 2223–2237 (2014).
- 5548.Davis, C. C. & Choisy, P. Medicinal plants meet modern biodiversity science.555*Curr. Biol.* 34, R158–R173 (2024).

	nsprino e	
556	9.	Shrestha, N., Hart, R., Harrison, D., Gourguillon, L. & Davis, C. The human
557		fingerprint of medicinal plant species diversity. Preprint at
558		https://doi.org/10.32942/X2T638 (2025).
559	10.	Bakker, F. T. <i>et al.</i> Herbarium genomics: plastome sequence assembly from a
560		range of herbarium specimens using an Iterative Organelle Genome
561		Assembly pipeline. <i>Biol. J. Linn. Soc.</i> 117, 33–43 (2016).
562	11.	Bohmann, K., Mirarab, S., Bafna, V. & Gilbert, M. T. P. Beyond DNA barcoding:
563		The unrealized potential of genome skim data in sample identification. <i>Mol.</i>
564		<i>Ecol.</i> 29 , 2521–2534 (2020).
565	12.	Sarmashghi, S., Bohmann, K., P. Gilbert, M. T., Bafna, V. & Mirarab, S. Skmer:
566		assembly-free and alignment-free sample identification using genome skims.
567		Genome Biol. 20 , 34 (2019).
568	13.	Fiannaca, A. et al. Deep learning models for bacteria taxonomic classification
569		of metagenomic data. <i>BMC Bioinform.</i> 19 , 198 (2018).
570	14.	Linard, B., Swenson, K. & Pardi, F. Rapid alignment-free phylogenetic
571		identification of metagenomic sequences. <i>Bioinform.</i> 35 , 3303–3312 (2019).
572	15.	Desai, H. P., Parameshwaran, A. P., Sunderraman, R. & Weeks, M.
573		Comparative study using neural networks for 16S ribosomal gene
574		classification. J. Comput. Biol. 27, 248–258 (2020).
575	16.	Shang, J. & Sun, Y. CHEER: HierarCHical taxonomic classification for viral
576		mEtagEnomic data via deep leaRning. <i>Methods</i> 189 , 95–103 (2021).
577	17.	Millán Arias, P., Alipour, F., Hill, K. A. & Kari, L. DeLUCS: Deep learning for
578		unsupervised clustering of DNA sequences. <i>PLoS ONE</i> 17 , e0261531 (2022).
579	18.	Bolyen, E. <i>et al.</i> Reproducible, interactive, scalable and extensible
580		microbiome data science using QIIME 2. <i>Nat. Biotechnol.</i> 37 , 852–857
581		(2019).
582	19.	Chaumeil, PA., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk v2:
583		memory friendly classification with the genome taxonomy database.
584		Bioinform. 38, 5315–5316 (2022).
585	20.	Weitschek, E., Fiscon, G. & Felici, G. Supervised DNA barcodes species
586		classification: analysis, comparisons and results. <i>BioData Mining</i> 7, 4 (2014).
587	21.	Shirvanizadeh, N. & Vihinen, M. VariBench, new variation benchmark
588		categories and data sets. <i>Front. Bioinform.</i> 3, 1248732 (2023).
589	22.	Grešová, K., Martinek, V., Čechák, D., Šimeček, P. & Alexiou, P. Genomic
590		benchmarks: a collection of datasets for genomic sequence classification.
591		BMC Genom. Data. 24, 25 (2023).
592	23.	Joshi, C., Sorenson, L., Wolfert, A., Clement, M., Price, J. & Buckles, K. CENSUS-
593		HWR: a large training dataset for offline handwriting recognition. Preprint at
594		<u>https://doi.org/10.48550/arXiv.2305.16275</u> (2023).
595	24.	Sánchez, J. A., Romero, V., Toselli, A. H., Villegas, M. & Vidal, E. A set of
596		benchmarks for handwritten text recognition on historical documents.
597		Pattern Recogn. 94, 122–134 (2019).
598	25.	Kulyabin, M. et al. OCTDL: Optical coherence tomography dataset for image-
599		based deep learning methods. <i>Sci. Data</i> 11 , 365 (2024).
600	26.	Pawłowska, A. et al. Curated benchmark dataset for ultrasound based breast
601		lesion analysis. <i>Sci. Data</i> 11, 148 (2024).

- 1		
602	27.	Beery, S. et al. The Auto Arborist Dataset: a large-scale benchmark for
603		multiview urban forest monitoring under domain shift. Presented at the
604		IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
605		New Orleans, LA, USA. Available at
606		<u>https://doi.org/10.1109/CVPR52688.2022.02061</u> (2022).
607	28.	Cañas, J. S. et al. A dataset for benchmarking Neotropical anuran calls
608		identification in passive acoustic monitoring. <i>Sci Data</i> 10 , 771 (2023).
609	29.	Trachana, K. et al. Orthology prediction methods: A quality assessment using
610		curated protein families. <i>BioEssays</i> 33 , 769–780 (2011).
611	30.	Emms, D. M. & Kelly, S. Benchmarking Orthogroup Inference Accuracy:
	50.	
612	- ·	Revisiting Orthobench. <i>Genome Biol. Evol.</i> 12 , 2258–2266 (2020).
613	31.	Hebert, P. D. N., Ratnasingham, S. & de Waard, J. R. Barcoding animal life:
614		cytochrome c oxidase subunit 1 divergences among closely related species.
615		Proc. R. Soc. Lond. B 270, S96–S99 (2003).
616	32.	Kress, W. J. Plant DNA barcodes: Applications today and in the future. J. Syst.
617		<i>Evol.</i> 55 , 291–307 (2017).
618	33.	Ratnasingham, S. & Hebert, P. D. N. BOLD: The Barcode of Life Data System.
	55.	
619		<i>Mol. Ecol. Notes</i> 7 , 355–364 (2007).
620	34.	Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E.
621		Towards next-generation biodiversity assessment using DNA
622		metabarcoding. <i>Mol. Ecol.</i> 21, 2045–2050 (2012).
623	35.	Seifert, K. A. Progress towards DNA barcoding of fungi. <i>Mol. Ecol. Resour.</i> 9,
624		83–89 (2009).
625	36.	de la Fuente, R., Díaz-Villanueva, W., Arnau, V. & Moya, A. Genomic signature
	50.	• •
626	~	in evolutionary biology: A review. <i>Biology</i> 12 , 322 (2023).
627	37.	Millan Arias P., Hill, K. A. & Kari, L. iDeLUCS: a deep learning interactive tool
628		for alignment-free clustering of DNA sequences. <i>Bioinformatics</i> 39 , btad508
629		(2023).
630	38.	Cai, L., Zhang, H. & Davis, C. C. PhyloHerb: A high-throughput phylogenomic
631		pipeline for processing genome skimming data. <i>Appl. Plant Sci.</i> 10 , e11475
632		(2022).
	39.	Lynch, M. <i>The Origins of Genome Architecture</i> . (Sinauer Associates, 2007).
633		
634	40.	Gonzalez, M. A. <i>et al.</i> Identification of amazonian trees with DNA barcodes.
635		<i>PLoS ONE</i> 4, e7483 (2009).
636	41.	Cai, L. et al. The perfect storm: gene tree estimation error, incomplete
637		lineage sorting, and ancient gene flow explain the most recalcitrant ancient
638		angiosperm clade, Malpighiales. <i>Syst. Biol.</i> 70 , 491–507 (2021).
639	42.	Xi, Z. et al. Phylogenomics and a posteriori data partitioning resolve the
640		Cretaceous angiosperm radiation Malpighiales. <i>Proc. Natl. Acad. Sci. U.S.A.</i>
641		109, 17519–17524 (2012).
642	43.	Wurdack, K. J. & Davis, C. C. Malpighiales phylogenetics: gaining ground on
643		one of the most recalcitrant clades in the angiosperm tree of life. Amer. J. Bot.
644		96, 1551–1570 (2009).
645	44.	Anderson, C. Monograph of <i>Stigmaphyllon</i> (Malpighiaceae). <i>Syst. Bot.</i>
646		Monogr. 51 , 1–313 (1997).
647	45.	Anderson, C. Revision of <i>Ryssopterys</i> and transfer to <i>Stigmaphyllon</i>
	13.	
648		(Malpighiaceae). <i>Blumea</i> 56, 73–104 (2011).

	Asprino et	al. EcoEvoRxiv preprint 21-Apr-2025 https://doi.org/10.32942/X2DW6K 19
649	46.	Cai, L. et al. Phylogeny of Elatinaceae and the tropical Gondwanan origin of
650		the Centroplacaceae (Malpighiaceae, Elatinaceae) clade. <i>PLoS ONE</i> 11 ,
651		e0161881 (2016).
652	47.	Freschi, L. <i>et al.</i> Population structure, biogeography and transmissibility of
653		Mycobacterium tuberculosis. Nat. Commun. 12 , 6099 (2021).
654	48.	Sabin, S. et al. A seventeenth-century Mycobacterium tuberculosis genome
655		supports a Neolithic emergence of the <i>Mycobacterium tuberculosis</i> complex.
656		Genome Biol. 21 , 201 (2020).
657	49.	Barrett, C. F., Wicke, S. & Sass, C. Dense infraspecific sampling reveals rapid
658		and independent trajectories of plastome degradation in a heterotrophic
659		orchid complex. New. Phytol. 218, 1192–1204 (2018).
660	50.	Sproul, J. S., Barton, L. M. & Maddison, D. R. Repetitive DNA profiles reveal
661		evidence of rapid genome evolution and reflect species boundaries in
662		ground beetles. <i>Syst. Biol.</i> 69 , 1137–1148 (2020).
663	51.	Sproul, J. S. & Maddison, D. R. Cryptic species in the mountaintops: species
664		delimitation and taxonomy of the <i>Bembidion breve</i> species group
665		(Coleoptera: Carabidae) aided by genomic architecture of a century-old type
666		specimen. Zool. J. Linn. Soc. 183, 556–583 (2018).
667	52.	Keuler, R. <i>et al.</i> Interpreting phylogenetic conflict: hybridization in the most
668		speciose genus of lichen-forming fungi. Mol. Phylog. Evol. 174, 107543
669		(2022).
670	53.	Leavitt, S. D. <i>et al.</i> Fungal specificity and selectivity for algae play a major
671		role in determining lichen partnerships across diverse ecogeographic
672		regions in the lichen-forming family Parmeliaceae (Ascomycota). <i>Mol. Ecol.</i>
673		24, 3779–3797 (2015).
674	54.	Davis, C. C., Sessa, E., Paton, A., Antonelli, A. & Teisher, J. K. Guidelines for the
675		effective and ethical sampling of herbaria. Nat. Ecol. Evol. (2024).
676	55.	Jin, JJ. et al. GetOrganelle: a fast and versatile toolkit for accurate de novo
677		assembly of organelle genomes. <i>Genome Biol.</i> 21, 241 (2020).
678		
679	56.	Jeffrey, H. J. Chaos game representation of gene structure. Nucl. Acids Res. 18,
680		2163–2170 (1990).
681	57.	Asprino, R. et al. A curated benchmark dataset for molecular identification
682		based on genome skimming. Harvard Dataverse
683		https://doi.org/10.7910/DVN/IMOX0S (2024).
684	58.	NCBI Sequence Read Archive
685		https://identifiers.org/ncbi/insdc.sra:SRP479128 (2024).
686	59.	Chen, S. Ultrafast one-pass FASTQ data preprocessing, quality control, and
687		deduplication using fastp. <i>iMeta</i> 2 , e107 (2023).
688	60.	de Medeiros et al. Archived code for: A composite universal DNA signature
689		for the Tree of Life. <i>Figshare</i> https://doi.org/10.6084/m9.figshare.8304017
690		(2025).
691		
692		

694695 Table S1. Quality metrics for newly sequenced data, ordered by assembly size. *SRA run*

size of 120 to 130 kb, but should be considered nearly complete.

Supplementary Information

696 *ID:* accession number of NCBI SRA run. *Taxon:* Malpighiales species. *Yield (Mb):*

697 sequencing yield of library. >= Q30 bases (%): Percentage of bases with phred quality

698 score above 30. *GC content (%):* average GC content across all reads. *Assembly complete:*

699 whether plastid assembly is complete (X) or fragmented (empty). *Assembly size (Kbp):*

700 Total assembly size. The size of complete plastid genome assemblies from GetOrganelle

typically ranges from 150 to 165 kb. In fragmented assemblies, the two 20-kb inverted
 repeat regions collapse into a single contig, resulting in a significantly reduced assembly

702 703

> SRA run ID Taxon Yield >= Q30 GC Assembly Assembly bases Content complete (Mb) size (Kbp) (%) (%) SRR27295657 Dicella aciculifera 95.2 35.2 166.2 463 SRR27295694 Hirtella gracilipes 576 92.5 41.8 Х 163.0 SRR27295706 Hirtella rugosa 854 93.3 50.2 Х 162.9 42.9 Х 162.9 SRR27295688 Hirtella scabra 666 90.8 SRR27295704 Hirtella 858 93.3 49.1 Х 162.9 guatemalensis SRR27295701 Acioa edulis 1,464 92.6 45.2 X 162.8 SRR27295703 Hirtella americana 820 92.4 42.6 Х 162.8 SRR27295699 Gaulettia parillo 702 93.4 45.4 Х 162.7 44.2 X SRR27295684 Acioa longipendula 796 91.9 162.6 SRR27295745 Parinari alvimii 745 91.0 41.7 Х 162.6 SRR27295696 Licania laxiflora 709 92.6 43.6 X 162.6 SRR27295687 Licania bracteata 425 92.3 46.8 X 162.5 92.2 Х 162.5 SRR27295702 Acioa somnolens 643 41.8 SRR27295746 Parinari obtusifolia 725 92.3 40.1 X 162.5 SRR27295686 Licania gracilipes 804 92.4 40.0 X 162.4 SRR27295697 Parinari nonda 609 92.8 41.2 Х 162.4 SRR27295685 Dactyladenia 363 93.1 42.7 X 162.4 ndjoleensis SRR27295744 581 90.8 40.6 Х 162.4 Licania cymosa SRR27295708 637 92.6 47.5 Х 162.3 Licania cordata SRR27295693 Exellodendron 893 92.8 42.4 Х 162.3 barbatum SRR27295590 **Byrsonima** 518 95.0 36.4 162.3 dealbata SRR27295705 Dactyladenia 1,104 91.3 46.0 Х 162.3 scabrifolia 92.8 54.0 X SRR27295691 Dactyladenia 431 162.3 incondere SRR27295692 893 92.2 42.0 X 162.3 Gaulettia canomensis SRR27295698 Couepia maguirei 1,323 91.8 44.4 X 162.0 SRR27295683 Couepia bondarii 611 93.0 44.6 Х 162.0 1,006 53.6 X SRR27295695 Couepia habrantha 93.2 161.9 588 91.7 42.6 Х SRR27295741 Couepia oxossii 161.9

SRR27295682	Couepia uiti	1,120	93.2	40.7	Х	161.
SRR27295742	Exellodendron gracile	688	92.8	43.0	Х	161.
SRR27295531	Malpighia ovata	446	95.3	38.0	Х	161.
SRR27295533	Malpighia diversifolia	418	94.5	37.3	х	161.
SRR27295707	Exellodendron gardneri	471	91.8	41.7	Х	161.
SRR27295528	Heteropterys gentlei	422	92.5	40.5		160
SRR27295661	Callaeum coactum	114	94.9	35.1	Х	160
SRR27295530	Bunchosia linearifolia	131	93.9	31.8	Х	160
SRR27295743	Amorimia septentrionalis	352	96.8	37.0	Х	160
SRR27295631	Carolus sinemariensis	83	94.1	37.8		160
SRR27295584	Byrsonima morii	5711	96.4	34.6		160
SRR27295690	Gaulettia cognata	374	93.4	51.6		160
SRR27295798	Microsteira curtisii	183	95.7	34.3	Х	160
SRR27295720	Microsteira diotostigma	239	96.6	34.5	Х	160
SRR27295612	Stigmaphyllon bonariense	1,038	91.5	42.5		159
SRR27295787	Microsteira pluriseta	222	95.6	34.6	Х	159
SRR27295569	Stigmaphyllon ellipticum	824	91.2	40.5		159
SRR27295566	Stigmaphyllon ellipticum	605	91.5	37.5	Х	159
SRR27295560	Stigmaphyllon ellipticum	720	92.0	39.0	Х	159
SRR27295557	Stigmaphyllon emarginatum	873	91.2	41.7		159
SRR27295614	Stigmaphyllon bonariense	368	90.6	39.4	Х	159
SRR27295564	Stigmaphyllon ellipticum	795	91.6	38.7		159
SRR27295734	Stigmaphyllon lindenianum	785	90.8	57.3	Х	159
SRR27295628	Stigmaphyllon jatrophifolium	385	91.2	41.4		159
SRR27295568	Stigmaphyllon ellipticum	625	90.5	42.0	X	159
SRR27295565	Stigmaphyllon ellipticum	1,057	90.3	44.8	Х	159
SRR27295561	Stigmaphyllon ellipticum	754	90.9	39.0	Х	159
SRR27295558	Stigmaphyllon ellipticum	955	91.3	38.6	Х	159
SRR27295623	Stigmaphyllon jatrophifolium	626	91.5	39.9	Х	159

Asprino et al. EcoEvoRxi	v preprint 21-Apr-2	2025 https://doi.org/	/10.32942/X2DW6K 22
--------------------------	---------------------	-----------------------	---------------------

SRR27295563	Stigmaphyllon	906	91.2	41.1	Х	159.7
	ellipticum					
SRR27295629	Stigmaphyllon jatrophifolium	595	91.5	41.6	Х	159.7
SRR27295700	Amorimia exotropica	164	95.7	38.2	Х	159.7
SRR27295567	Stigmaphyllon ellipticum	801	91.9	39.6	Х	159.7
SRR27295622	Stigmaphyllon jatrophifolium	533	91.5	39.6	Х	159.7
SRR27295621	Stigmaphyllon jatrophifolium	899	89.6	45.1	Х	159.7
SRR27295607	Stigmaphyllon paralias	680	91.5	39.9		159.7
SRR27295626	, Stigmaphyllon jatrophifolium	773	91.0	40.9	Х	159.7
SRR27295624	Stigmaphyllon jatrophifolium	754	91.7	41.3	Х	159.7
SRR27295675	Stigmaphyllon ciliatum	547	91.7	43.3		159.7
SRR27295549	Stigmaphyllon emarginatum	909	92.5	41.9		159.6
SRR27295548	Stigmaphyllon emarginatum	885	90.9	43.9		159.6
SRR27295634	Stigmaphyllon ciliatum	609	92.3	39.9	Х	159.6
SRR27295625	Stigmaphyllon jatrophifolium	880	91.7	40.8	Х	159.6
SRR27295588	Microsteira argyrophylla	212	95.9	32.6	Х	159.6
SRR27295542	Stigmaphyllon puberum	699	91.9	48.5	Х	159.6
SRR27295545	Stigmaphyllon puberum	588	91.7	38.9	Х	159.6
SRR27295638	Stigmaphyllon ciliatum	839	92.2	40.4	Х	159.6
SRR27295749	Mascagnia violacea	101	90.6	38.0	Х	159.6
SRR27295630	Stigmaphyllon ciliatum	496	90.7	40.5	Х	159.6
SRR27295670	Stigmaphyllon bannisterioides	540	91.2	39.5	Х	159.5
SRR27295679	Stigmaphyllon bannisterioides	393	90.9	35.2	Х	159.5
SRR27295553	Stigmaphyllon emarginatum	553	92.5	40.3		159.5
SRR27295636	Stigmaphyllon ciliatum	579	89.8	43.6		159.5
SRR27295674	Stigmaphyllon ciliatum	1,192	91.0	43.8		159.5
SRR27295672	Stigmaphyllon bannisterioides	780	91.5	35.1	Х	159.5
SRR27295669	Stigmaphyllon bannisterioides	467	89.6	38.4	х	159.5

SRR27295547	Stigmaphyllon 	713	91.8	40.8	Х	159.5
SRR27295587	paralias Byrsonima	510	96.4	36.5		159.5
36627293367	intermedia	510	50.4	30.5		155.5
SRR27295711	Stigmaphyllon	772	88.5	43.2	Х	159.5
	bannisterioides					
SRR27295738	Stigmaphyllon puberum	905	91.9	39.3	Х	159.4
SRR27295668	Stigmaphyllon bannisterioides	838	91.0	36.6	Х	159.4
SRR27295541	Stigmaphyllon puberum	662	90.5	41.5	Х	159.4
SRR27295667	Stigmaphyllon bannisterioides	731	90.9	34.8	Х	159.4
SRR27295740	Stigmaphyllon puberum	747	91.3	51.3	Х	159.4
SRR27295718	Stigmaphyllon bogotense	718	92.0	39.7		159.4
SRR27295671	Stigmaphyllon bannisterioides	900	91.3	38.1	Х	159.4
SRR27295532	Malpighia harrisii	295	95.9	38.3	Х	159.4
SRR27295716	Stigmaphyllon bogotense	476	91.7	41.4	Х	159.4
SRR27295714	Stigmaphyllon bogotense	602	89.6	47.0	Х	159.3
SRR27295737	Stigmaphyllon paralias	634	91.8	39.7	Х	159.2
SRR27295681	Stigmaphyllon paralias	748	91.6	39.8	v	159.2
SRR27295722	Stigmaphyllon bogotense	549	91.6	40.6	Х	159.2
SRR27295555	Stigmaphyllon emarginatum	575	91.3	41.6		159.1
SRR27295571	Tristellateia greveana Stierense hellen	167	96.3	35.9		159.0
SRR27295633	Stigmaphyllon paralias Stiamanhyllon	687	91.6	45.2	v	159.0
SRR27295539	Stigmaphyllon puberum Bunghasis	1,000	92.0	40.1	X	159.0
SRR27295598 SRR27295758	Bunchosia swartziana Acridocarpuc	409 140	96.9 94.5	35.3 37.2	x x	158.7 158.7
SRR27295788	Acridocarpus orientalis Banistarionsis			48.5	x	158.7
SRR27295786	Banisteriopsis irwinii Totrantonys	514 1119	95.4 94.4	35.4	^	158.2
	Tetrapterys heterophylla				V	
SRR27295536	Acridocarpus perrieri Acridocarpus	307	95.0	38.9	X	158.0
SRR27295660	Acridocarpus chevalieri	520	95.0	40.9	Х	158.0
SRR27295589	Diplopterys valvata	150	81.2	36.1		157.8
SRR27295649	Bunchosia decussiflora	492	95.7	34.9		157.7

SRR27295650	Acridocarpus	174	94.6	37.9	Х	157.7
	macrocalyx					
SRR27295807	Aspidopterys wallichii	243	93.0	37.5	Х	157.6
SRR27295597	Galphimia tuberculata	91	96.4	34.7		156.9
SRR27295662	Acridocarpus smeathmannii	107	94.1	37.9	Х	156.3
SRR27295596	Elatine gracilis	219	92.1	43.3	Х	154.8
SRR27295529	Heteropterys quetepensis	743	95.7	38.5	Х	153.9
SRR27295652	Triaspis odorata	155	85.3	39.2		153.5
SRR27295765	Hiptage bullata	1071	95.3	37.4		152.5
SRR27295790	Amorimia camporum	232	94.0	45.8		149.8
SRR27295526	Amorimia concinna	586	95.9	38.1		143.2
SRR27295808	Aspidopterys indica	472	93.0	62.2		141.2
SRR27295755	Mascagnia divaricata	138	94.3	35.2		136.8
SRR27295592	Acridocarpus zanzibaricus	123	94.7	35.9		136.5
SRR27295656	Dicella bracteosa	472	95.6	36.0		136.4
SRR27295527	Acmanthera duckei	283	95.7	39.4		134.8
SRR27295540	Malpighiodes liesneri	732	94.1	33.7		134.7
SRR27295776	Tristellateia ambongensis	353	94.9	38.7		134.7
SRR27295654	Triaspis macropteron	92	92.7	36.7		134.4
SRR27295750	Christianella surinamensis	350	89.0	35.6		134.1
SRR27295715	Stigmaphyllon bogotense	488	89.8	40.9		134.1
SRR27295620	Malpighia lundellii	182	92.9	38.8		134.0
SRR27295786	Banisteriopsis irwinii	1955	94.4	41.6		134.0
SRR27295595	Elatine triandra	61	92.9	45.7		133.8
SRR27295759	Diacidia ferruginea	153	92.5	37.0		133.5
SRR27295723	Stigmaphyllon bogotense	893	91.6	42.4		133.5
SRR27295809	Microsteira ambongensis	178	95.9	33.0		133.5
SRR27295719	Stigmaphyllon bogotense	673	91.6	42.0		133.5
SRR27295611	Stigmaphyllon bonariense	680	91.8	40.2		133.4
SRR27295585	Byrsonima microphylla	301	92.9	39.7		133.1
SRR27295643	Triaspis niedenzuiana	90	92.6	35.7		133.1
SRR27295677	Stigmaphyllon ciliatum	721	91.7	40.9		133.1

Asprino et al. EcoEvoRxiv preprint 21-Apr-2025 https://doi.org/10.32942/X2DW6K 24

SRR27295721	Stigmaphyllon	706	91.7	41.2	133.0
SRR27295725	bogotense Stigmaphyllon 	476	90.1	42.4	133.0
SRR27295663	paralias Callaeum	58	87.6	38.6	132.9
SRR27295710	nicaraguense Stigmaphyllon hannistoriaidas	829	90.9	38.8	132.9
SRR27295577	bannisterioides Elatine alsinastrum	152	94.4	42.5	132.9
SRR27295712	Stigmaphyllon bogotense	802	91.6	41.9	132.7
SRR27295773	Bunchosia cruciana	425	96.6	34.9	132.6
SRR27295680	Stigmaphyllon paralias	518	91.8	40.9	132.6
SRR27295570	, Stigmaphyllon bonariense	568	92.0	40.1	132.4
SRR27295796	Tetrapterys jamesonii	280	95.3	42.7	132.1
SRR27295733	Stigmaphyllon lindenianum	467	91.4	42.5	132.0
SRR27295771	Diacidia vestita	681	95.3	43.2	132.0
SRR27295775	Tristellateia cocculifolia	187	96.1	37.8	132.0
SRR27295546	Stigmaphyllon emarginatum	599	92.1	39.7	132.0
SRR27295732	Stigmaphyllon lindenianum	657	91.4	43.1	131.9
SRR27295644	Bronwenia megaptera	820	94.2	37.3	131.7
SRR27295805	Burdachia duckei	272	93.7	39.8	131.0
SRR27295760	Bunchosia veluticarpa	309	95.6	34.9	131.
SRR27295717	Stigmaphyllon bogotense	795	91.4	43.5	131.
SRR27295810	Acridocarpus socotranus	898	90.2	37.0	131.
SRR27295538	Triaspis sapinii	162	95.5	37.5	131.4
SRR27295709	Aspicarpa salicifolia	107	95.1	38.7	131.
SRR27295792	Acmanthera fernandesii	309	95.6	40.4	131.3
SRR27295768	Triaspis erlangeri	510	95.0	39.9	130.
SRR27295726	Stigmaphyllon lindenianum	744	93.0	43.3	130.
SRR27295576	Elatine rubella	154	94.9	39.5	130.
SRR27295799	Malpighia megacantha	257	96.0	39.0	130.
SRR27295666	Aspicarpa schininii	87	94.0	35.0	130.
SRR27295608	Stigmaphyllon bonariense	704	91.6	42.6	130.
SRR27295766	Cottsia linearis	88	90.6	36.8	130.4
SRR27295659	Callaeum malpighioides	122	94.8	37.1	130.

SRR27295800	Malpighia	256	96.6	36.9	130.
	emarginata				
SRR27295525	Aspidopterys glabriuscula	144	94.1	38.8	129.
SRR27295777	Tristellateia bojerana	243	96.8	38.8	129.
SRR27295754	Christianella paludicola	1533	94.5	34.0	129.
SRR27295616	Stigmaphyllon bonariense	770	91.8	39.8	129.
SRR27295613	Stigmaphyllon bonariense	909	90.4	43.0	129.
SRR27295594	Elatine hungaria	516	90.9	52.1	129.
RR27295784	Camarea hirsuta	220	92.7	39.5	129.
SRR27295806	Blepharandra cachimbensis	245	90.3	36.8	129.
SRR27295651	Thryallis parviflora	184	95.9	36.3	129.
SRR27295729	Stigmaphyllon lindenianum	434	91.6	41.6	129.
RR27295795	Christianella multiglandulosa	171	91.8	34.3	129.
SRR27295619	Stigmaphyllon paralias	529	91.0	41.1	128.
RR27295781	Diplopterys lucida	677	93.5	40.6	128.
RR27295804	Camarea ericoides	215	94.1	37.8	128.
SRR27295544	Stigmaphyllon puberum	499	91.5	39.2	128.
SRR27295778	Tetrapterys skutchii	514	96.0	36.6	128.
SRR27295782	Dicella julianii	188	94.8	38.6	128.
RR27295579	Elatine americana	119	93.3	44.8	128.
SRR27295724	Stigmaphyllon lindenianum	338	88.6	45.8	128.
SRR27295803	Cottsia gracilis	142	95.0	38.4	126.
SRR27295653	Thryallis latifolia	389	94.5	35.3	126.
SRR27295646	Banisteriopsis calcicola	78	93.6	37.1	126.
RR27295586	Byrsonima psilandra	762	96.0	37.1	125.
SRR27295791	Diacidia kunhardtii	153	93.0	40.2	125.
RR27295575	Tetrapterys calophylla	155	96.1	37.6	124.
RR27295580	Bunchosia articulata	391	97.1	32.1	124.
RR27295606	Diacidia galphimioides	104	93.0	34.2	124.
RR27295658	Callaeum psilophyllum	105	92.8	37.2	124.
SRR27295600	Tristellateia grandiflora	379	94.3	37.1	124.
SRR27295599	Callaeum johnsonii	131	93.3	35.7	123.
SRR27295774	Thryallis	400	96.3	35.7	123.

SRR27295639	Mascagnia lugoi	436	94.1	36.6	123.0
SRR27295664	Aspicarpa sericea	108	91.4	35.9	122.7
SRR27295752	Camarea axillaris	136	89.6	44.4	122.5
SRR27295593	Galphimia gracilis	113	93.8	31.9	121.
SRR27295562	Galphimia glandulosa	97	95.7	33.3	121.
SRR27295535	Hiptage elliptica	113	94.7	39.1	120.
SRR27295665	Dicella macroptera	269	95.5	36.4	120.
SRR27295648	Bunchosia paraguariensis	199	96.1	34.9	120.
SRR27295763	Carolus chasei	180	91.4	38.1	117.
SRR27295591	Hiptage benghalensis	94	92.8	37.1	117.
SRR27295615	Stigmaphyllon bonariense	465	90.3	40.2	117.
SRR27295756	Blepharandra hypoleuca	160	81.6	38.0	116.
SRR27295645	Bronwenia ferruginea Dialantarua	115	95.7	37.3	115.
SRR27295604	Diplopterys heterostyla Stiamanhyllon	131	93.9	36.6	114.
SRR27295554	Stigmaphyllon emarginatum Calabimin sustanlin	617	92.7	59.2	113.
SRR27295655	Galphimia australis	160	82.4	35.3	113.
SRR27295578	Aspidopterys cavaleriei Stigmaphyllon	121 621	95.1 91.0	35.9 39.8	113. 109.
SRR27295647	puberum Bronwenia	125	95.3	35.8	109.
SRR27295559	acapulcensis Stigmaphyllon	606	91.5	41.7	108.
SRR27295551	paralias Carolus renidens	109	93.1	41.0	100.
SRR27295736	Stigmaphyllon puberum	652	88.8	42.7	105.
SRR27295601	Mascagnia eggersiana	165	95.7	39.4	104.
SRR27295556	Stigmaphyllon emarginatum	845	90.1	41.8	104.
SRR27295543	Stigmaphyllon puberum	698	91.8	38.3	104.
SRR27295757	Cottsia californica	175	89.4	39.6	103.
SRR27295783	Christianella mesoamericana	183	94.7	37.7	102.
SRR27295678	Carolus chlorocarpus	26	89.6	37.7	101.
SRR27295811	Triaspis hypericoides	76	92.6	35.8	100.
SRR27295582	Blepharandra angustifolia	135	76.2	39.3	100.
SRR27295610	Stigmaphyllon bonariense	374	92.0	49.9	100.
SRR27295794	Thryallis laburnum	220	95.7	37.4	97.

SRR27295772	Byrsonima macrophylla	469	87.3	45.4	96.4
SRR27295689	Carolus anderssonii	46	91.2	38.4	96.1
SRR27295572	Banisteriopsis quadriglandula	133	94.2	35.2	94.6
SRR27295731	Galphimia radialis	109	95.2	30.9	94.2
SRR27295574	Banisteriopsis arborea	622	93.5	36.6	93.9
SRR27295779	Malpighiodes leucanthele	135	93.9	38.0	93.8
SRR27295753	Aspicarpa harleyi	128	92.3	37.8	90.9
SRR27295770	Dicella nucifera	525	95.0	41.5	89.2
SRR27295605	Mascagnia tenuifolia	144	95.2	37.7	88.8
SRR27295713	Stigmaphyllon paralias	153	85.5	49.3	86.0
SRR27295534	Heteropterys aenea	216	66.4	43.4	83.4
SRR27295764	Aspicarpa pulchella	90	90.7	38.3	83.0
SRR27295751	Hiptage detergens	85	88.8	37.1	82.6
SRR27295632	Camarea affinis	118	93.3	37.9	82.4
SRR27295603	Bronwenia cinerascens	85	94.5	36.6	82.3
SRR27295747	Tetrapterys anomala	131	59.5	44.8	82.3
SRR27295618	Stigmaphyllon jatrophifolium	892	91.1	43.2	81.0
SRR27295780	Diplopterys populifolia	165	95.2	39.5	78.7
SRR27295602	Banisteriopsis harleyi	59	87.4	38.0	76.9
SRR27295573	Heteropterys hypericifolia	132	94.8	43.0	74.5
SRR27295801	Hiptage myrtifolia	89	95.4	38.8	72.4
SRR27295761	Burdachia sphaerocarpa	158	92.7	39.9	71.9
SRR27295642	Banisteriopsis stellaris	112	92.3	39.8	71.9
SRR27295785	Burdachia prismatocarpa	1005	95.4	42.6	70.5
SRR27295728	Stigmaphyllon lindenianum	703	91.5	41.9	65.1
SRR27295762	Acmanthera latifolia	174	93.5	38.0	64.6
SRR27295767	Heteropterys molesta	315	95.5	36.9	64.2
SRR27295735	Stigmaphyllon lindenianum	1,010	91.2	42.8	64.0
SRR27295641	Bronwenia wurdackii	127	95.6	38.4	63.7

Asprino et al. EcoEvoRxiv	preprint 21-Apr-2025	https://doi.org/10.3	32942/X2DW6K 28

SRR27295609	Malpighiodes	137	92.3	54.6	62.2
	guianensis				
SRR27295637	Stigmaphyllon	265	87.6	45.4	59.5
	ciliatum				
SRR27295640	Diplopterys	137	95.1	37.9	53.9
	pubipetala				
SRR27295748	Heteropterys	331	95.5	52.8	52.7
	pteropetala				
SRR27295537	Bunchosia	492	94.5	33.9	47.3
	pilocarpa				
SRR27295793	Acmanthera	194	72.8	44.4	45.3
	cowanii				
SRR27295789	Aspidopterys	18	70.7	42.4	33.3
	cordata				
SRR27295769	Heteropterys	494	95.9	39.7	30.2
	riparia				
SRR27295730	Stigmaphyllon	443	90.1	45.8	29.3
	lindenianum				
SRR27295581	Bunchosia	142	94.7	33.1	29.0
	postuma				
SRR27295727	Stigmaphyllon	917	91.1	43.4	28.9
	lindenianum				
SRR27295802	Diacidia aracaensis	34	81.1	40.0	27.0
SRR27295617	Stigmaphyllon	627	91.3	41.0	26.9
	bonariense				
SRR27295627	Stigmaphyllon	377	91.5	40.6	23.9
	jatrophifolium				
SRR27295583	Byrsonima	262	95.4	36.8	21.4
	viminifolia			46.0	
SRR27295550	Stigmaphyllon	318	88.6	46.2	12.2
CDD27205552	emarginatum Ctione and the line	01	07.0	50.0	-
SRR27295552	Stigmaphyllon	91	87.9	59.6	5.4
CDD27205676	emarginatum Stiene an bullon	1 440	00 C	46.0	2.4
SRR27295676	Stigmaphyllon	1,446	89.6	46.0	3.0
50007005605	ciliatum Stiamanhyllon	01	75.2	FF 2	2.4
SRR27295635	Stigmaphyllon ciliatum	91	75.2	55.2	2.9
SRR27295673	Stigmaphyllon	24	75.1	71.0 failed	0.0
34421232013	bannisterioides	34	73.1	71.0 Idileu	0.0
	Durinisteriolues				

Asprino et al. EcoEvoRxiv	preprint 21-A	pr-2025 https:/	/doi.org/	10.32942/X2DW6K 29
- F	F F · F	r · · · · · · · · /	1	