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Abstract—Wildfire risk is on the rise around the world. In places
like California, this risk is further instigated by the invasive species
cheatgrass (Bromus tectorum). Cheatgrass is highly flammable and
benefits from wildfires, allowing it to replace native plant communities.
Through increasing both the intensity and the frequency of wildfires,
it endangers not only its natural environment but also human habitats.
Here, we present a novel approach to map the distribution and
expansion of cheatgrass and predict potential wildfire risk zones.
Utilizing the open-source CalFlora dataset, alongside data from the
Sentinel-2 satellites, we created a comprehensive spatial analysis
framework. We integrated temporal dynamics via Vegetation Index
statistical bands that encapsulate annual vegetation information. We
employed semi-supervised learning techniques to refine and filter
our data labels, thereby ensuring robust model training. We utilized
machine learning algorithms Random Forest and XGBoost, for model
training. Our models exhibited a test accuracy of 91.1% in multiclass
classification and achieved a precision rate of 91% specifically for
the Cheatgrass class. Our multiclass classification model demonstrates
exceptional discriminative ability and agreement with the actual
classifications, with an ROC-AUC Score of 0.99 indicating near-perfect
performance in distinguishing between the different classes, and a
Cohen’s Kappa of 0.89 signifying a strong agreement, accounting
for chance. We demonstrate the effectiveness of our methodology by
leveraging publicly available open-source datasets to map the spread
of invasive Cheatgrass, which in turn helps identify regions potentially
at high risk for wildfires across California’s varied landscapes. Our
analysis effectively predicts the distribution of Cheatgrass and other
vegetation with data available only until June, providing insight before
the peak forest fire season, which spans from mid-July to September.
This capability delivers actionable intelligence for assessing fuel load
and connectivity, thus laying the groundwork for targeted wildfire
prevention strategies and enhanced ecological management practices
in fire-prone areas.

Index Terms—Land use and Land cover Mapping, Cheatgrass, In-
vasive Plants, Machine Learning, Semi-supervised Learning, Wildfire
Prevention, Time-series Analysis.

I. INTRODUCTION

Wildfires have become increasingly frequent across the globe,
often underscored by their destructive impacts on ecosystems,
infrastructure, and public health. Yet, fire also plays an essential
role in maintaining the ecological balance of many forest systems.
Recent concerns stem from observed shifts such as increased fire
frequency, extended fire seasons, and escalating severity world-
wide [1], [2].

In 2020, California witnessed record-breaking wildfire activ-
ity, with approximately 1.74 million hectares burned—more than

double the previous high. The economic damage exceeded $19
billion [3], while wildfire smoke exposure led to an estimated loss of
0.7 to 2.6 million workdays due to PM, s-related health effects [4].

The complex dynamics of wildfire spread are influenced by
a multitude of factors, including declining summer precipitation
across the Western U.S. [5], topographical variation [6], fuel con-
nectivity, and ignition sources. One invasive species—Cheatgrass
(Bromus tectorum)—has been especially influential in altering fire
regimes across the Intermountain West, particularly the Great Basin.
Cheatgrass not only reduces biodiversity by displacing native flora
and fauna [7], [8], [9], [10], but also enhances fire frequency and
intensity by increasing the availability of fine fuels [11], [12]. Post-
fire recovery is often hindered by Cheatgrass dominance, especially
in hotter, drier regions [13].

Remote sensing has emerged as a critical tool in monitoring
vegetation dynamics, assessing ecosystem structure [14], detecting
individual plant species [15], and evaluating post-fire effects [16],
[17]. Among various spectral cues, phenology-based detection is
particularly effective for invasive species like Cheatgrass due to
its early-season productivity relative to native vegetation [18],
[19]. This trait shifts the timing of peak greenness, making it
distinguishable in satellite time series such as Sentinel-2 [20].

Land use/land cover (LULC) classification techniques have
evolved from manual interpretation and basic pixel-based methods
to advanced machine learning and object-based approaches [21]. In
tandem, spectral vegetation indices—such as NDVI and EVI—have
become central to improving classification accuracy. For instance,
Sentinel-2-derived vegetation indices have achieved nearly 80%
accuracy in mapping invasive shrub species, outperforming even
radar-optical data fusion [22]. The 5-day revisit time and 10-20 m
spatial resolution of Sentinel-2 [23] enable multi-temporal pheno-
logical analysis through seasonal composites [24]. In this study, we
extend these methods by introducing Vegetation Index Temporal
Statistical Bands (Time Series Spectral Bands), leveraging monthly
distributions to better capture seasonal variation in vegetation
dynamics for LULC classification.

A persistent challenge in LULC mapping is the lack of high-
quality, globally consistent ground truth data. Collecting reliable
training and validation samples across large regions is both costly
and time-consuming [25]. To address this, our study utilizes the
open-source Calflora dataset [26] as a source of labeled observations
for land cover classification, offering species-level data with fine



spatial and temporal resolution.

Previous work on Cheatgrass distribution has typically relied
on coarse-resolution fuelscape datasets (e.g., 270-meter resolution
for sagebrush ecosystems [27]) or general invasive grass mapping
using NDVI-derived phenometrics [28]. While effective, such ap-
proaches often lack specificity, temporal depth, or spectral diversity.
Moreover, past methods have not fully exploited the potential
of vegetation index distributions across seasons. Operational fire
management plans like San Bernardino County’s CWPP [29]
have begun integrating such data for targeting cheatgrass in fuel
mitigation, underscoring the real-world need for precise mapping
solutions.

In this study, we present a Sentinel-2-based methodology at
10-meter resolution, incorporating monthly phenological statistics
and species-specific labels from Calflora to classify Cheatgrass
distribution. By targeting the reproductive and senescence phases
(May—June) as well as full-year vegetation dynamics (from July of
the previous year to June of the current year), our approach supports
timely and scalable mapping prior to the peak wildfire season.
This enables enhanced early warning and ecosystem management
strategies for high-risk areas.

The main objectives of this research are as follows:

« Leverage satellite remote sensing and the open-source Calflora
dataset for land use and land cover classification, with a
specific focus on detecting Cheatgrass.

o Introduce  Vegetation  Index  Temporal
Bands—derived from monthly vegetation
better capture seasonal vegetation dynamics.

« Analyze spatial patterns in the generated LULC map in relation
to historical wildfire events in California using zonal statistics
and visual interpretation.

Statistical
indices—to

These objectives aim to provide a comprehensive approach
to managing vegetation in fire-prone regions, with a particular
emphasis on understanding and controlling Cheatgrass to reduce
wildfire risk and its ecological impact.

II. DATA AND METHODOLOGY
A. Sentinel-2 Data Acquisition and Preprocessing

The Copernicus Sentinel-2 mission consists of two polar-orbiting
satellites positioned in the same sun-synchronous orbit, with a
phase difference of 180°. This configuration aims to monitor
changes in land surface conditions efficiently. Equipped with a
multispectral imager (MSI) that has 13 spectral bands, Sentinel-
2 provides moderate resolution imagery with a swath width of
290 km. This wide swath and the high revisit time enable global
coverage every five days, supporting the continuous monitoring
of the Earth’s surface. The primary objectives of the Sentinel-2
satellites include providing data for risk management, land use and
land cover mapping, change detection, natural hazards, and water
management. These capabilities are crucial for a wide range of
applications in environmental monitoring and management [23]. We
acquired the Sentinel-2 images using Google Earth Engine [30].

We applied a bilinear interpolation technique to enhance the
resolution of specific spectral bands at 20 meters to a uniform 10
meters in order to maintain consistent resolution across all bands.

TABLE I: Sentinel-2A Bands Used

Band Resolution Central Wavelength  Description
B2 10m 490 nm Blue
B3 10m 560 nm Green
B4 10m 665 nm Red
B5 20m 705 nm VNIR
B6 20m 740 nm VNIR
B7 20m 783 nm VNIR
B8 10m 842 nm VNIR
B8a 20m 865 nm VNIR
B11 20m 1610 nm SWIR
B12 20m 2190 nm SWIR

Note: VNIR refers to Visible and Near Infrared; SWIR refers to Shortwave
Infrared.

Bilinear interpolation was chosen because the bands represented
continuous imagery, rather than segmentation [31]. This refinement
was applied to those bands originally at 20-meter resolution,
resulting in a consistent 10-meter resolution across the selected
bands. Here, we used a total of ten spectral bands ranging from
the visible to the shortwave infrared wavelengths (Table I) ([32]).
As an initial step, Sentinel-2 Surface Reflectance (SR) images with
less than 20% cloud coverage were systematically selected for the
months of May and June 2022.

In our time series analysis, addressing the significance of cloud
interference is essential. To mitigate this issue, we first utilized the
Cloud Probability Band from Sentinel-2 Level-2A products [33],
generating its inverse by multiplying the Cloud Probability values
by —1, which was subsequently used as a weighting factor during
the creation of temporal mosaics, effectively minimizing noise.
Subsequently, we applied additional masks to filter out remaining
cloud and snow pixels [33], [34]. The resulting missing data were
handled by excluding the masked pixels during the computation of
the time series spectral bands, as detailed in Subsection II-D. These
combined techniques greatly reduced noise, providing a strong
method for time series analysis in our study. During the masking
process, the results were visually inspected, and all parameters
were refined through multiple iterations to ensure optimal outcomes
across all months.

B. Dataset

The Calflora dataset [26] was employed to assess the spatial
distribution of Cheatgrass (Bromus tectorum) across California
(Figure 2). As a comprehensive repository of georeferenced ob-
servations of wild plant species in the state, Calflora provides
valuable data to support ecological and biogeographical research.
The dataset offers detailed, species-level occurrence records that
are critical for analyzing habitat preferences and monitoring the
spread of invasive taxa such as Cheatgrass, which poses significant
ecological threats. However, the dataset includes certain spatial
inaccuracies, as illustrated in Figure 1, primarily resulting from
imprecise GPS coordinates at the time of species reporting. These
deviations—also evident in Figure 1—may arise from observations
logged near anthropogenic features such as roads or buildings rather
than from exact in-situ locations, introducing potential spatial bias
into ecological analyses.
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Fig. 1: Some inaccuracies in the Caflora [26] dataset with High-
resolution Imagery Background, which is created by variations in
collectors GPS accuracy [35].
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Fig. 2: A screenshot of Cheatgrass Data from the Calflora Website
showing its distribution across California [26].

C. Labeling and Refining

Our research commenced with systematically gathering Cheat-
grass sample locations from the CalFlora dataset [26] for Los
Angeles County, spanning the period from January 1, 2016, to

January 10, 2024. Los Angeles County was selected due to its
ecological diversity, encompassing coastal areas, mountain ranges,
valleys, forests, islands, lakes, rivers, and deserts [36], making
it representative of broader Californian landscapes. To categorize
regions by land cover type—such as water, grass, shrubland, trees,
and bareland—the Dynamic World V1 Land Cover map was
employed to extract representative samples of each class using
stratified random sampling [37], [38]. Each sample was meticu-
lously verified using Sentinel-2 imagery from April and June 2022,
focusing on distinguishing color contrasts in the RGB bands within
Los Angeles County. This process was further cross-checked with a
high-resolution Imagery base-map in ArcGIS PRO [35]. Given that
Cheatgrass often grows in patches around 300 m2 [39], the 10-meter
resolution of Sentinel-2 proved valuable for identifying pure pixels.
Points that appeared to be mixed on high-resolution images were
relocated to the nearest pixel that accurately represented the targeted
vegetation type. This detailed approach produced a dataset of 650
samples across six distinct land cover types: Grassland, Shrubland,
Bareland, Water, Cheatgrass, and Trees (Table II).

TABLE II: Initial 650 samples

Category Sample Size
Trees 205
Grassland 38
Shrubland 233
Bare Soil 34
Water 30
Cheatgrass 110
Total 650

Since Data collected from Calflora in the data preparation phase,
we addressed the inherent inaccuracies in some user-reported entries
within the Calflora dataset(Figure 1), specifically focusing on
Cheatgrass samples. For each Cheatgrass point across California
from the Calflora dataset, we established a 200-meter radius buffer
zone and generated four random peripheral points at least 50 meters
apart from each other, resulting in a total of five distinct sampling
points for each original location.

These points were then used to extract spectral values from
Sentinel-2 imagery captured in April and June. The extracted data
was input into a Binary Multilayer Perceptron (MLP) Classifier
[40] (Table III), which was trained using 80% of the dataset,
while the remaining 20% was reserved for validation (Table II).
We tested a range of probability thresholds between 0.4 and 0.7
to evaluate the relationship between the number of input points
labeled as Cheatgrass and the classifier’s corresponding predictions.
A threshold of 0.5 was ultimately selected, as it provided an optimal
balance: it consistently identified one confirmed Cheatgrass point
per instance, along with four additional points randomly sampled
within a defined spatial buffer around each positive case. This con-
figuration ensured that the sampling strategy neither oversampled
nor under sampled the target class. The additional points functioned
as a localized random search to identify spectral patterns closely
resembling the confirmed Cheatgrass signature—particularly those
trained in Los Angeles County—thus enhancing the model’s capac-
ity to generalize to nearby spectral analogs while preserving label
integrity. This threshold effectively reduced noise, eliminating 4



out of every 5 generated samples around each point. To further
validate the classifier’s robustness, a subset of retained points was
visually inspected in northeastern California—specifically within
Nevada, Placer, and El Dorado counties. More detailed results of
this MLP classifier are provided in Appendix A. Figure 3 illustrates
how the MLP classifier effectively addresses inaccuracies present
in the Calflora dataset. The Figure 3 clearly demonstrates the
model’s ability to reclassify mislocated points—originally assigned
to non-grass species—by repositioning them to more plausible
grass-dominated areas.

TABLE III: Binary Multilayer Perceptron (MLP) Architecture

Layer (type) Output Shape Param #
dense_8 (Dense) (None, 256) 5,376
dropout_6 (Dropout) (None, 256) 0
dense_9 (Dense) (None, 128) 32,896
dropout_7 (Dropout) (None, 128) 0
dense_10 (Dense) (None, 64) 8,256
dropout_8 (Dropout) (None, 64) 0
dense_11 (Dense) (None, 1) 65

Total params: 46,593

Trainable params: 46,593

Non-trainable params: 0

Optimizer: Adam
Loss: Binary Crossentropy
Metrics: Accuracy

This binary classification approach was replicated across all
classes, leading to a refined set of labeled samples. Finally, we amal-
gamated the refined dataset of 650 samples to train a comprehensive
multiclass classifier. This classifier aimed to effectively distinguish
between the defined classes, leveraging the refined and accurately
labeled dataset to enhance the predictive accuracy and reliability
of the model. Except for Cheatgrass, all other class samples were
sourced from Los Angeles County rather than across California.
Finally we had 8855 samples across 6 classes as shown in Table
Iv.

TABLE IV: Final Sample Design

Category Sample Size
Trees 1997
Grassland 1055
Shrubland 2268
Bare Soil 1498
Water 298
Cheatgrass 1739
Total 8855

This kind of label refining method would help us to integrate
datasets like iNaturalist in the future [41].

D. Vegetation Indices

In our study, we employ three key vegetation indices: NDVI
[42], GNDVI [43], and MSAVI2 [44](Equation 1, 2, and 3). These
indices are essential for monitoring vegetation health and land
surface dynamics using remote sensing.

The Normalized Difference Vegetation Index (NDVI) [42], [45]
is one of the most widely used spectral indices in agriculture and en-
vironmental monitoring. It quantifies vegetation vigor and density,
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Fig. 3: Label refinement using an MLP classifier, overlaid on a high-
resolution imagery background. The red squares indicate original
Calflora dataset points, hollow red circles denote four randomly
generated points, and yellow points represent those identified as
Cheatgrass by the MLP. The alignment of yellow points with visual
cues from the high-resolution map supports the classifier’s accuracy
[35].

supporting applications such as crop emergence analysis, growth
stage tracking, weed or disease detection, and yield forecasting.
NDVI is calculated using the equation 1:

NIR — Red

NDVI = ————
NIR + Red

ey

where NIR represents the near-infrared reflectance (Band 8§
for Sentinel-2) and Red denotes the red reflectance (Band
4 for Sentinel-2). Healthy vegetation absorbs most red light
(0.62-0.75 pm) and reflects a large portion of NIR light
(0.75-1.3 pm), enabling strong separation of vegetated and non-
vegetated surfaces [45].

The Green Normalized Difference Vegetation Index (GNDVI)
[43], [45] is a variation of NDVI that uses the green band instead
of red, given by the equation 2:

NIR — Green

GNDVI = SR T Green

(@)
Here, Green corresponds to Band 3 in Sentinel-2 (0.54—0.57 pm).
GNDVI is more sensitive to chlorophyll content and is often used
to assess nitrogen levels and moisture stress in vegetation.
The MSAVI2 index is computed as in the equation 3:
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MSAVI2 is particularly effective for monitoring early-stage crop
development in regions with sparse vegetation cover, as it enhances
the ability to differentiate vegetation from exposed soil [46].

The distinct advantages offered by each vegetation index guided
their selection in this study. NDVI’s capability to capture dense
vegetation cover, GNDVTI’s sensitivity to chlorophyll concentration,
and MSAVI2’s strength in distinguishing vegetation from bare
soil—particularly in sparsely vegetated areas—were instrumental
in effectively mapping Cheatgrass, which often exhibits variable
density and partial ground exposure.

MSAVI2 =

E. Time Series Spectral Bands

Given the annual lifecycle of Cheatgrass, effectively predicting
its proliferation requires a detailed understanding of its temporal
variability. The bloom period of Cheatgrass, typically spanning May
to June, serves as a key temporal indicator that differentiates it from
other vegetation. To leverage this distinct seasonal behavior, we
introduced an innovative set of features derived from the temporal
dynamics observed in spectral data. Specifically, we utilized data
from May 2022 and June 2022 to inform our analysis.

To incorporate indirect time series information for each pixel
over a year, we employed a novel approach by generating statistical
bands. These bands encapsulate the skewness, kurtosis, mean, and
standard deviation of three key vegetation indices: NDVI [42],
GNDVI [43], and MSAVI2 [44], covering the period from July
of the previous year to June of the prediction year. This integration
added twelve additional layers to our model, significantly enriching
the dataset with temporal insights and enhancing the model’s
accuracy in distinguishing Cheatgrass from other vegetation types.
Prior to calculating the skewness, kurtosis, mean, and standard
deviation bands, monthly mosaicked Sentinel-2 images [33] were
processed to derive NDVI, GNDVI, and MSAVI2, which were then
used to compute the statistical bands.

Figure 4 illustrates how the NDVI distribution varies across
different land cover classes over the months and highlights how
metrics such as Mean, Standard Deviation, Kurtosis, and Skewness
of average monthly vegetation index can aid in distinguishing
between these classes.

This methodology underscores the importance of integrating
time-sensitive spectral differences and statistical analyses to im-
prove the predictive modeling of Cheatgrass, ensuring robustness
across varying temporal scales.

F. Classification Algorithm

We applied two powerful ensemble machine learning algorithms,
XGBoost and Random Forest (RF), to identify Cheatgrass. XG-
Boost, known for its efficiency in classification tasks [47], leverages
an ensemble of decision trees to boost classification accuracy. Its
high predictive power is due to its effective loss function and the op-
timization of weak learners, leading to superior model performance
[47], [48], [49]. The algorithm’s iterative and additive training
process, combined with a stringent regularization framework, en-
sures robustness against overfitting [50], [7]. Detailed mathematical

Spectral Graph of NDVI for Different Land Cover Classes

2 zee=s rewszf rowzf regzd
53 C£835 15435 &% H
2038 2o

zeeEs
38823

ﬂ

zoezd
5888%

%
2,
=2
2
%,
%
%,
3
q
2,
%
S
%
%
9
%
3
2
%
2.
%
%,
%,
%,
2
%
%,
%,
=
2
%

& ¢ ¢ & @
nnnnn

Fig. 4: NDVI variation across different classes from July 2021 to
June 2022.

insights into this algorithm are thoroughly documented in Chen’s
works [47].

The Random Forest (RF) algorithm [51] employs bootstrapping
to generate numerous decision trees from different data samples.
Each decision tree utilizes the Classification and Regression Trees
(CART) algorithm to split nodes by minimizing Gini Impurity,
which quantifies the likelihood of a misclassification if a new
random variable were assigned a random label based on the
training sample distribution. The overall classification is performed
through bootstrap aggregation. This method was selected due to its
proven high accuracy in recent studies, particularly in land cover
classification tasks [52], [48], [53]. Comprehensive details of the
RF algorithm can be found in specialized literature [51], [54].

G. Example use case

Our study examines two significant wildfire cases: the El Dorado
Fire of 2020 and the Corral Fire of 2024, highlighting the role of
cheatgrass invasion in post-fire fuel accumulation and its contribu-
tion to fire spread. The El Dorado Fire, which burned approximately
22,744 acres (9,204 ha; 35.538 sq mi; 92.04 km?) across San
Bernardino and Riverside counties, was ignited on September 5,
2020, by a pyrotechnic device in El Dorado Ranch Park and quickly
expanded into the San Gorgonio Wilderness Area within the San
Bernardino National Forest. The fire burned for 71 days, destroying
20 structures and resulting in a firefighter fatality [55].

To analyze vegetation dynamics pre- and post-fire, we focused
on a 100-mile by 100-mile region encompassing the El Dorado fire
perimeter (Table XIII), allowing us to compare vegetation changes
within the burned area to surrounding areas not impacted by the fire.
The land use and land cover (LULC) data for 2020 were collected
up to June, just before the fire’s occurrence in September. Since the
West Coast’s proximity introduced marine areas into this 100-mile
radius—irrelevant to our study—we adjusted the centroid 20 miles
northeast to focus exclusively on terrestrial changes (Figure 14).

By contrast, the Corral Fire of 2024 in San Joaquin County
exemplifies the rapid advancement of grassland fires. First detected
at 4:44 pm on June 1, it expanded to over 9,000 acres by 9:46
pm—within just five hours—and eventually burned 14,168 acres
in total [56]. Investigations traced the ignition source to 12kV
distribution pole 8009, part of feeder 8 near Substation 846. This



pole, originally installed in 1958, was identified as the ignition
point[57]. According to the National Interagency Fire Center’s
Incident Management Situation Report, suppression efforts for this
fire cost an estimated $3.4 million [58]. The fire’s rapid growth
emphasizes the urgent need for advanced modeling tools and real-
time monitoring systems to anticipate and manage fast-moving
wildfires.

Additionally, Appendix B demonstrates our model’s predictive
capabilities in classifying shrubland-dominated areas in the Mojave
Desert, illustrating the LULC model’s robustness in capturing
diverse landscapes and terrain types. This example underscores the
model’s potential in broader applications across various ecosystems
and fire-prone environments.

III. RESULTS AND DISCUSSION

A. Classification Accuracy

We split the dataset 80:20, training our models with 80% of the
data and using the remaining 20% for testing(Table IV).

Additionally, we examined the variance in band intensities be-
tween June 2022 and April 2022, as well as 12 time series statistical
bands, applying a scaling factor derived from the Ist percentile
minimum and maximum values within Los Angeles County.

We then trained models using the Random Forest and XGBoost
algorithms, further optimizing their performance through extensive
hyperparameter tuning using a 10-fold cross-validated grid search
to ensure robust generalization and minimize the risk of overfit-
ting(Table V).

TABLE V: Parameter Grid for 10-Fold Grid Search on Random
Forest and XGBoost Models

Model Values

{2,3,5,6,7,8, 10}
{250, 500, 1000, 2000, 3000}

{200, 500, 1000, 3000, 5000}
{0.1, 0.05, 0.01, 0.005, 0.001}

Parameter

Random Forest
Random Forest
XGBoost
XGBoost

min_samples_split
n_estimators

n_estimators
learning_rate

Despite achieving an initial model accuracy of 95%, we encoun-
tered challenges in generalizing across different years and counties,
partly due to the specific scaling applied using the st percentile
minimum and maximum values from Los Angeles County. Ad-
ditionally, residual snow in April led to incorrect predictions for
the water class. To address these issues, we refined our dataset to
include only observations from May and June 2022, corresponding
to the Cheatgrass bloom period. We also incorporated twelve
unaltered statistical bands from three vegetation indices to enhance
the model’s robustness. Data was extracted to labels from bands
shown in Table VI. Although this adjustment slightly reduced
the overall model accuracy to 91.1%, it significantly improved
the model’s reliability and performance across both temporal and
spatial dimensions. As seen in Table VI, the model uses all 32
input features, and given the importance of the vegetation indices in
capturing ecologically relevant patterns, we retained all input bands.
Therefore, we did not apply dimensionality reduction techniques,
as excluding any of these features could have compromised the
interpretability and predictive strength of the model.

TABLE VI: Bands used to extract values for labels.

Data Date No. of Bands
June Sentinel-2 06/01/2022 to 06/30/2022 10
May Sentinel-2 05/01/2022 to 05/31/2022 10
NDVI Distribution Bands 07/01/2021 to 06/30/2022 4
GNDVI Distribution Bands 07/01/2021 to 06/30/2022 4
MSAVI-2 Distribution Bands ~ 07/01/2021 to 06/30/2022 4

Note: Distribution bands are Mean, Standard Deviation, Skewness, Kurtosis.

TABLE VII: Classification Accuracy and Confusion Matrix for
Random Forest.

True/Predicted GS SH BR WT CG TR
GS 189 0 0 0 1 21
SH 2 397 1 0 34 17
BR 0 1 298 0 0 1
WT 0 0 0 60 0 0
CG 0 45 2 0 294 6
TR 14 16 0 1 1 367
Column Total 211 450 300 60 347 399
Precision (UA) 0.92 0.86 0.99 0.98 0.89 0.89
Recall (PA) 0.90 0.88 0.99 1.00 0.85 0.92
Overall Accuracy 0.908
Kappa 0.885

Note: GS - Grassland, SH - Shrubland, BR - Bareland, WT - Water, CG -
Cheatgrass, TR - Trees, UA - User accuracy, PA - Producer accuracy.

TABLE VIII: Classification Accuracy and Confusion Matrix for
XGBoost.

True/Predicted GS SH BR WT CG TR
GS 187 0 0 0 1 23
SH 1 403 0 0 29 17
BR 0 1 297 0 1 1
WT 0 0 0 59 0
CG 1 43 1 0 299 3
TR 15 18 0 1 0 365
Column Total 211 450 300 60 347 399
Precision (UA) 0.92 0.87 1.00 0.98 0.91 0.89
Recall (PA) 0.89 0.90 0.99 0.98 0.86 0.91
Overall Accuracy 0911
Kappa 0.889

Note: GS - Grassland, SH - Shrubland, BR - Bareland, WT - Water, CG -
Cheatgrass, TR - Trees, UA - User accuracy, PA - Producer accuracy.

The ROC curves shown in Figures 5 and 6 provide a detailed
evaluation of classifier performance for each class. The Random
Forest model’s ROC curves (Figure 5) demonstrate high AUC
values for most classes, with the Grassland, Bareland, and Water
classes achieving perfect scores (AUC = 1.00). The Shrubland
and Cheatgrass classes show slightly lower AUC values of 0.98,
indicating some misclassification errors. Similarly, the XGBoost
model (Figure 6) exhibits high AUC values across all classes, with
Grassland, Bareland, and Water also achieving perfect AUC scores.
The Cheatgrass and Trees classes have slightly lower AUC values
of 0.98 and 0.99, respectively, indicating robust performance with
minor classification errors. These high AUC values across both
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Fig. 6: XGBoost Model ROC Graphs.

models affirm the robustness of our approach in distinguishing
between different land cover classes.

The confusion matrix (Table VII and Table VIII) indicates
challenges in accurately classifying Shrubland within our dataset.
However, the high precision in identifying Cheatgrass confirms the
effectiveness of our modeling approach. Currently, our analyses
rely on static 2022 data. To enhance the robustness of model
performance and increase temporal diversity, raising public aware-
ness about Cheatgrass is crucial. Encouraging the collection of
Cheatgrass location data, including precise latitude and longitude
coordinates, could help in obtaining high-quality data. Additionally,
developing an application for the public to report Cheatgrass loca-
tions could provide a large quantity of data. This data can be filtered
using a semi-supervised MLP model designed for extracting extra
labels, thereby improving our dataset and enabling the develop-
ment of more sophisticated models. This approach would enhance
our analytical capabilities and improve predictive accuracy across

Carson City Great Basin

LY x

®Q sandgncisco o
o, . °
2 oS

©o 2, 2\

oLas Vegas

% 1 Las
% ( o

E E ‘\ ) Moj
. £ \ Desert
N o "<
i, |
Wrong o0 o Wrong sanDigo
Shrubland " | Cheatgrass™

Fig. 7: Clockwise from top: (1) Test dataset distribution, (2)
Shrubland misclassified as Cheatgrass, mostly along the coastal
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B. LULC Map

Figure 8 shows the Land Use Land Cover (LULC) map for
California State 2024, generated using the trained XGBoost model
with 32 bands (Table IX). Figure 9 represents the probability
map of the class Cheatgrass derived using the trained XGBoost
model with 32 bands (Table IX). This LULC and Cheatgrass
Probability map enables the analysis of fuel connectivity, revealing
areas with high Cheatgrass density. Additionally, regions where
forests are surrounded by Cheatgrass pose a significant risk of large
forest fires due to potential ignition sources and fuel connectivity.
The analysis excluded built-up and cropland classes because of
their heterogeneous landscapes and varying spectral characteristics,
especially croplands whose spectral signatures change with the
agricultural season. For Figure 8, for built-up areas, the GHSL:
Global Settlement Characteristics (10 m) 2018 (P2023A) [59]
dataset was used, which is at 10 m resolution. For cropland, the
USDA NASS Cropland Data Layers [60] were used from the
period between *2016-01-01" and *2017-12-31’. While mosaicking
cropland and built-up areas, Cheatgrass pixels were given priority.



TABLE IX: Bands used to extract LULC Map Figure 8 and Figure
9

Data Date No. of Bands
June Sentinel-2 06/01/2024 to 06/30/2024 10
May Sentinel-2 05/01/2024 to 05/31/2024 10
NDVI Distribution Bands 07/01/2023 to 06/30/2024 4
GNDVI Distribution Bands 07/01/2023 to 06/30/2024 4
MSAVI-2 Distribution Bands ~ 07/01/2023 to 06/30/2024 4

Note: Distribution bands are Mean, Standard Deviation, Skewness, Kurtosis.

Figure 8 also illustrate a strong correlation between vegetation
cover and wildfire incidence patterns, significantly influenced by
the classes “Trees” and “Cheatgrass”. These maps can be utilized
to calculate historical fuel loads and assess fuel connectivity at
both macro and community levels. The subsequent subsections
provide examples demonstrating their potential for both preventive
strategies and post-fire behavior analysis.
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Fig. 8: LULC Map of California 2024.

C. Importance of Time Series Spectral Bands.

We evaluated XGBoost performance using different data sources
as summarized in Table X. When using only June or May Sentinel-
2 data combined with vegetation index (VI) bands, the recall for
Cheatgrass was relatively low, with precision values of 0.85 and
0.86, respectively. Incorporating both May and June Sentinel-2 data
with VI bands improved recall, but Cheatgrass precision remained at
0.85. The inclusion of time series statistical bands notably improved
precision to 0.91. Figure 10 presents results for 2018, as Sentinel-
2 surface reflectance data is unavailable for California prior to
2019—only top-of-atmosphere reflectance exists, which lacks the
mask probability band required to compute time series features. As
shown in Figure 10 and Table XI, the LULC map generated using
reduced data overestimated Cheatgrass, particularly in shrubland
regions and along the west coast. These findings suggest that time
series spectral bands not only enhanced precision but also mitigated
the overprediction of Cheatgrass.
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Fig. 9: Cheatgrass Probability Map of California 2024.

TABLE X: Experimentation on XGBoost Model with different sizes
of data.

Data Cheatgrass OA

Precision / Recall

June Sentinel-2 + VI 0.85/0.83 0.888
May Sentinel-2 + VI 0.86/0.82  0.882
June + May Sentinel-2 + VI JMV) 0.85/ 0.86 0.898
JMV + Time Series Spectral Bands ~ 0.91/0.86  0.911

Note: OA = Overall Accuracy, VI = Vegetation Indices(NDVI, GNDVI, MSAVI2),
Time series Spectral Bands = Distribution Bands in Table VI, JMV = June and
May Sentinel-2 + VI.
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Fig. 10: LULC Map of California 2018 without Time Series
Statistical Bands using data in Table XI



TABLE XI: Bands used to extract LULC Map in Figure 10

Data Date No. of Bands
June Sentinel-2 + VI~ 06/01/2018 to 06/30/2018 10
May Sentinel-2 + VI~ 05/01/2018 to 05/31/2018 10

Note: VI = Vegetation Indices(NDVI, GNDVI, MSAVI2).

D. Example use case: El Dorado Fire 2020 Analysis

TABLE XII: Land Cover Percentages around El Dorado Fire 2020

2020 2021
Land Cover Type  Percentage Land Cover Type  Percentage
Grassland 1.91% Grassland 0.09%
Shrubland 31.00% Shrubland 38.97%
Bareland 0.92% Bareland 5.46%
Water/Snow 0.12% Water/Snow 6.01%
Cheatgrass 13.55% Cheatgrass 48.06%
Trees 52.50% Trees 1.40%

2022 2023
Land Cover Type  Percentage Land Cover Type  Percentage
Grassland 0.17% Grassland 0.30%
Shrubland 46.66% Shrubland 64.97%
Bareland 5.49% Bareland 5.26%
Water/Snow 0.45% Water/Snow 0.08%
Cheatgrass 45.07% Cheatgrass 22.99%
Trees 2.15% Trees 6.40%

Vegetation Distribution in Eldorado 2020 fire across years
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Fig. 11: Vegetation Distribution inside El Dorado Fire 2020 bound-
ary across years.

The El Dorado Fire was a wildfire that burned 22,744 acres
(9,204 ha; 35.538 sq mi; 92.04 km2) in San Bernardino and
Riverside counties of California from September to November
2020. It was ignited on September 5 by a pyrotechnic device in
the El Dorado Ranch Park; it quickly spread to the San Gorgonio
Wilderness Area of the San Bernardino National Forest. Burning
over a 71-day period, the fire destroyed 20 structures and resulted
in one firefighter fatality [55].

We focused on the 2020 El Dorado wildfire to assess vegetation
dynamics pre and post-wildfire within a designated 100 by 100
miles (Table XIII) area surrounding the El Dorado fire boundary. It

TABLE XIII: Land Cover Percentages around 100 by 100 miles

2020 2021
Land Cover Type  Percentage Land Cover Type  Percentage
Grassland 0.95% Grassland 0.69%
Shrubland 35.36% Shrubland 29.34%
Bareland 39.98% Bareland 50.81%
Water/Snow 1.20% Water/Snow 1.64%
Cheatgrass 16.79% Cheatgrass 14.01%
Trees 5.73% Trees 3.51%

2022 2023
Land Cover Type  Percentage Land Cover Type  Percentage
Grassland 0.60% Grassland 0.61%
Shrubland 23.78% Shrubland 30.05%
Bareland 57.78% Bareland 49.74%
Water/Snow 1.10% Water/Snow 1.06%
Cheatgrass 13.24% Cheatgrass 13.96%
Trees 3.50% Trees 4.58%

Vegetation Distribution across 100 by 100 miles of Eldorado fire
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Fig. 12: Vegetation Distribution around 100 by 100 mile of El
Dorado Fire 2020 across years.

is important to note that the land use and land cover (LULC) map
(Figure 13) for 2020 was compiled using data collected only up
until June 2020, two months prior to the actual occurrence of the
El Dorado fire in September 2020. Given the proximity of the West
Coast—within a 100-mile radius of the fire zone—which included
parts of the ocean, and considering that marine areas are not relevant
to our study, we adjusted the centroid of the mapped area 20 miles
northeast to better focus on the terrestrial environment (Figure 14).

In 2020, recognized as one of the most severe wildfire seasons,
the combined presence of trees and Cheatgrass, which constitute
critical wildfire fuels, was observed to be 22.52% within the 100
by 100 mile (Table XIII and Figure 12) area and alarmingly higher
at 66.05% within the El Dorado fire region itself (Table XII and
Figure 11). Post-fire assessments indicated a predictable increase
in Cheatgrass across the burnt landscape, while fuel loads began to
normalize within the fire-affected region from 2020 to 2023 (Table
XII and Figure 13). This analysis not only provides insight into the
immediate effects of wildfires on local vegetation dynamics but also
opens avenues for further research into historical wildfire patterns
and the complex interactions between wildfire occurrences and the
availability and connectivity of combustible materials.
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E. Example use case 2: Corral Fire 2024

Our model identified a notable presence of Cheatgrass from 2020
through 2023 (Figure 15), suggesting a consistent accumulation of
fine fuels over this period. On June 1, 2024, driven by sustained
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Fig. 15: Historical four-year LULC around Corral Fire 2024 area
showing huge density of cheatgrass around the Ignition point.
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winds averaging 32.7 mph and gusts reaching up to 43.1 mph,
the Corral Fire rapidly spread across nearly 15,000 acres, causing
significant damage to infrastructure, interrupting operations, and
affecting offsite properties [61]. As shown in Figure 15, the dense
presence of Cheatgrass near the ignition point underscores the
critical value of integrating both current and historical Land Use
Land Cover (LULC) maps that explicitly account for invasive
grasses like Cheatgrass. Such data products are essential for pre-fire
risk assessments and for implementing effective wildfire mitigation
strategies.

IV. CONCLUSION

This study presents a comprehensive and scalable framework for
detecting and mapping Cheatgrass (Bromus tectorum)—a highly
flammable invasive species linked to increased wildfire frequency
in California. We leveraged multi-temporal Sentinel-2 imagery,
Vegetation Index Temporal Statistical Bands, and machine learning
to achieve high model performance, with an overall accuracy of
91.1%, 91% precision for Cheatgrass, an ROC-AUC of 0.99, and a
Cohen’s Kappa of 0.89. These results affirm the robustness of our
approach in distinguishing Cheatgrass from other land cover types
across varied ecological settings.

One of the primary challenges in land use and land cover
(LULC) classification is the acquisition of reliable ground truth
data across large and diverse regions. To address this, we utilized
the open-source Calflora dataset, which provides fine-scale species-
level observations. Recognizing spatial inaccuracies within user-
reported data, we developed a semi-supervised label refinement
method using a binary MLP classifier. This approach significantly
improved label quality while reducing manual labeling require-
ments, making the methodology more scalable and suitable for
dynamic landscapes.

A key contribution of our framework is the integration of
Vegetation Index statistical features—derived from monthly NDVI,
GNDVI, and MSAVI2 metrics (mean, standard deviation, skewness,
kurtosis)—which capture phenological patterns unique to Cheat-



grass. This enabled accurate early-season mapping using data up
to June, ahead of California’s peak wildfire season. Our model’s
ability to generate LULC maps and Cheatgrass probability layers
supports pre-season fuel load assessments, identification of high-
risk zones, and targeted mitigation strategies.

Through case studies such as the El Dorado and Corral Fires,
we demonstrated how persistent Cheatgrass presence contributes
to fuel accumulation and rapid fire spread. The predictive maps
generated by our model can thus serve as valuable tools for
wildfire preparedness, ecological restoration, and invasive species
monitoring.

In summary, this study highlights the practical potential of
combining remote sensing, semi-supervised learning, and open
ecological datasets to inform proactive wildfire risk management
and land-use planning in fire-prone regions.
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APPENDIX
A. Binary Multilayer Perceptron (MLP) Classifier

Data for Cheatgrass (Bromus tectorum) were extracted from
the Calflora database [26], covering the period from January 1,
2016, to January 10, 2023, resulting in 1,720 initial points. To
expand the dataset, we generated four random buffer points within
a 200-meter radius around each original point. The combined
dataset was then input into a binary MLP classifier. We evaluated
probability thresholds ranging from 0.4 to 0.7, with a threshold of
0.5 yielding 1,629 positive samples, closely aligning with the initial
Calflora points(Table XV. These selected points underwent visual
validation using high-resolution imagery in ArcGIS Pro [35]. Table
XIV provides the classification report for the binary MLP model.
Figure 16 represents loss and accuracy curves of train and test. For
additional classes (trees, shrubland, bareland, water, and grassland),
stratified random samples were drawn from a dynamic LULC map
of Los Angeles County and refined through a similar binary MLP
classifier.

TABLE XIV: Classification Report for Cheatgrass Detection

Class Precision | Recall | F1-Score | Support
Non-Cheatgrass 1.00 0.99 1.00 108
Cheatgrass 0.96 1.00 0.98 22
Accuracy 0.99
Macro Average 0.98 1.00 0.99 130
Weighted Avg 0.99 0.99 0.99 130

B. Mojave Desert

The Mojave Desert landscape is primarily characterized by bare
land and shrubland [62]; however, instances of Cheatgrass (Bromus
tectorum) emergence have also been observed following fire events
[63]. Our LULC map effectively captures this dynamic, illustrating
our model’s robustness in mapping diverse terrain and land cover
patterns(Figure 17).
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TABLE XV: Cheatgrass Sample Selection and MLP Processing
Details

Description Count

Cheatgrass points from Calflora (CA) 1,720

Random buffer points (200 m radius) 6,880

Total points used in MLP 8,600

Positive samples (probability > 0.4) 2,108

Positive samples (probability > 0.5) 1,629

Positive samples (probability > 0.6) 1,196

Positive samples (probability > 0.7) 712
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Fig. 16: Loss and Accuracy curve of MLP Classifier.
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