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 48 

Abstract 49 

 50 

Genome skimming is an emerging tool allowing for scalable DNA barcoding efforts for 51 

numerous biodiversity science applications. Despite its growing importance, there are 52 

few standardized datasets for benchmarking genome skimming tools, making it 53 

challenging to evaluate new methods (e.g., using machine learning), and comparing to 54 

existing ones (e.g., conventional barcoding loci derived from Sanger-based sequencing). 55 

To address this gap, we present four curated datasets designed for benchmarking 56 

molecular identification tools using low-coverage genomes. These datasets comprise 57 

vast phylogenetic and taxonomic diversity from closely related species to all taxa 58 

currently represented on NCBI SRA. One of them consists of novel sequences from 59 

taxonomically verified samples in the plant clade Malpighiales, while the other four 60 

datasets compile publicly available data. All include raw genome skim sequences and 61 

two-dimensional graphical representations of genomic data (chaos game 62 

representations and varKodes), enabling comprehensive testing and validation of 63 

molecular species identification methods. These datasets represent a reliable resource 64 

for researchers to assess the accuracy, efficiency, and robustness of their tools in a 65 

consistent and reproducible manner. 66 

 67 

Background & Summary 68 

 69 

Genome skimming has become a versatile tool for biodiversity science, with broad-70 

reaching applications spanning phylogenetics to species identification1,2,3,4,5. Low-71 

coverage genomic sequencing facilitates the assembly of both traditional DNA-marker 72 

barcodes6 as well as barcodes that include entire organellar genomes and many nuclear 73 

ribosomal genes3,7. Another advantage of genome skimming protocols is that they are 74 

robust to DNA quality, being ideal for specimens from Natural History collections which 75 

may present degraded DNA8. More recently, genome skimming data are being applied 76 

for innovative assembly- and alignment-free species identification1,9,10. A large number 77 

of methods1,10,11,12,13,14,15,16,17,18 have been developed to apply molecular identification 78 

and, typically, their accuracy and efficiency are evaluated with a custom dataset. The 79 

customized nature of such datasets is potentially problematic because the success of a 80 

given method may be dataset-dependent. 81 

 82 

Here, we assert that this problem can be solved with a readily accessible and well-83 

annotated benchmark dataset. Specifically, the use of benchmarking datasets plays an 84 

essential role in both testing novel methods and guiding the improvement of existing 85 

methods by allowing unbiased method comparison and reduced errors due to data 86 

variation19,20. Benchmarking datasets also help to identify and address potentially 87 

confounding variables affecting the performance of different methods. These datasets 88 

are of widespread interest to computer scientists across different disciplines, each 89 

addressing unique challenges within their respective fields. Fields as diverse as text 90 

transcription21,22, medical diagnostics23,24, and bioinformatics25,26 have invested in 91 
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developing standardized datasets to facilitate the validation and comparison of 92 

analytical tools.  93 

 94 

A few such datasets also exist in the field of genomics, notably targeted to the tasks of 95 

orthology, variant and function prediction. For the former case, OrthoBench27,28 has 96 

emerged as the standard benchmarking dataset against which orthogroup inference 97 

algorithms have been tested for over a decade. The major benchmark dataset for variant 98 

prediction is VariBench19, which supports the development and evaluation of 99 

computational methods for interpreting genetic variants, crucial for improving disease 100 

diagnosis and understanding genetic differences across various applications. Finally, 101 

there is a newly curated collection of benchmark datasets for genomic functional 102 

sequence classification in humans, mice, and roundworms20, facilitating the development 103 

and evaluation of machine learning models predicting function from DNA sequence data. 104 

These models play a crucial role in interpreting vast amounts of genomic data, 105 

particularly in human genome investigations, and facilitate discoveries in genetics that 106 

have significant implications for medicine and other biological fields. 107 

 108 

Another critical challenge in biodiversity and genomic science is the development of 109 

DNA-based taxonomic identification methods. In this case, however, we lack a publicly 110 

available benchmark dataset similar to those described above. As part of developing 111 

varKoder, a new method of DNA-based taxonomic identification based on low-coverage 112 

genomic reads1 (i.e., genome skimming), we have created a number of curated datasets 113 

for organisms spanning different taxonomic ranks and phylogenetic depths, from closely 114 

related populations, species, to all taxa represented on the NCBI Sequence Read Archive 115 

(SRA, https://www.ncbi.nlm.nih.gov/sra/). 116 

 117 

To facilitate future comparisons of emerging DNA barcoding methods, here we provide 118 

these datasets with metadata and instructions for data access. These datasets are useful 119 

for both conventional DNA barcodes29,30,31,32,33 and alternative methods that rely on low-120 

coverage genomic sequencing (i.e., DNA signatures1,34). These data will enable future 121 

comparisons to our newly developed approach using the same data that we applied for 122 

testing. The datasets made available in this data descriptor include the following: (1) 123 

newly sequenced and expert-curated low-coverage whole genome sequencing for 124 

species in the flowering plant clade Malpighiales, spanning divergences from closely 125 

related species to families, and with samples labeled at species, genus and family levels 126 

(2) species-level datasets for plants, animals, fungi and bacteria obtained from the 127 

literature, and samples labeled at the species level or below (3) a dataset including all 128 

eukaryotic families from the NCBI SRA, labeled at the family level and (4) a dataset with 129 

all taxa available from the NCBI SRA, labeled with their complete taxonomic 130 

classification. 131 

 132 

Methods 133 

 134 

Each of the four datasets includes sequencing data and image representations derived 135 

from them (i.e., varKodes and ranked frequency chaos game representations1). Figure 1 136 

provides an overview of the sampling strategy for each dataset and the workflow used to 137 

assemble them. 138 
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 139 

 140 

 141 

 142 

 143 
Figure 1. An overview of data collection and the workflow used to create and curate 144 

each dataset. The datasets were compiled from newly generated sequences or from 145 

publicly available data, following filtering and processing steps shown here. 146 

 147 

Taxon sampling with varying phylogenetic depths 148 

 149 

Malpighiales dataset. This newly generated dataset tests hierarchical classification from 150 

species to family level in plants. Plants exhibit notoriously complex genomic 151 

architectures35 that challenge the performance of conventional DNA barcoding36, 152 

rendering them a good test case for molecular identification tools. This dataset includes 153 

three flowering plant families, all members of the large and morphologically diverse 154 
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order Malpighiales37,38,39: Malpighiaceae, Elatinaceae, and Chrysobalanaceae. See below 155 

for laboratory methods applied for collecting these newly generated sequences. 156 

 157 

The Malpighiaceae data are the most taxonomically sampled and include 287 accessions 158 

representing 195 species, which were sampled from 277 herbarium specimens and ten 159 

silica-dried field collections. Among these data, the genus Stigmaphyllon were 160 

comprehensively sampled to build, validate, and test identification methods at shallower 161 

phylogenetic depths. A total of 100 Stigmaphyllon samples were collected, including 10 162 

accessions per species across 10 species. One main advantage of sampling Stigmaphyllon 163 

is that its taxonomy has been extensively revised, resulting in a diverse and clearly 164 

classified set of samples40,41. Moreover, the Stigmaphyllon clade represents a wide array 165 

of divergence times that span distantly- (34.1 Myr) to very closely-related (0.6 Myr) 166 

species1,42.  167 

 168 

The focus for the remainder of the sampling in Malpighiales (Malpighiaceae, 169 

Chrysobalanaceae, and Elatinaceae) is to identify a given sample to genus or family. In 170 

this case, among the non-Stigmaphyllon samples we included 3–9 species per genus 171 

representing 30 genera of Malpighiaceae, eight of Chrysobalanaceae, and one of 172 

Elatinaceae. Each sample representative was labeled with its corresponding genus and 173 

family identification.  174 

 175 

Species- and subspecies-level datasets. To test shallow-level classification at species or 176 

lower taxonomic ranks, we compiled four datasets from publicly available genome 177 

skimming data from the NCBI SRA using NCBI Entrez. These datasets include one 178 

bacterial species and one genus each from plants, animals, and fungi.  179 

 180 

First, we included a dataset from Mycobacterium tuberculosis, the species of pathogenic 181 

bacteria that causes tuberculosis. The bacterial set consisted of clinical isolates from five 182 

distinct, monophyletic lineages of M. tuberculosis (1.2.2.1, 2.2.1.1.1, 3.1.2, L4.1.i1.2.1, and 183 

L4.3.i2) with seven clinical isolates per lineage, totaling 35 samples. This dataset enables 184 

testing identification tools on an extremely recently diverged, clinically relevant 185 

bacterial lineage43. This dataset of clinical isolates from human-adapted lineages 186 

exhibited 99.9% sequence similarity despite key differences in phenotypes, including 187 

drug resistance, virulence, and transmissibility43. Mycobacterium tuberculosis has 188 

diversified quite rapidly in humans, with nine monophyletic lineages. Divergence time 189 

estimates for the most recent common ancestor of M. tuberculosis are <6,000 years ago44. 190 

The validation set included 3–6 different samples from the five training lineages as well 191 

as 1–4 samples from lineages not included in the training set (2.1, 4.10.i1, and 192 

4.6.2.1.1.1.1), totaling 25 validation samples.  193 

 194 

For plants, we included a dataset from a well-delineated clade of mycoheterotrophic 195 

orchids45 (genus Corallorhiza), that allows for assessing the infraspecific taxa variation. 196 

Corallorhiza striata includes several well-known and easily identifiable varieties. For the 197 

Corallorhiza training set, we included five species (or varieties) with at least five samples 198 

per species (for C. bentleyi, C. striata var. involuta, C. striata), except for C. striata var. 199 

vreelandii and C. striata var. striata, for which we included six and seven samples each, 200 

respectively, totaling 28 samples. The validation set included 2–11 different samples 201 
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from three of the five training species/varieties (C. striata, C. striata var. striata, and C. 202 

striata var. vreelandii) as well as one sample from C. trifida which was not included in the 203 

training set, totaling 18 validation samples.  204 

 205 

For animals, we assembled a Bembidion beetle dataset, which includes well-known 206 

closely-related cryptic species that were the target of extensive low-coverage whole-207 

genome sequencing46,47. The training set included five samples for each of five species 208 

including B. breve, B. ampliatum, B. lividulum, B. saturatum, and B. testatum, totaling 25 209 

samples. The validation set included 1–4 different samples from the five training species 210 

as well as from species not included in the training set including B. aeruginosum, B. 211 

curtulatum, B. geopearlis, B. neocoerulescens, and B. oromaia, totaling 18 samples.  212 

 213 

For fungi, we used Xanthoparmelia, a lichen-forming fungal genus whose species are 214 

poorly understood and which often form paraphyletic species groupings48. Samples for 215 

Bembidion, Corallorhiza, and Mycobacterium tuberculosis isolates all formed 216 

monophyletic groups, whereas Xanthoparmelia species did not. Since the 217 

Xanthoparmelia species were paraphyletic, we subsampled only monophyletic groups 218 

for model training. In this case, four species included three samples per species (X. 219 

camtschadalis, X. mexicana, X. neocumberlandia, and X. coloradoensis) and one species 220 

included five samples (X. chlorochroa) for the training set, totaling 17 samples. One 221 

potential confounding factor is that Xanthoparmelia is a lichen-forming fungus and thus 222 

genome-skim data represents a chimera of fungal and algal genomes representing both 223 

partners in this unique symbiosis. Species of the algal symbiont Trebouxia are flexible 224 

generalists across fungal Xanthoparmelia species. Since these genome skims are a mix of 225 

both algal photobiont and fungus, we expect this to be a challenging identification 226 

problem because of the more generalist nature of Trebouxia49. The validation set 227 

included 1–3 different samples from the five training species as well as one sample from 228 

species not included in the training set including X. maricopensis, X. plittii, X. psoromifera, 229 

X. stenophylla, X. sublaevis, totaling 15 validation samples.  230 

 231 

Eukaryote family-level dataset. We retrieved DNA sequencing data from the NCBI SRA on 232 

March 7, 2023 using NCBI Entrez, filtering for whole genome sequencing data with 233 

random library selection from Eukaryotes (taxid:2759), requiring fastq file availability 234 

and DNA as biomolecular type. For each record, we collected taxonomic information 235 

using NCBI's Taxonomy database to retrieve family and kingdom classification. Records 236 

were filtered to include only those sequenced on the Illumina platform with more than 237 

50 million sequenced bases. To ensure balanced representation across taxa, we 238 

randomly selected one sequencing run per taxon, and then randomly selected up to 20 239 

taxa per family. For each sample, we used fastq-dump 240 

(https://hpc.nih.gov/apps/sratoolkit.html) to download between 10,000 and 510,000 241 

reads per sample. The resulting dataset comprises 8,222 accessions, including families of 242 

animals (5,642 accessions, 1,426 families), plants (2,705 accessions, 401 families) and 243 

fungi (1,572 accessions, 363 families). 244 

 245 

All-taxa dataset. We retrieved DNA sequencing data from the NCBI SRA using NCBI 246 

Entrez on January 9, 2024 and the following criteria: (1) fastq file availability, (2) DNA as 247 

biomolecular type, (3) library strategies limited to Genotyping by Sequencing (GBS), 248 
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Restriction site Associated DNA sequencing (RAD-Seq), or Whole Genome Sequencing 249 

(WGS), (4) sample type “simple”, (5) sequencing platform including Illumina, Oxford 250 

Nanopore, PacBio SMRT, or BGISEQ, (6) more than 50 million sequenced bases. For each 251 

record, we collected taxonomic information of the full taxonomic hierarchy using NCBI's 252 

Taxonomy database. To ensure balanced representation across taxa and methodologies, 253 

we randomly selected up to 20 records for each unique combination of taxonomic ID, 254 

library strategy, and sequencing platform to avoid overrepresentation of model species 255 

such as humans, mice, and Escherichia coli. For each sample, we calculated a target 256 

number of reads estimated to yield 60 million bases from the SRA record metadata, 257 

approximately three times the amount needed for 20 million bases of quality-filtered 258 

sequence. We then used fastq-dump to download that amount of spots per sample (or at 259 

least 10,000 spots, if the estimated number was smaller than that). The resulting dataset 260 

includes 253,820 accessions including 28,636 taxonomic labels. 261 

 262 

Laboratory methods for newly generated data 263 

 264 

For our newly sequenced Malpighiales data we used total genomic DNA extractions. We 265 

isolated total genomic DNA from 0.01–0.02 g of silica-dried leaf material or, more 266 

commonly, herbarium collections using the Maxwell 16 DNA Purification Kit (Promega 267 

Corporation, Inc., WI, USA) and quantified it using the Qubit 4.0 Fluorometer (Invitrogen, 268 

CA, USA), with the Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, Inc., MA, USA). 269 

Our sampling of herbaria followed the guidelines for effective and ethical sampling of 270 

these resources outlined by Davis et al.50. Genomic libraries were prepared using ca. 70 271 

ng of genomic DNA where possible, using 1/8 reactions of the Kapa HyperPlus Library 272 

Preparation Kit (Roche, Basel, Switzerland). Libraries were indexed by using the IDT for 273 

Illumina TruSeq DNA unique dual 8 bp barcodes (Illumina Inc., San Diego, CA, USA) or 274 

the Nextflex-Ht barcodes (Bioo Scientific Corporation, TX, USA) for multiplexing up to 275 

384 samples per sequencing lane. For library preparation, the genomic DNA was 276 

sheared by enzymatic fragmentation to 350–400 base pairs (bp), depending on the 277 

quality of the input DNA. Libraries' concentrations were verified with the Qubit 4.0 278 

Fluorometer, using the Qubit dsDNA HS Assay Kit (Invitrogen, CA, USA), and average 279 

sizes of DNA fragments were verified with the High Sensitivity HSD1000 ScreenTape 280 

Assay in the 2200 TapeStation (Agilent Technologies, Waldbronn, Germany). Libraries 281 

were diluted into 0.7 nM or 1.0 nM and pooled together. We used Real-Time PCR 282 

(BioRad CFX96 Touch, BioRad Laboratories, Hercule, USA) with the NEBNext Library 283 

Quant Kit (New England Biolabs, Ipswich, USA) for verifying the final concentration of 284 

the libraries’ pools. Sequencing of libraries was conducted using the Illumina Hi-Seq 285 

2500 or the Illumina NovaSeq 6000 (Illumina Inc., San Diego, CA, USA) for 125 bp or 150 286 

bp pair-ended reads, at The Bauer Core Facility at Harvard University, MA, USA. 287 

 288 

Extracting conventional barcodes from genome skimming data 289 

 290 

For the Malpighiales dataset, we assembled conventional barcodes. To recover the 291 

traditional plant barcodes rbcL, matK, trnL-F, ndhF, and ITS from our Malpighiales 292 

genome skim data, we applied GetOrganelle v1.7.7.051 and PhyloHerb v1.1.152 to 293 

automatically assemble and extract these DNA markers, respectively. Briefly, the 294 

complete or subsampled genome skim data were first assembled into plastid genomes or 295 
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nuclear ribosomal regions using GetOrganelle51 with its default settings. Next, PhyloHerb 296 

was applied to extract the relevant barcode genes using its built-in BLAST database. 297 

 298 

Creation of varKode and CGR images from genome skimming data 299 

 300 

In addition to raw sequence data, we provide image representations of the genome 301 

signature (Figure 2) implied by these data for all samples included here. See our 302 

companion paper1 for details on how these images are generated. In all cases, pixels in 303 

these images represent individual k-mer sequences. Brightness represents the frequency 304 

of a k-mer, transformed to ranks and digitized to 8 bits. The two kinds of representation 305 

provided differ in how k-mers are mapped to pixels. VarKodes are a compact 306 

representation in which kmer counts and their reverse complements are combined. The 307 

mapping of kmers to pixels in an image attempts to place more similar kmers closer 308 

together in the image space. Ranked frequency chaos game representation (rfCGR) 309 

images are similarly produced, but the mapping of k-mers to pixels follows the chaos 310 

game representation53. rfCGRs present a fractal pattern, while varKodes generally 311 

present gradients spanning the whole image. In both cases, we used the “varKoder 312 

image” command to generate varKodes, and then used “varKoder convert” to generate 313 

rfCGRs from these varKodes. In all cases, we used k-mers of size seven, which were 314 

determined to yield optimal balance between classification accuracy and computing 315 

effort1. These k-mer counts were used to generate images and we normalized counts by 316 

ranking and then rescaling and quantizing ranks to integer numbers ranging from 0 to 317 

255, which are the brightness levels supported by a png image. All images are saved in 318 

png format, including built-in exif metadata with the labels assigned to each sample. 319 

After producing images, we split datasets into training and validation sets. The following 320 

specific settings have been used for each dataset described below. 321 

 322 

 323 
Figure 2. Demonstration of the two types of image representations of the genome 324 

signature included in our datasets. Examples of rfCGRs (top) and varKodes (bottom) are 325 

shown for four different clades: plants (a), animals (b), fungi (c), and bacteria (d). rfCGRs 326 

are larger images, and their relative sizes are shown to scale. In each case, both images 327 

were produced from the same sequence data. a) Local ID 1089 (plant, Triaspis 328 

hypericoides) b) SRA Accession SRR15249224 (beetle, Mesosa sp.). c)  SRA Accession 329 

SRR15292413 (fungus, Amania sp.). d) SRA Accession  SRR2101396 (Bacteria, 330 

Mycobacterium tuberculosis). 331 

 332 
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Malpighiales. varKodes have been produced from data amounts varying from 500Kbp to 333 

200 Mbp and k-mer size of 7. We applied leave-one-out cross-validation in all tests 334 

following de Medeiros et al.1, so the dataset has not been split into training and 335 

validation sets. All accessions have been labelled with their genus and family 336 

identification. For species in the genus Stigmaphyllon, we additionally labeled accessions 337 

with their species identity. 338 

 339 

Species- and subspecies-level datasets. varKodes have been produced from data amounts 340 

varying from 500 Kbp to the maximum amount of data available for each accession and 341 

k-mer size of 7. All accessions have received a single label: their species or variety name. 342 

For species or varieties represented by at least four accessions, we randomly chose 20% 343 

of the accessions for the validation set (with a minimum of 1) and 80% for the training 344 

set. For species or varieties with three or less accessions, they were only included in the 345 

validation set, to test whether a multi-label model correctly predicted no labels for that 346 

accession. 347 

 348 

NCBI SRA Eukaryotes. varKodes have been produced from data amounts varying from 349 

500Kbp to 10Mbp and k-mer size of 7. All accessions have received a single label: their 350 

family name. For families represented by at least three accessions, we randomly chose 351 

20% of the accessions for the validation set (with a minimum of 1) and 80% for the 352 

training set. Families with less than two accessions were only included in the validation 353 

set, to test whether a multi-label model correctly predicted no labels for that accession. 354 

 355 

NCBI SRA all-taxa. varKodes have been produced from data amounts varying from 356 

500Kbp to 20Mbp and k-mer size of 7. All accessions received multiple labels, including: 357 

(1) all NCBI taxonomy IDs related to that accession (i.e., the full taxonomic hierarchy, as 358 

separate labels), (2) the library strategy, and (3) the sequencing platform. We randomly 359 

selected 10% of the accessions for the validation set, regardless of their labels. Next, we 360 

removed from the validation set any labels not present in at least one accession in the 361 

training set. 362 

 363 

Metadata organization 364 

 365 

To maximize the utility of our datasets for benchmarking molecular identification tools, 366 

we provide comprehensive metadata for each sample. The metadata is organized in a 367 

consistent format across all datasets to enable easy comparison and reuse in future 368 

investigations. Each dataset—Malpighiales, Species and subspecies-level (Bembidion 369 

beetles, Corallorhiza orchids, Xanthoparmelia fungi, Mycobacterium tuberculosis), 370 

Eukaryote families and All SRA taxa—includes a metadata table detailing the raw 371 

sequencing data for each sample, with taxonomic-, sequencing-, and sample-related 372 

information. All datasets share 17 common metadata fields (Table 1). The Malpighiales 373 

dataset, the only one containing new sequence data, includes five additional fields that 374 

provide more specific details on voucher information (Table 2). The metadata is 375 

provided in the same Harvard Dataverse repository as the data 376 

(https://dataverse.harvard.edu/privateurl.xhtml?token=e82d1443-ffe9-493c-8f81-377 

9fd7d5ec9c8f). 378 

 379 
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Table 1. Description of common metadata fields for all datasets. 380 

FIELD DESCRIPTION 

SRA_Run_ID The unique identifier for the run in the NCBI SRA 

(https://www.ncbi.nlm.nih.gov/sra). 

Local_ID A unique identifier assigned to each sample as used in 

Medeiros et al.1. This identifier serves as a local 

reference for linking metadata, sequence data and 

images. 

Tax_ID The taxonomic identifier associated with the organism, 

as per the NCBI taxonomy 

(https://www.ncbi.nlm.nih.gov/taxonomy). 

Taxon The scientific name of the organism from which the 

sample was derived. 

Taxonomy_Superkingdom Broader taxonomic classification at the Superkingdom 

level (i.e., Eukaryota, Bacteria, Viruses or Archaea). 

Taxonomy_Kingdom Taxonomic classification at the Kingdom level. Helps 

contextualize the sample. 

Taxonomy_Family Family to which the sample belongs. Provides 

additional context for understanding the evolutionary 

relationships between samples. 

BioSample_ID The unique identifier for the sample in NCBI’s 

BioSample database 

(https://www.ncbi.nlm.nih.gov/biosample), linking to 

additional metadata. 

Download_Path URL from which the sequence data in Lite Format (with 

simplified quality scores) can be downloaded from the 

NCBI SRA. 

Library_Strategy Describes the sequencing strategy (e.g., WGS, RAD-

Seq), indicating how the data was generated. 

Library_Source Indicates the source from which the DNA was extracted 

(i.e., genomic DNA or metagenomic). 

Library_Layout Specifies the configuration of sequencing reads: either 

SINGLE (single-end) or PAIRED (paired-end). 

Seq_Platform The sequencing platform used, such as Illumina, 

PacBio, Oxford Nanopore, etc. 
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Seq_Model The specific sequencing instrument model (e.g., 

Illumina NovaSeq 6000), for reproducibility. 

Size_MB The file size in megabytes (MB) of the sequence data 

from the NCBI SRA in Normalized Format (with full 

per-base quality scores). 

Labels All the labels assigned to a given accession. All labels 

were combined as a string separated by semicolon, 

allowing for more compact storage of information. 

Set Set in de Medeiros et al.1. For the Malpighiales dataset, 

this column has empty values since samples were 

evaluated with cross-validation. For other datasets, 

there are three possible values: “train” for training set, 

“valid” for validation set and “valid_notrain” for 

accessions used in validation but with taxonomic labels 

not included in the training set, to test for false 

positives. 

 381 

Table 2. Description of additional metadata fields exclusive in the Malpighiales dataset. 382 

FIELD DESCRIPTION 

Taxonomy_Genus Labels the genus to which the sample belongs, to 

support identification to genus level. 

Voucher Information on the collector and the collection number, 

which links the sample to its voucher specimen. 

Collector The name of the individual(s) responsible for collecting 

the specimen. 

CollectorID The specific number associated with the collector’s 

collection for this sample. 

Collection The acronym of the collection where the herbarium 

voucher of the sample is deposited. 

 383 

Data Records 384 

 385 

The dataset is available at Harvard Dataverse and the NCBI Sequence Read Archive. The 386 

Harvard Dataverse repository 387 

(https://dataverse.harvard.edu/privateurl.xhtml?token=e82d1443-ffe9-493c-8f81-388 

9fd7d5ec9c8f) includes metadata tables, processed conventional DNA barcodes, and 389 

DNA signature images (varKodes and rfCGRs). New sequences (i.e., Malpighiales) have 390 

been uploaded to NCBI SRA under PRJNA1052627. All remaining sequence data were 391 

already publicly available on NCBI SRA and can be retrieved from the accession numbers 392 

in the metadata tables. The complete dataset comprises four major components, 393 

summarized below. 394 

 395 
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Malpighiales 396 

This dataset contains 287 newly sequenced accessions from three families in the order 397 

Malpighiales. This includes families Malpighiaceae (251 accessions representing 31 398 

genera), Elatinaceae (6 accessions for 1 genus), and Chrysobalanaceae (30 accessions for 399 

8 genera). Malpighiaceae includes Stigmaphyllon with the most comprehensive species 400 

sampling: 10 species and 10 accessions sampled per species. Stigmaphyllon accessions 401 

are labeled with species, genus and family. All other accessions are labeled with genus 402 

and family. This dataset is used for benchmarking molecular identification tools from 403 

species to family levels under a realistic scenario of uneven diversity and sequencing 404 

effort. The data provided includes raw sequencing data, processed conventional 405 

barcodes (rbcL, matK, trnL-F, ndhF, and ITS), and image representations (varKodes and 406 

rfCGRs). 407 

 408 

Species- and subspecies-level datasets 409 

This is composed of four datasets from published data of four clades – Bembidion beetles 410 

(43 accessions from 10 species), Corallorhiza orchids (46 accessions from 6 411 

species/varieties), Xanthoparmelia fungi (32 accessions from 10 species), and 412 

Mycobacterium bacteria (60 accessions from 8 lineages). In each case, we include raw 413 

sequencing data and image representations. These datasets are suitable for 414 

benchmarking species-level identification, as well as variety, strain, or subspecies. 415 

 416 

Eukaryote families 417 

We compiled a dataset for identifying eukaryote families from the NCBI Sequence Read 418 

Archive. This includes 9,910 accessions from 2,182 families of animals, plants and fungi. 419 

Of these, 861 families (517 Metazoa, 197 plants, 147 fungi), represented by 8,222 420 

accessions, had at least three accessions available and were included in the training set. 421 

We include sequence data and image representations. This dataset serves to benchmark 422 

family-level identification tools at a large scale. 423 

 424 

All SRA taxa 425 

This is the largest dataset compiled from the NCBI Sequence Read Archive, containing 426 

data including all the taxonomic hierarchy and multiple sequencing methods (253,820 427 

accessions including 28,636 taxonomic labels, three labels for library strategy, and four 428 

labels for sequencing platform). We include sequence data and image representations. 429 

This is the largest and most heterogeneous dataset provided here, benchmarking 430 

identification at all taxonomic levels across different sequencing methodologies. 431 

 432 

For raw sequence data, we provide accession numbers to NCBI SRA runs. These can be 433 

downloaded in conventional formats (such as fastq) using the SRA toolkit 434 

(https://github.com/ncbi/sra-tools). 435 

 436 

Processed conventional barcodes are provided as fasta files. Each fasta file is named 437 

after the gene region represented and includes individual sequences named after the 438 

SRA accession number. 439 

 440 

Image representations are provided as png images. These images follow a file name 441 

convention that is interpreted by varKoder and include information about accession 442 

https://github.com/ncbi/sra-tools
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number, k-mer size, type of representation and amount of DNA sequence data used to 443 

produce the image: “[local_ID]@[sequence base pairs]+[representation]+k[k-mer 444 

size].png”. For example, the file “SRR9036258@00010000K+varKode+k7.png” 445 

represents accession with local ID SRR9036258, 10 Mbp (i.e., 10,000 Kbp) of sequence 446 

data, varKode representation and k-mer size of 7. Labels associated with accession can 447 

be found in the metadata tables and also as image metadata contained in the png file. 448 

varKoder is able to read this image metadata, and it is also visible through general 449 

purpose programs that handle image metadata, such as exiftool (https://exiftool.org). 450 

 451 

Technical Validation 452 

 453 

Quality metrics for new sequence data: We measured sequencing success using various 454 

quality metrics, including total input DNA for library preparation, sequencing yield (in 455 

megabases), percentage of bases with a QScore ≥ 30, mean quality score, average GC 456 

content, and sequencing depth. These metrics were calculated for the newly sequenced 457 

data of Malpighiales’ representatives to ensure robustness and reliability of the 458 

sequencing results. A summary of these metrics are provided in Supplementary Table 1. 459 

 460 

Metrics from GetOrganelle: We used GetOrganelle to assess the quality of the assembled 461 

Malpighiales’ plastid genomes, examining factors like assembly success and 462 

completeness. These metrics are also provided in Supplementary Table 1. 463 

 464 

We have not further validated sequences that were already publicly available. In that 465 

case, we used data as downloaded from NCBI following the filters specified in materials 466 

and methods. 467 

 468 

Usage Notes 469 

 470 
See de Medeiros et al1 for a complete account of how these datasets have been used to 471 

develop and test varKoder. NCBI accession numbers can be used to download associated 472 

sequence data with the SRA toolkit (https://github.com/ncbi/sra-tools). Conventional 473 

barcode sequences in the fasta format can be used for sequence alignment and search. 474 

varKode and rfCGR images can be used as input to varKoder or other programs 475 

processing images in the PNG format. Conventional barcode sequences and PNG images 476 

can be found in the Harvard Dataverse repository accompanying this article 477 

(https://dataverse.harvard.edu/privateurl.xhtml?token=e82d1443-ffe9-493c-8f81-478 

9fd7d5ec9c8f) 479 

 480 

Code Availability 481 

 482 

The code used to retrieve and process sequence data used here is available in a github 483 

repository (https://github.com/brunoasm/varKoder_development), archived in 484 

FigShare (https://figshare.com/s/693d5194204f73fee6e2 ). The source code for 485 

varKoder, which can process sequence data into varKodes and rfGRS, as well as train and 486 

use neural networks, is available at https://github.com/brunoasm/varKoder.  487 

 488 

https://github.com/ncbi/sra-tools
https://github.com/brunoasm/varKoder
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