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Abstract—Wildfire risk is on the rise around the world. In places
like California, this risk is further instigated by the invasive species
cheatgrass (Bromus tectorum). Cheatgrass is highly flammable and
benefits from wildfires, allowing it to replace native plant communities.
Through increasing both the intensity and the frequency of wildfires,
it endangers not only its natural environment but also human habitats.
Here, we present a novel approach to map the distribution and
expansion of cheatgrass and predict potential wildfire risk zones.
Utilizing the open-source CalFlora dataset, alongside data from the
Sentinel–2 satellites, we created a comprehensive spatial analysis
framework. We integrated temporal dynamics via Vegetation Index
statistical bands that encapsulate annual vegetation information. We
employed semi-supervised learning techniques to refine and filter
our data labels, thereby ensuring robust model training. We utilized
machine learning algorithms Random Forest and XGBoost for model
training. Our models exhibited a test accuracy of 91.1% in multiclass
classification and achieved a precision rate of „ 91% specifically for
the Cheatgrass class. Our multiclass classification model demonstrates
exceptional discriminative ability and agreement with the actual
classifications, with an ROC-AUC Score of 0.99 indicating near-perfect
performance in distinguishing between the different classes, and a
Cohen’s Kappa of 0.89 signifying a strong agreement, accounting for
chance. We demonstrate the efficacy of our methodology in identifying
regions at high risk of wildfires due to Cheatgrass proliferation,
highlighting the potential for broader application across California’s
diverse landscapes. Our analysis effectively predicts the distribution of
Cheatgrass and other vegetation with data available only until June,
providing insight before the peak forest fire season, which spans from
mid-July to September. This capability delivers actionable intelligence
for assessing fuel load and connectivity, thus laying the groundwork
for targeted wildfire prevention strategies and enhanced ecological
management practices in fire-prone areas.

Index Terms—Land use and Land cover Mapping, Cheatgrass, In-
vasive Plants, Machine Learning, Semi-supervised Learning, Wildfire
Prevention, Time-series Analysis.

I. INTRODUCTION

Wildfires have become a frequent occurrence worldwide, often
highlighted for their adverse effects. However, fire also plays
a critical role in the health and sustainability of various forest
ecosystems. Growing concerns stem from observed trends such as
increased fire frequency, extended fire seasons, and the intensified
impact of fires being reported globally ([1], [2]). In a long-term
study of fire trends through Antarctic ice core analysis[3] identified
a 200-year cycle in fire frequency, noting a rise in biomass burning
from the 1600s to the 1800s, followed by a decline starting in the
1800s. Today, the heightened wildfire frequency and scale seen in

recent decades raise serious concerns about the ecological, socio-
economic, and land-resource implications of these fires.

In 2020, California encountered an unprecedented level of wild-
fire activity, with approximately 1.74 million hectares burned,
surpassing the previous record by more than a factor of two. The
economic impact of these wildfires was severe, exceeding $19
billion in losses [4]. The resultant smoke significantly contributed
to an estimated 0.7 to 2.6 million workdays lost due to PM2.5
exposure, underscoring the considerable health impact [5].

Future projections for areas in California at risk of wildfires
indicate a significant transformation in the insurance market by
2055, with a predicted five-percentage-point reduction in the market
share of admitted insurers and an 18 percent hike in the rate per
$1,000 of coverage [6]. These data highlight the critical need for
improved wildfire management strategies to mitigate economic and
public health impacts in the future.

The dynamics of wildfires are shaped by numerous complex
factors. These include the decline in summer precipitation across the
Western United States [7], terrain variations [8], and the availability
and connectivity of combustible materials. Additionally, the source
of ignition plays a crucial role in the spread of wildfires.

Lightning stands as the foremost natural cause of ignition for
wildfires in the U.S., responsible for 15% of these events and 60%
of the total area burned [9]. Fires started by lightning typically
occur in remote and hard-to-access locations, which complicates
their detection and suppression efforts [10]. Notably, in 78% of
these incidents, the first house destruction occurred one day post-
ignition. Moreover, wildfires initiated by lightning tend to cover
larger areas compared to those caused by human activities [11].
The age of fuels also influences ignition patterns, with older fuels
(over 25 years) more prone to lightning strikes and younger fuels
(less than 10 years) more susceptible to arson [12]. Consequently,
understanding and mapping fuel connectivity is pivotal in managing
the spread of lightning-triggered wildfires.

Cheatgrass, an invasive non-native annual grass, significantly
impacts the fire regimes across the Intermountain West, particularly
in the Great Basin. It negatively affects the richness and abundance
of small mammals [13], [14] and degrades habitat for the Greater
Sage-Grouse [15], [16], a species vital for regional ecological
management. By increasing the connectivity and availability of
fine fuels, Cheatgrass leads to more frequent fires compared to
those in native ecosystems [17], [18]. Post-fire scenarios often
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result in Cheatgrass dominance, making recovery for native shrubs
and grasses particularly challenging, especially in hotter and drier
regions [19]. The severe ecological consequences of Cheatgrass
invasion highlight the importance of accurate regional modeling of
its spread and density to develop effective management strategies.

The distinct phenological traits of Cheatgrass, compared to
native vegetation, enhance its detectability via satellite imagery.
The earlier phenology of invasive plants, such as Cheatgrass,
often gives them a competitive advantage over native species [20].
These phenological differences facilitate the satellite detection of
invasive species [21]. For instance, Cheatgrass exhibits early spring
productivity before native shrubs and grasses, leading to a shift in
the timing of peak greenness that is detectable through satellite
time series [22]. Leveraging Sentinel–2 satellite data, we applied
this phenological analysis by utilizing time series satellite data and
successfully achieved the classification of Cheatgrass.

Creation of digital Land use and land cover(LULC) datasets using
various remote sensing techniques can be an effective approach, to
effectively monitor and assess these changes [23]. Many attempts
have been made to map the LULC since very long using various
supervised and unsupervised algorithms ([24], [25], [26]). Previ-
ous work on Cheatgrass distribution mapping utilized fuelscape
datasets at a 270-meter resolution, covering the sagebrush biome
of the western United States [27]. Pastick et al. [28] established
a foundational methodology for mapping invasive annual grasses
using harmonized Landsat and Sentinel-2 (HLS) data, focusing on
NDVI time series and phenological metrics. While effective, their
approach mainly utilizes NDVI, which may not fully leverage the
additional insights provided by other spectral bands. Furthermore,
their method primarily incorporates a limited timeframe of data,
which might affect the ability to capture broader seasonal variations.
Additionally, the mapping approach is designed for general exotic
annual grasses, which may not achieve the same specificity needed
for Cheatgrass detection. The San Bernardino County Fire Depart-
ment (SBC) [29] is responsible for managing wildland fires in the
United States largest county. SBC has successfully implemented
a GIS-based Community Wildfire Protection Plan (CWPP) that
integrates out cheatgrass data to effectively target this invasive plant
during prescribed burns and other fuel mitigation actions.

This paper utilizes Sentinel-2 imagery at a finer 10-meter reso-
lution than previous work, and integrates both reproductive season
data (May and June) and year-long(July-June) phenological obser-
vations through vegetation index distribution bands. By adopting
the user-generated Calflora [30] dataset, which is more commonly
available and offers finer temporal resolution, we focus specifically
on Cheatgrass, enabling precise and timely mapping before the for-
est fire season in July. This approach ensures the availability of up-
to-date maps and the integration of real-time datasets, significantly
enhancing the effectiveness of wildfire management and invasive
species monitoring.

The objectives of this research are centered around the detailed
study and management of vegetation in wildfire-prone areas, with
particular focus on Cheatgrass. These objectives are the following:

‚ Utilize satellite remote sensing and the open-source Calflora
Dataset for land use and land cover mapping, with a focus on
mapping Cheatgrass distribution.

‚ Determine temporal variation in the spread of Cheatgrass to
understand risks and causes.

‚ Demonstrate the creation of accurate, annual pre-fire-season
vegetation maps that can aid planning and management.

These objectives aim to provide a comprehensive approach to man-
aging vegetation in fire-prone regions, with a particular emphasis
on understanding and controlling Cheatgrass to reduce wildfire risk
and its ecological impact.

II. DATA AND METHODOLOGY

A. Sentinel–2 Data Acquisition and Preprocessing

The Copernicus Sentinel-2 mission consists of two polar-orbiting
satellites positioned in the same sun-synchronous orbit, with a
phase difference of 180°. This configuration aims to monitor
changes in land surface conditions efficiently. Equipped with a
multispectral imager (MSI) that has 13 spectral bands, Sentinel-
2 provides moderate resolution imagery with a swath width of
290 km. This wide swath and the high revisit time enable global
coverage every five days, supporting the continuous monitoring
of the Earth’s surface. The primary objectives of the Sentinel-2
satellites include providing data for risk management, land use and
land cover mapping, change detection, natural hazards, and water
management. These capabilities are crucial for a wide range of
applications in environmental monitoring and management [31]. We
acquired the Sentinel-2 images using Google Earth Engine [32].

We applied a bilinear interpolation technique to enhance the
resolution of specific spectral bands at 20 meters to a uniform 10
meters in order to maintain consistent resolution across all bands.
Bilinear interpolation was chosen because the bands represented
continuous imagery, rather than segmentation[33]. This refinement
was applied to those bands originally at 20-meter resolution,
resulting in a consistent 10-meter resolution across the selected
bands. Here, we used a total of ten spectral bands ranging from the
visible to the shortwave infrared wavelengths (Table I)([34]). As
an initial step, Sentinel–2 Surface Reflectance (SR) images with
less than 20% cloud coverage were systematically selected for the
months of May and June 2022.

In our time series analysis, addressing the significance of cloud
interference is essential. To reduce this issue, we first utilized the
Cloud Probability Band from Sentinel-2 Level-2A products [35],
using its inverse as a key factor in creating mosaics of temporal
imagery, effectively minimizing noise. Next, we filtered out snow
and cloud pixels by applying masks [35], [36]. These combined
techniques greatly reduced noise, providing a strong method for
time series analysis in our study. During the masking process, the
results were visually inspected, and all parameters were refined
through multiple iterations to ensure optimal outcomes across all
months.

B. Dataset

The Calflora dataset [30] was utilized to examine the occurrence
of Cheatgrass (Bromus tectorum) across California (Figure 2). This
comprehensive database provides critical georeferenced data on
wild plant species within the state, supporting various ecological
studies. The dataset includes detailed species-specific information
and insights into plant distributions, which are instrumental in
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TABLE I: Sentinel–2A Bands Used

Band Resolution Central Wavelength Description

B2 10m 490 nm Blue
B3 10m 560 nm Green
B4 10m 665 nm Red
B5 20m 705 nm VNIR
B6 20m 740 nm VNIR
B7 20m 783 nm VNIR
B8 10m 842 nm VNIR
B8a 20m 865 nm VNIR
B11 20m 1610 nm SWIR
B12 20m 2190 nm SWIR

Note: VNIR refers to Visible and Near Infrared; SWIR refers to Shortwave
Infrared.

understanding the spread and habitat preferences of plant species.
Specifically, this resource is essential for tracking the temporal and
spatial dynamics of Cheatgrass, an invasive species with significant
ecological impacts. But since this dataset had many inaccuracies as
shown in Figure 1

Fig. 1: Some inaccuracies in Caflora [30] dataset with High-
resolution Imagery Background[37]

C. Labeling and Refining

Our research commenced with systematically gathering Cheat-
grass sample locations from the CalFlora dataset [30] for Los
Angeles County, spanning the period from January 1, 2016, to
January 10, 2024. Los Angeles County was selected due to its
ecological diversity, encompassing coastal areas, mountain ranges,
valleys, forests, islands, lakes, rivers, and deserts [38], making
it representative of broader Californian landscapes. To categorize

Fig. 2: A screenshot of Cheatgrass Data from Calflora Website [30]

regions by land cover type—such as water, grass, shrubland, trees,
and bareland—the Dynamic World V1 Land Cover map was em-
ployed [39]. Each sample was meticulously verified using Sentinel-
2 imagery from April and June 2022, focusing on distinguishing
color contrasts in the RGB bands within Los Angeles County. This
process was further cross-checked with high-resolution Imagery
base-map in ArcGIS PRO [37]. Given that Cheatgrass often grows
in patches around 300 m² [40], the 10-meter resolution of Sentinel-
2 proved valuable for identifying pure pixels. Points that appeared
to be mixed on high-resolution images were relocated to the nearest
pixel that accurately represented the targeted vegetation type. This
detailed approach produced a dataset of 650 samples across six
distinct land cover types: Grassland, Shrubland, Bareland, Water,
Cheatgrass, and Trees (Table II).

TABLE II: Initial 650 samples

Category Sample Size

Trees 205
Grassland 38
Shrubland 233
Bare Soil 34
Water 30
Cheatgrass 110

Total 650

In the data preparation phase, we addressed the inherent
inaccuracies in some user-reported entries within the Calflora
dataset(Figure 1), specifically focusing on Cheatgrass samples. For
each Cheatgrass point across California from the Calflora dataset,
we established a 200-meter buffer zone and generated four random
peripheral points, resulting in a total of five distinct sampling points
for each original location.

These points were then used to extract spectral values from
Sentinel-2 imagery captured in April and June. The extracted data
was input into a Binary Multilayer Perceptron (MLP) Classifier
[41] (Figure 3), which was trained using 80% of the dataset,
while the remaining 20% was reserved for validation (Table II).
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We tested various probability thresholds between 0.4 and 0.7,
evaluating the relationship between the number of input points
labeled as Cheatgrass and the classifier’s output labels.Setting
the probability threshold to 0.5 yielded an optimal balance, as it
selected one confirmed point plus four additional points randomly
within a defined buffer around each positive instance. This threshold
effectively reduced noise, eliminating 4 out of every 5 generated
samples around each point. Finally, the retained samples were
randomly validated visually to ensure classification accuracy. More
detailed results of this MLP classifier are provided in Appendix A.
Figure 4 illustrates how the inaccuracies of the Calflora dataset are
corrected by this MLP Classifier.

Fig. 3: Binary Multilayer Perceptron (MLP) Architecture

This binary classification approach was replicated across all
classes, leading to a refined set of labeled samples. Finally, we
amalgamated the refined dataset of 650 samples to train a com-
prehensive multiclass classifier. This classifier aimed to effectively
distinguish between the defined classes, leveraging the refined and
accurately labeled dataset to enhance the predictive accuracy and
reliability of the model. Finally we had 8855 samples across 6
classes as shown in Table III.

TABLE III: Final Sample Design

Category Sample Size

Trees 1997
Grassland 1055
Shrubland 2268
Bare Soil 1498
Water 298
Cheatgrass 1739

Total 8855

This kind of label refining method would help us to integrate
datasets like iNaturalist in the future[42].

D. Time Series Spectral Bands

Given the annual lifecycle of Cheatgrass, effectively predicting
its proliferation requires a detailed understanding of its temporal

Fig. 4: Label Refining using MLP with High-resolution Imagery
Background[37].

variability. The bloom period of Cheatgrass, typically spanning May
to June, serves as a key temporal indicator that differentiates it from
other vegetation. To leverage this distinct seasonal behavior, we
introduced an innovative set of features derived from the temporal
dynamics observed in spectral data. Specifically, we utilized data
from May 2022 and June 2022 to inform our analysis.

To incorporate indirect time series information for each pixel
over a year, we employed a novel approach by generating statistical
bands. These bands encapsulate the skewness, kurtosis, mean, and
standard deviation of three key vegetation indices: NDVI [43],
GNDVI [44], and MSAVI2 [45], covering the period from July
of the previous year to June of the prediction year. This integration
added twelve additional layers to our model, significantly enriching
the dataset with temporal insights and enhancing the model’s
accuracy in distinguishing Cheatgrass from other vegetation types.
Prior to calculating the skewness, kurtosis, mean, and standard
deviation bands, monthly mosaicked Sentinel-2 images [35] were
processed to derive NDVI, GNDVI, and MSAVI2, which were then
used to compute the statistical bands.

Figure 5 illustrates how the NDVI distribution varies across
different land cover classes over the months and highlights how
metrics such as Mean, Standard Deviation, Kurtosis, and Skewness
of monthly vegetation index can aid in distinguishing between these
classes.

This methodology underscores the importance of integrating
time-sensitive spectral differences and statistical analyses to im-
prove the predictive modeling of Cheatgrass, ensuring robustness
across varying temporal scales.
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Fig. 5: NDVI variation across different classes from July 2021 to
June 2022.

E. Classification Algorithm

We applied two powerful ensemble machine learning algorithms,
XGBoost and Random Forest (RF), to identify Cheatgrass. XG-
Boost, known for its efficiency in classification tasks [46], leverages
an ensemble of decision trees to boost classification accuracy. Its
high predictive power is due to its effective loss function and the op-
timization of weak learners, leading to superior model performance
[46], [47], [48]. The algorithm’s iterative and additive training pro-
cess, combined with a stringent regularization framework, ensures
robustness against overfitting [49], [13]. Detailed mathematical
insights into this algorithm are thoroughly documented in Chen’s
works [46].

The Random Forest (RF) algorithm [50] employs bootstrapping
to generate numerous decision trees from different data samples.
Each decision tree utilizes the Classification and Regression Trees
(CART) algorithm to split nodes by minimizing Gini Impurity,
which quantifies the likelihood of a misclassification if a new
random variable were assigned a random label based on the
training sample distribution. The overall classification is performed
through bootstrap aggregation. This method was selected due to its
proven high accuracy in recent studies, particularly in land cover
classification tasks [51], [47], [52]. Comprehensive details of the
RF algorithm can be found in specialized literature [50], [53].

F. Example use case

Our study examines two significant wildfire cases: the El Dorado
Fire of 2020 and the Corral Fire of 2024, highlighting the role of
cheatgrass invasion in post-fire fuel accumulation and its contribu-
tion to fire spread. The El Dorado Fire, which burned approximately
22,744 acres (9,204 ha; 35.538 sq mi; 92.04 km²) across San
Bernardino and Riverside counties, was ignited on September 5,
2020, by a pyrotechnic device in El Dorado Ranch Park and quickly
expanded into the San Gorgonio Wilderness Area within the San
Bernardino National Forest. The fire burned for 71 days, destroying
20 structures and resulting in a firefighter fatality [54].

To analyze vegetation dynamics pre- and post-fire, we focused
on a 100-mile by 100-mile region encompassing the El Dorado fire
perimeter (Table X), allowing us to compare vegetation changes
within the burned area to surrounding areas not impacted by the fire.
The land use and land cover (LULC) data for 2020 were collected

up to June, just before the fire’s occurrence in September. Since the
West Coast’s proximity introduced marine areas into this 100-mile
radius—irrelevant to our study—we adjusted the centroid 20 miles
northeast to focus exclusively on terrestrial changes (Figure 13).

In contrast, the Corral Fire of 2024 in San Joaquin County illus-
trates the rapid spread typical of grass-fueled wildfires. Detected
at 4:44 pm on June 1, it reached over 9,000 acres in just five
hours, achieving this scale by 9:46 pm, and ultimately consumed
14,168 acres [55]. According to the National Interagency Fire
Center’s Incident Management Situation Report, suppression efforts
for the Corral Fire cost approximately $3.4 million [56]. This swift
expansion highlights the need for advanced predictive models and
monitoring systems to effectively manage and mitigate such rapidly
advancing fires.

Additionally, Appendix B demonstrates our model’s predictive
capabilities in classifying shrubland-dominated areas in the Mojave
Desert, illustrating the LULC model’s robustness in capturing
diverse landscapes and terrain types. This example underscores the
model’s potential in broader applications across various ecosystems
and fire-prone environments.

III. RESULTS AND DISCUSSION

A. Classification Accuracy
We split the dataset(Table III) 80:20, training our models with

80% of the data and using the remaining 20% for testing.
Additionally, we examined the variance in band intensities be-

tween June 2022 and April 2022, as well as 12 time series statistical
bands, applying a scaling factor derived from the 1st percentile
minimum and maximum values within Los Angeles County.

We subsequently trained models using the Random Forest and
XGBoost algorithms, which were further refined through rigorous
hyperparameter tuning via a 10-fold grid search(Table IV).

Model Parameter Values

Random Forest min samples split {2, 3, 5, 6, 7, 8, 10}
Random Forest n estimators {250, 500, 1000, 2000, 3000}

XGBoost n estimators {200, 500, 1000, 3000, 5000}
XGBoost learning rate {0.1, 0.05, 0.01, 0.005, 0.001}

TABLE IV: Parameter Grid for 10-Fold Grid Search on Random
Forest and XGBoost Models

Despite achieving an initial model accuracy of 95%, we encoun-
tered challenges in generalizing across different years and counties,
partly due to the specific scaling applied using the 1st percentile
minimum and maximum values from Los Angeles County. Ad-
ditionally, residual snow in April led to incorrect predictions for
the water class. To address these issues, we refined our dataset
to include only observations from May and June 2022, corre-
sponding to the Cheatgrass bloom period. We also incorporated
twelve unaltered statistical bands from three vegetation indices to
enhance the model’s robustness. Data was extracted to labels from
bands shown in table V. Although this adjustment slightly reduced
the overall model accuracy to 91.1%, it significantly improved
the model’s reliability and performance across both temporal and
spatial dimensions.
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TABLE V: Bands used to extract values for labels.

Data Date No. of Bands

June Sentinel-2 06/01/2022 to 06/30/2022 10
May Sentinel-2 05/01/2022 to 05/31/2022 10

NDVI Distribution Bands 07/01/2021 to 06/30/2022 4
GNDVI Distribution Bands 07/01/2021 to 06/30/2022 4

MSAVI-2 Distribution Bands 07/01/2021 to 06/30/2022 4

Note: Distribution bands are Mean, Standard Deviation, Skewness, Kurtosis.

TABLE VI: Classification Accuracy and Confusion Matrix for
Random Forest.

True/Predicted GS SH BR WT CG TR
GS 189 0 0 0 1 21
SH 2 397 1 0 34 17
BR 0 1 298 0 0 1
WT 0 0 0 60 0 0
CG 0 45 2 0 294 6
TR 14 16 0 1 1 367

Column Total 211 450 300 60 347 399

Precision (UA) 0.92 0.86 0.99 0.98 0.89 0.89

Recall (PA) 0.90 0.88 0.99 1.00 0.85 0.92

Overall Accuracy 0.908
Kappa 0.885

Note: GS - Grassland, SH - Shrubland, BR - Bareland, WT - Water, CG -
Cheatgrass, TR - Trees, UA - User accuracy, PA - Producer accuracy.

TABLE VII: Classification Accuracy and Confusion Matrix for
XGBoost.

True/Predicted GS SH BR WT CG TR
GS 187 0 0 0 1 23
SH 1 403 0 0 29 17
BR 0 1 297 0 1 1
WT 0 0 0 59 0 1
CG 1 43 1 0 299 3
TR 15 18 0 1 0 365

Column Total 211 450 300 60 347 399

Precision (UA) 0.92 0.87 1.00 0.98 0.91 0.89

Recall (PA) 0.89 0.90 0.99 0.98 0.86 0.91

Overall Accuracy 0.911
Kappa 0.889

Note: GS - Grassland, SH - Shrubland, BR - Bareland, WT - Water, CG -
Cheatgrass, TR - Trees, UA - User accuracy, PA - Producer accuracy.

The ROC curves shown in Figures 6 and 7 provide a detailed
evaluation of classifier performance for each class. The Random
Forest model’s ROC curves (Figure 6) demonstrate high AUC
values for most classes, with the Grassland, Bareland, and Water
classes achieving perfect scores (AUC = 1.00). The Shrubland
and Cheatgrass classes show slightly lower AUC values of 0.98,
indicating some misclassification errors. Similarly, the XGBoost
model (Figure 7) exhibits high AUC values across all classes, with
Grassland, Bareland, and Water also achieving perfect AUC scores.
The Cheatgrass and Trees classes have slightly lower AUC values
of 0.98 and 0.99, respectively, indicating robust performance with
minor classification errors. These high AUC values across both

Fig. 6: Random Forest Model ROC Graphs.

Fig. 7: XGBoost Model ROC Graphs.

models affirm the robustness of our approach in distinguishing
between different land cover classes.

The confusion matrix (Table VI and Table VII) indicates chal-
lenges in accurately classifying Shrubland within our dataset. How-
ever, the high precision in identifying Cheatgrass confirms the effec-
tiveness of our modeling approach. Currently, our analyses rely on
static 2022 data. To enhance the robustness of model performance
and increase temporal diversity, raising public awareness about
Cheatgrass is crucial. Encouraging the collection of Cheatgrass
location data, including precise latitude and longitude coordinates,
could help in obtaining high-quality data. Additionally, developing
an application for the public to report Cheatgrass locations could
provide a large quantity of data. This data can be filtered using a
semi-supervised MLP model designed for extracting extra labels,
thereby improving our dataset and enabling the development of
more sophisticated models. This approach would enhance our ana-
lytical capabilities and improve predictive accuracy across diverse
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TABLE VIII: Bands used to extract LULC Map Figure 8 and Figure
9

Data Date No. of Bands

June Sentinel-2 06/01/2024 to 06/30/2024 10
May Sentinel-2 05/01/2024 to 05/31/2024 10

NDVI Distribution Bands 07/01/2023 to 06/30/2024 4
GNDVI Distribution Bands 07/01/2023 to 06/30/2024 4

MSAVI-2 Distribution Bands 07/01/2023 to 06/30/2024 4

Note: Distribution bands are Mean, Standard Deviation, Skewness, Kurtosis.

ecological scenarios.

B. LULC Map

Figure 8 shows the Land Use Land Cover (LULC) map for
California State 2024, generated using the trained XGBoost model
with 32 bands (Table VIII). Figure 9 represents the probability
map of the class Cheatgrass derived using the trained XGBoost
model with 32 bands (Table VIII). This LULC and Cheatgrass
Probability map enables the analysis of fuel connectivity, revealing
areas with high Cheatgrass density. Additionally, regions where
forests are surrounded by Cheatgrass pose a significant risk of large
forest fires due to potential ignition sources and fuel connectivity.
The analysis excluded built-up and cropland classes because of
their heterogeneous landscapes and varying spectral characteristics,
especially croplands whose spectral signatures change with the agri-
cultural season. For Figure 8, for built-up areas, the GHSL: Global
Settlement Characteristics (10 m) 2018 (P2023A)[57] dataset was
used, which is at 10 m resolution. For cropland, the USDA NASS
Cropland Data Layers[58], were used from the period between
’2016-01-01’ and ’2017-12-31’. While mosaicking cropland and
built-up areas, Cheatgrass pixels were given priority.

Figure 8 also illustrate a strong correlation between vegetation
cover and wildfire incidence patterns, significantly influenced by
the classes ”Trees” and ”Cheatgrass”. These maps can be utilized
to calculate historical fuel loads and assess fuel connectivity at
both macro and community levels. The subsequent subsections
provide examples demonstrating their potential for both preventive
strategies and post-fire behavior analysis.

C. Example use case: El Dorado Fire 2020 Analysis

The El Dorado Fire was a wildfire that burned 22,744 acres
(9,204 ha; 35.538 sq mi; 92.04 km2) in San Bernardino and
Riverside counties of California from September to November
2020. It was ignited on September 5 by a pyrotechnic device in
the El Dorado Ranch Park; it quickly spread to the San Gorgonio
Wilderness Area of the San Bernardino National Forest. Burning
over a 71-day period, the fire destroyed 20 structures and resulted
in one firefighter fatality [54].

We focused on the 2020 El Dorado wildfire to assess vegetation
dynamics pre and post-wildfire within a designated 100 by 100
mile (Table X) area surrounding the El Dorado fire boundary. It is
important to note that the land use and land cover (LULC) map
(Figure 12) for 2020 was compiled using data collected only up
until June 2020, two months prior to the actual occurrence of the
El Dorado fire in September 2020. Given the proximity of the
West Coast—within a 100-mile radius from the fire zone—which

Fig. 8: LULC Map of California 2024.

Fig. 9: Cheatgrass Probability Map of California 2024.

included parts of the ocean, and considering that marine areas are
not relevant to our study, we adjusted the centroid of the mapped
area 20 miles northeast to better focus on the terrestrial environment
(Figure 13).

In 2020, recognized as one of the most severe wildfire seasons,
the combined presence of trees and Cheatgrass, which constitute
critical wildfire fuels, was observed to be 22.52% within the 100
by 100 mile (Table X and Figure 11) area and alarmingly higher
at 66.05% within the El Dorado fire region itself (Table IX and
Figure 10) . Post-fire assessments indicated a predictable increase
in Cheatgrass across the burnt landscape, while fuel loads began to
normalize within the fire-affected region from 2020 to 2023 (Table
IX and Figure 12). This analysis not only provides insight into the
immediate effects of wildfires on local vegetation dynamics but also
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TABLE IX: Land Cover Percentages around El Dorado Fire 2020

2020

Land Cover Type Percentage

Grassland 1.91%
Shrubland 31.00%
Bareland 0.92%
Water/Snow 0.12%
Cheatgrass 13.55%
Trees 52.50%

2021

Land Cover Type Percentage

Grassland 0.09%
Shrubland 38.97%
Bareland 5.46%
Water/Snow 6.01%
Cheatgrass 48.06%
Trees 1.40%

2022

Land Cover Type Percentage

Grassland 0.17%
Shrubland 46.66%
Bareland 5.49%
Water/Snow 0.45%
Cheatgrass 45.07%
Trees 2.15%

2023

Land Cover Type Percentage

Grassland 0.30%
Shrubland 64.97%
Bareland 5.26%
Water/Snow 0.08%
Cheatgrass 22.99%
Trees 6.40%

Fig. 10: Vegetation Distribution inside El Dorado Fire 2020 bound-
ary across years.

Fig. 11: Vegetation Distribution around 100 by 100 mile of El
Dorado Fire 2020 across years.

opens avenues for further research into historical wildfire patterns
and the complex interactions between wildfire occurrences and the
availability and connectivity of combustible materials.

TABLE X: Land Cover Percentages around 100 by 100 miles

2020

Land Cover Type Percentage

Grassland 0.95%
Shrubland 35.36%
Bareland 39.98%
Water/Snow 1.20%
Cheatgrass 16.79%
Trees 5.73%

2021

Land Cover Type Percentage

Grassland 0.69%
Shrubland 29.34%
Bareland 50.81%
Water/Snow 1.64%
Cheatgrass 14.01%
Trees 3.51%

2022

Land Cover Type Percentage

Grassland 0.60%
Shrubland 23.78%
Bareland 57.78%
Water/Snow 1.10%
Cheatgrass 13.24%
Trees 3.50%

2023

Land Cover Type Percentage

Grassland 0.61%
Shrubland 30.05%
Bareland 49.74%
Water/Snow 1.06%
Cheatgrass 13.96%
Trees 4.58%

Fig. 12: Pre and Post Land Cover Change in El Dorado Fire 2020

D. Example use case 2: Corral Fire 2024

Our model predicted a significant presence of Cheatgrass from
2020 to 2023 (Figure 14), indicating substantial fuel loads across
these years. This finding highlights the importance of incorporating
both current and historical Land Use Land Cover (LULC) maps that
include Cheatgrass for pre-wildfire preparation tasks. Such maps are
crucial for understanding and mitigating wildfire risks.
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Fig. 13: LULC Map of 2023 around 100 by 100 mile of El Dorado
Fire 2020.

IV. CONCLUSION

This study presents a robust framework for the early detection
and spatial mapping of Cheatgrass (Bromus tectorum), a highly
flammable invasive species that amplifies the frequency and inten-
sity of wildfires in California. By integrating the CalFlora dataset
with Sentinel–2 Surface Reflectance data and enhancing it with
semi-supervised learning, our model achieved an overall accuracy
of 91.1% and precision of „ 91% in identifying Cheatgrass.

A critical advancement of our research is the model’s capacity to
perform vegetation mapping and risk assessment before the peak of
the wildfire season. By effectively incorporating annual vegetation
dynamics through innovative Vegetation Index statistical bands, the
model provides actionable insights as early as July, well ahead of
the typical wildfire peak from mid-July to September. This timely
mapping is pivotal for fire management authorities, allowing for
proactive measures such as the strategic deployment of firefighting
resources, the implementation of fire breaks, and community alerts
in areas predicted to be at high risk.

With Cheatgrass known impact on wildfire dynamics, our frame-
work can serve as a vital tool in forecasting and mitigating the
potential spread and severity of fires. The adaptability of our
approach also suggests that it could be refined further with incoming
data from future growth cycles, improving the model’s accuracy and
applicability in real-time wildfire prediction.

In conclusion, the methodologies developed through this research
not only underscore the feasibility of using machine learning
techniques to tackle ecological challenges but also highlight the
potential of predictive modeling in wildfire management. As Cheat-
grass continues to influence fire regimes, the ongoing adaptation and
enhancement of our model will be crucial. Future research should
focus on expanding the geographic scope and integrating more
dynamic environmental data to enhance predictive accuracy, thereby
supporting broader wildfire management strategies and ecological
conservation efforts. This proactive approach could significantly

Fig. 14: LULC around Corral Fire 2024

contribute to mitigating the ecological and economic impacts of
wildfires in California and similar regions globally, aligning with
the urgent need for innovative solutions in the face of climate
change.
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APPENDIX

A. Binary Multilayer Perceptron (MLP) Classifier

Data for Cheatgrass (Bromus tectorum) were extracted from
the Calflora database [30], covering the period from January 1,
2016, to January 10, 2023, resulting in 1,720 initial points. To
expand the dataset, we generated four random buffer points within
a 200-meter radius around each original point. The combined
dataset was then input into a binary MLP classifier. We evaluated
probability thresholds ranging from 0.4 to 0.7, with a threshold of
0.5 yielding 1,629 positive samples, closely aligning with the initial
Calflora points(Table XII. These selected points underwent visual
validation using high-resolution imagery in ArcGIS Pro [37]. Table
XI provides the classification report for the binary MLP model.
Figure 15 represents loss and accuracy curves of train and test. For
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additional classes (trees, shrubland, bareland, water, and grassland),
stratified random samples were drawn from a dynamic LULC map
of Los Angeles County and refined through a similar binary MLP
classifier.

TABLE XI: Classification Report for Cheatgrass Detection

Class Precision Recall F1-Score Support
Non-Cheatgrass 1.00 0.99 1.00 108
Cheatgrass 0.96 1.00 0.98 22
Accuracy 0.99
Macro Average 0.98 1.00 0.99 130
Weighted Avg 0.99 0.99 0.99 130

TABLE XII: Cheatgrass Sample Selection and MLP Processing
Details

Description Count

Cheatgrass points from Calflora (CA) 1,720

Random buffer points (200 m radius) 6,880

Total points used in MLP 8,600

Positive samples (probability ą 0.4) 2,108

Positive samples (probability ą 0.5) 1,629

Positive samples (probability ą 0.6) 1,196

Positive samples (probability ą 0.7) 712

Fig. 15: Loss and Accuracy curve of MLP Classifier.

B. Mojave Desert

The Mojave Desert landscape is primarily characterized by
bare land and shrubland[59]; however, instances of Cheatgrass
(Bromus tectorum) emergence have also been observed following
fire events[60]. Our LULC map effectively captures this dynamic,
illustrating our model’s robustness in mapping diverse terrain and
land cover patterns(Figure 16).
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