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Abstract 42 

 43 

Climate change is shifting species distributions, leading to changes in community composition 44 

and novel species assemblages worldwide. However, the responses of tropical forests to climate 45 

change across large-scale environmental gradients remain largely unexplored. Using long-term 46 

data over 66,000 trees of more than 2,500 species occurring over 3,500 m elevation along the 47 

hyperdiverse Amazon-to-Andes elevational gradient, we assessed community-level shifts in 48 

species composition through a 44-year time span. We tested for the predicted increase in relative 49 

abundances of species from warmer climates (thermophilization) along the Amazon-to-Andes 50 

elevational gradients in Peru and Bolivia. Additionally, we examined the relative contributions of 51 

tree mortality, recruitment, and growth to observed compositional changes. Mean 52 

thermophilization rates across the Amazon-to-Andes gradient were slow relative to concordant 53 

changes in regional temperatures. Thermophilization rates were positive and more variable 54 

among Andean forest plots compared to Amazonian plots but were fastest at mid-elevations 55 

around the cloud base. Across all elevations, thermophilization rates were driven primarily by 56 

tree mortality and decreased growth of highland species rather than an influx of lowland species 57 

with higher thermal optima. Given the high variability of community-level responses to warming 58 

along the elevational gradients and the generally slower-than-warming rates of compositional 59 

change, we conclude that most tropical tree species, and especially Amazonian tree species, will 60 

not be able to escape current or future climate change through upward range shifts. 61 

 62 

Keywords: Global warming, range shifts, species migration, thermal niches, tropical 63 

biodiversity  64 
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Significance statement 65 

 66 

Our study investigates how climate change affects species composition in tropical forests across 67 

the Amazon-to-Andes elevational gradient in Peru and Bolivia. Using long-term data over four 68 

decades, we found that while species from warmer climates showed some increase in relative 69 

abundance (thermophilization), the process was slower than regional temperature increases. 70 

Thermophilization was faster at mid-elevations near the cloud base and was primarily driven by 71 

tree mortality and slowed growth of highland species rather than an influx of lowland species. 72 

Given the slow rate of compositional change and high variability in community responses, our 73 

study concludes that most tropical tree species, especially those in the Amazon, are unlikely to 74 

shift upward in range fast enough to adapt to ongoing climate change.  75 
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Introduction 76 

 77 

Tropical regions have warmed at an average of 0.26 °C per decade since the mid-1970s (1), and in 78 

the Neotropics, contemporary rates of climate warming exceed those observed during any time in 79 

the last 50,000 years (2). Moreover, temperatures in some montane tropical ecosystems (e.g., the 80 

Andes) have increased approximately 0.10 - 0.11 °C per decade since 1939 (3) and are predicted 81 

to increase 2 - 7 °C this century (4). Changes in precipitation, drought, fire, and nitrogen deposition 82 

are also associated with changes in temperature (5–7). The rapid pace of ongoing environmental 83 

changes presents unprecedented challenges to plant and animal species across tropical ecosystems, 84 

and species responses to these challenges are just beginning to be understood. 85 

 86 

Climate change is causing the displacement of species distributions along environmental gradients, 87 

resulting in compositional shifts and the emergence of novel species assemblages (8–10). Although 88 

these shifts have been well documented in the palaeoecological record, how they occur over shorter 89 

timescales and vary between different biogeographic regions remain key questions (11, 12). Within 90 

communities, the relative abundance of species adapted to cooler temperatures is predicted to 91 

decrease with warming, while the relative abundance of species adapted to hotter temperatures is 92 

predicted to increase, a pattern known as community thermophilization (13). The thermophilization 93 

hypothesis has been previously tested across montane tropical forests in the Andes using forest 94 

surveys of tree populations (14) and across ecoregions in the New World using plant collections 95 

(15). These studies show an overall increase in the abundance of warm-adapted species but also 96 

high heterogeneity in thermophilization rates across plant communities and regions, which remains 97 

unexplained. Furthermore, the thermophilization hypothesis remains untested in lowland tropical 98 
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ecosystems such as Amazonian forests (e.g., floodplain and terra firme forests), and the 99 

contributions of underlying demographic processes (growth, recruitment, mortality) to 100 

thermophilization remain poorly characterized. 101 

 102 

Differences in the thermophilization rates of forest communities along elevational gradients may 103 

result from several ecological processes. First, thermophilization rates may be faster at lower 104 

elevations due to faster rates of recruitment and mortality (i.e., faster turnover rates) (16, 17). 105 

Second, thermophilization may be influenced by differences in species’ thermal tolerances. For 106 

example, species from lowland Amazonia are not only adapted to higher temperatures but also 107 

tend to have narrower thermal tolerances (i.e., smaller thermal safety margins) compared to species 108 

in the highlands (18–20). If lowland species are adapted to a smaller range of environmental 109 

conditions, they might be more sensitive to climate change (21), leading to faster thermophilization 110 

in lowland communities compared to montane forests. Third, thermophilization rates may be 111 

slower in lowland Amazonian than in Andean montane forests due to stronger effects of drought 112 

and biotic constraints at lower elevations. Increased drought severity and frequency in the Amazon 113 

(22) are shifting tree community composition toward more drought-tolerant species (23, 24). If 114 

drought-tolerance traits are uncorrelated with thermal-tolerance traits, then we might observe 115 

lower thermophilization rates in lowland forests due to the overriding effect of drought. In 116 

addition, theory and some empirical evidence suggest that lower elevational range limits of species 117 

are shaped more by biotic interactions than abiotic factors (25–27). If this is true, populations at 118 

higher elevations will respond more quickly to climate change, causing rapid shifts in species’ 119 

upper range limits and increasing thermophilization of Andean communities relative to Amazonian 120 

communities. Finally, rates of thermophilization may be slower in the lowlands due to niche 121 
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truncation and an absence of potential immigrants from hotter areas, which could allow incumbent 122 

species to persist even under suboptimal conditions (15). 123 

 124 

Despite widespread interest in the demographic processes underlying community-level responses 125 

to climate change (28, 29), little is known about their relative importance in determining 126 

compositional change and thermophilization patterns in the Amazon and Andes. 127 

Thermophilization reflects the culmination of three non-mutually exclusive demographic 128 

processes that can influence species’ relative abundances within communities: 1) faster tree 129 

growth of warm-adapted than cold-adapted species; 2) faster tree mortality of cold-adapted than 130 

warm-adapted species; and/or 3) faster recruitment of warm-adapted than cold-adapted species. 131 

Previous studies of montane tropical forests in the Colombian Andes (30) and tropical forests 132 

along an elevational gradient in Costa Rica (31) both concluded that tree mortality was the main 133 

driver of thermophilization. However, comparative studies of the demographic drivers of 134 

thermophilization across the Amazon-to-Andes elevational gradient are still lacking. 135 

 136 

In this study, we tested the thermophilization hypothesis and the contributions of individual 137 

demographic processes to thermophilization across the hyper-diverse Amazon-to-Andes 138 

elevational gradient. We used two of the world’s largest elevational transects located on the 139 

eastern slope of the Bolivian and Peruvian Andes, spanning lowland western Amazonian forests 140 

to the eastern Andean treeline. These elevational transects are represented through 141 

comprehensive networks of forest plots censused repeatedly over the last 44 years. Using long-142 

term data from a combined total of 66 permanent forest plots (totaling 72.5 ha), we addressed 143 

three questions about the pace and underlying demographic basis of observed changes in tree 144 
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community composition. Specifically, we asked: (1) Does the rate of thermophilization vary with 145 

elevation? 2) Do thermophilization rates differ between Amazonian and Andean forests? and 3) 146 

What are the individual contributions of tree mortality, recruitment, and growth to observed 147 

thermophilization rates? Our study provides novel insights into the patterns and causes of 148 

tropical forest responses to climate change. 149 

 150 

Methods 151 

 152 

Study area 153 

The study was conducted on the eastern slopes of the Bolivian and Peruvian Andes (Central 154 

Andes) along two elevational gradients extending from the Andean treeline at ~3700 m to the 155 

lowland Amazon basin at 190 m. In Bolivia, the elevational gradient encompasses mature forests 156 

ranging from 200 m to 3400 m in the Madidi region, including the protected areas of Madidi 157 

National Park (13.80° S, 67.63° W), Apolobamba (14.99° S, 68.82° W), and the Pilon-Lajas 158 

Biosphere Reserve (15.00° S, 67.33° W). In Peru, the elevational gradient spans a stretch of 159 

unbroken mature forest ranging from 300 m to 3700 m in the Manu Biosphere Reserve (11.86° 160 

S, 71.72° W) and extends to 190 m in the nearby Tambopata National Reserve (12.92° S, 69.28° 161 

W) (Fig. 1a). In the study area, mean annual temperature (MAT) decreases linearly with 162 

increasing elevation along the gradient at an adiabatic lapse rate of -5.5 oC km-1 with mean 163 

annual temperatures ranging from 26.6 oC at the lowest elevations to 6.4 oC at the treeline (2, 32, 164 

33). Mean annual precipitation varies non-linearly across the gradient from 2448 to 10425 mm 165 

yr-1, with significant interannual variability throughout (33, 34). The study area has high cloud 166 

frequency in all seasons, and the cloud base zone is estimated to be between 1200 to 2000 m (33, 167 
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35). Temperatures in the study area have been increasing by approximately 0.03 oC y-1 in both 168 

the Amazon and the Andes since 1980 (http://berkeleyearth.org, Fig. 1b). 169 

 170 

Forest monitoring data 171 

Our dataset includes 66 permanent tree inventory plots (totaling 72.5 ha) from two large-scale 172 

forest plot networks in the Central Andes of Bolivia (28 plots) and Peru (38 plots) (Fig. 1a). The 173 

Bolivian elevational gradient encompasses 50 1-ha permanent plots, established and maintained 174 

by the Madidi Project at the Missouri Botanical Garden since 2002 175 

(http://www.missouribotanicalgarden.org/plant-science/plant-science/south-america/the-madidi-176 

project.aspx) but for this study, we used only a subset of 28 plots with repeated tree censuses 177 

ranging from 600 to 3300 m in elevation and established between 2005 to 2010. The Peruvian 178 

elevational gradient consists of 21 1-ha permanent plots established and maintained by the Andes 179 

Biodiversity and Ecosystem Research Group (ABERG; http://www.andesconservation.org/) 180 

ranging from 400 to 3625 m elevation and established between 2003 to 2017, and an additional 181 

17 permanent plots ranging from 190 to 405 m in elevation and established between 1979 to 182 

2014 by various investigators, including J. Terborgh, P. Nuñez, O. Phillips, and A. Gentry, are 183 

currently maintained and monitored by the Amazon Forest Inventory Network (RAINFOR) 184 

through ForestPlots.net (http://www.forestplots.net/). By including western Amazonian forests 185 

below 500 m, we were able to include the lower limit populations of Andean tree species (down 186 

to 190 m) along their full realized elevational ranges (Supporting Information, Fig. S1). The 187 

Amazonian plots included a mix of floodplain and terra firme forests. Floodplain forests are 188 

saturated or underwater for a significant portion of each year, while the adjacent terra firme 189 

forests occur on older and more highly weathered soils and rarely or never flood (36). 190 

http://berkeleyearth.org/
http://www.missouribotanicalgarden.org/plant-science/plant-science/south-america/the-madidi-project.aspx
http://www.missouribotanicalgarden.org/plant-science/plant-science/south-america/the-madidi-project.aspx
http://www.andesconservation.org/
http://www.forestplots.net/
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The forest plots included in this study were established and remeasured multiple times following 191 

highly standardized protocols (37, 38). The inventory plots were censused at least two times 192 

between 1979 and 2023 (total number of tree measurements = 252,075, total number of censuses 193 

= 334, average number of censuses per plot = 5, median number of censuses per plot = 5). The 194 

oldest plot was established in 1979 in the Tambopata terra firme rain forest of Peru and has the 195 

most censuses (n = 13; SI Appendix, Table S1). In total, the 66 permanent plots contained 196 

66,715 stems >= 10 cm in diameter at breast height (d.b.h.). 197 

 198 

Plant identifications 199 

All botanical collections from the permanent plots were identified in situ and in different 200 

herbaria and were compared and standardized across sites in each country. The vouchers were 201 

deposited in Bolivian, Peruvian, and USA herbaria (CUZ, HOXA, HUT, LPB, MOL, USM, and 202 

DAV, MO, F, WFU). Additionally, local flora and plant checklists were used as references (39–203 

45) and taxonomic experts also confirmed plant identifications. We then combined and 204 

standardized the species names from all the permanent plots. The combined species list was 205 

submitted to the Taxonomic Name Resolution Service (TRNS version 4.0, 206 

http://tnrs.iplantcollaborative.org/) to standardize and validate the species names (46). All taxa 207 

identified to morphospecies [e.g., sp1(5984WFR)] or with invalid names (e.g., “indet”) were 208 

assigned as “undetermined.” We followed the APG IV plant classification for the valid species 209 

names (47). All TNRS “accepted” species names with an overall TNRS-score below 0.9 were 210 

manually reviewed, and the names were confirmed on The Plant List 211 

(http://www.theplantlist.org/) and Tropicos (http://www.tropicos.org) databases. We used the 212 

valid genus names as a unique species identifier if the specific epithet was not confirmed. 213 

http://tnrs.iplantcollaborative.org/
http://www.theplantlist.org/
http://www.tropicos.org/
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Species with an unassigned accepted TNRS name (e.g., “invalid,” “illegitimate” or “no opinion”) 214 

were also manually reviewed, and the species names were corrected using The Plant List and 215 

Tropicos databases. Unidentified taxa at the genus level were excluded from subsequent analysis. 216 

In total, the plots included 2,523 arborescent species and morphospecies, including trees, tree 217 

ferns, and palms (hereafter, “trees”). 218 

 219 

Species thermal distributions and thermal optima 220 

We used established protocols to estimate the geographic thermal distributions for all tree 221 

species occurring in the study plots (48). For each species, we downloaded all available 222 

georeferenced herbarium records from Andean-Amazonian countries (i.e., Bolivia, Colombia, 223 

Ecuador, Peru, and Venezuela) through the Botanical Information and Ecology Network (BIEN: 224 

http://bien.nceas.ucsb.edu/bien/). Plant records that were missing coordinates, records that were 225 

tagged by the BIEN as having coordinate errors or that had evident georeferenced errors (e.g., 226 

falling in large bodies of water), and duplicate records were all discarded. The mean annual 227 

temperatures (MAT) of all specimens were calculated at the collection locations by extracting 228 

the temperature values from the CHELSA (v.1.2 raster) BIOCLIM1 values at 30-arcsec 229 

resolution (49). We estimated the thermal optimum for each species represented by ≥ 10 230 

herbarium collection records as the mean MAT (o C) at the collection locations. For species with 231 

< 10 available records or identified at the genus level (2.5%), the thermal optimum was 232 

estimated as the average collection temperature calculated from all available records of 233 

congeneric individuals collected from the tropical Andean-Amazonian region (48). For a small 234 

number of species, there were insufficient records available at either the species or genus level; 235 

these species were excluded from relevant analyses. 236 

http://bien.nceas.ucsb.edu/bien/
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 237 

Community temperature index (CTI) and thermophilization rates (TR) 238 

The Community Temperature Index (CTI) was calculated for each forest plot in each census as 239 

the average thermal optimum of all the species recorded in the plot weighted by their relative 240 

abundances (48). We calculated CTI using two different metrics of relative abundances. First, we 241 

weighted CTI using the numbers of individuals of each species, such that changes in CTI are 242 

only influenced by individuals dying or recruiting in a local population. Second, we weighted 243 

CTI using the total basal area of each species (i.e., the summed cross-sectional area of stems at 244 

1.3 m above ground) such that changes through time are affected by tree growth in addition to 245 

individual mortality and recruitment. This second metric considers tree size as being ecologically 246 

important; for instance, the death of a large tree will affect ecosystem function more than the 247 

death of a small tree. 248 

 249 

Because the central aim of our study was to understand changes in species composition due to 250 

climatic drivers, we excluded trees that likely died from major disturbances caused by landslides 251 

or fires, as these non-climatic mortality events can potentially obfuscate thermophilization. 252 

Accordingly, we excluded from our analyses of CTI any trees that died in landslides that 253 

occurred over the census period in the SPD-01, TRU-02, and TRU-06 plots and that died in fires 254 

in the CUZ-01 plot (the affected trees were removed from all censuses pre- and post-255 

disturbance). For each forest plot, we then calculated the thermophilization rate as the annual 256 

changes in CTI over all possible consecutive census intervals. The overall thermophilization rate 257 

of each plot (TR; °C yr-1) was also calculated as the slope of the linear least-square regression 258 

between CTI and the census year (CTI calculated via the individual- and basal area-weighted 259 
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approaches). A positive thermophilization rate indicates an increase through time in the relative 260 

abundance or basal area of species from warmer climates. 261 

 262 

Contribution of demographic processes to community thermophilization 263 

To assess the contributions of demographic processes to observed thermophilization patterns, we 264 

partitioned the observed thermophilization rates into three components attributable solely to tree 265 

basal area growth (TRgrowth), tree basal area recruitment (TRrecruitment), and tree basal area 266 

mortality (TRmortality) for each plot over each census interval. The TRgrowth of a plot is the 267 

difference between the plot’s CTI calculated using the initial and final basal areas of just the 268 

stems surviving through the census period. The TRrecruitment of a plot is the difference between the 269 

CTI calculated using basal areas of all stems recorded at the end of the census interval and the 270 

CTI calculated using just the basal areas of stems that survived through the census interval. 271 

Finally, TRmortality is the difference between the CTI calculated using the initial basal areas of all 272 

stems recorded in the first census and the CTI calculated using the initial basal areas of just the 273 

stems that survived through the census interval (31). Positive TRgrowth indicates that individuals of 274 

species from warmer climates have grown faster (i.e., increased faster in basal area) than species 275 

from colder climates during the census interval. A positive TRrecruitment indicates faster basal area 276 

recruitment rates of species from warmer climates. A positive TRmortality indicates higher basal 277 

area mortality rates of species from colder climates. 278 

 279 

Statistical tests 280 

We calculated the overall mean TR with 95% confidence intervals across all forest plots. We 281 

used a binomial probability test to determine whether the proportion of plots with positive TR 282 
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differed significantly from the null expectations of 50%. We used linear least squares regression 283 

of TR vs. plot elevation to test how TR varies with elevation. We also used the smoothing 284 

function of a generalized additive model (GAM) to fit response curves and to test the 285 

relationship between TR and elevation. To test whether TR differs between Amazonian and 286 

Andean forests, we first classified Amazonian forests as those below 500 m of elevation and 287 

Andean forests as those above 500 m (50). Then, we compared mean TR between the Amazonian 288 

and the Andean forests using a Mann-Whitney and two-tailed t-test. We also compared the levels 289 

of variability in TR between the Andes and the Amazon using Levene's test. To determine the 290 

contributions of tree mortality, recruitment, and growth to overall TR, we used the tree 291 

demographic components (TRmortality, TRgrowth, and TRrecruitment) in a multiple linear regression 292 

model to explain variation in TR. 293 

 294 

Results 295 

 296 

Community temperature index (CTI) 297 

The average CTI of the plots ranged from 13 to 25 °C and was strongly negatively correlated 298 

with plot elevation (Individual-weighted CTI: r = -0.97, p ˂ 0.0001; basal area-weighted CTI: r = 299 

-0.96, p ˂ 0.0001; Supporting Information Fig. S2). The strength of the CTI vs. elevation 300 

relationship demonstrates the efficacy of the method and the importance of the thermal niche in 301 

controlling the geographic distributions of species and community composition across 302 

elevational gradients. 303 

 304 

Thermophilization rates across the elevational gradient 305 
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CTI varied over time within the plots and along the gradient; however, some plots showed 306 

consistently positive (e.g., CUZ-04) or negative (e.g., TAM-02) changes in CTI since 1979 (Fig. 307 

2a, b; Supporting Information, Fig. S3a, S3b). Annualized rates of thermophilization varied 308 

widely along the Amazonian-Andean elevational gradient, ranging from -0.019 to +0.023 °C yr-1 309 

when using CTI based on the number of individuals and from -0.019 to +0.025 °C yr-1 when 310 

using CTI based on basal areas (Fig. 3a, b; Supporting Information, Table S2). The overall 311 

annual community TR across all forest plots was 0.0025 °C yr-1 (95% CI = 0.0004 - 0.0045 °C 312 

yr-1) for the individual-weighted metric and 0.0022 °C yr-1 (95% CI = -0.0001 - +0.0043 °C yr-1) 313 

for the basal area-weighted metric. Thermophilization rates were not significantly correlated with 314 

either the number of censuses or the number of years between censuses (Individuals-weighted: r 315 

= -0.05, p = 0.78; basal area-weighted: r = -0.02, p = 0.89; Supporting Information, Fig. S4).  316 

 317 

Given the measured adiabatic lapse rate of 5.5 °C km−1 (2), the thermophilization rates reported 318 

here correspond to a plot-level mean upward elevational migration rate of 0.45 m yr-1 (95% CI = 319 

0.04 – 0.85 m yr-1) using the individual-weighted metric; and 0.40 m yr-1 (95% CI = -0.04 - 320 

+0.75 m yr-1) using the basal area-weighted metric (Supporting Information, Table S2). Of the 66 321 

plots, 62% and 59% had positive thermophilization rates using the individual-weighted (n = 41) 322 

and basal area-weighted (n = 39) metrics, respectively. However, the overall number of plots 323 

with positive thermophilization rates along the gradient was not more than expected under the 324 

null expectation (binomial probability; p = 0.06 and p = 0.18 for individual and basal-area 325 

metrics, respectively). 326 

 327 

Differences in thermophilization rates between Amazonian and Andean forests 328 
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Along the elevational gradient, thermophilization rates were fastest and consistently positive at 329 

mid-elevations around the cloud base between 1200 m - 2000 m asl (Fig. 3, Supporting 330 

Information, Fig. S5). In contrast, the plots with negative TR were mainly located in the lowland 331 

Amazonian (< 500 m) and at higher elevations in upper montane forests (> 2500 m) (Fig. 3a, b 332 

Supporting Information, Table S2, Fig. S5). Because of the fast thermophilization at middle 333 

elevations, there was a non-linear relationship between thermophilization rates and elevation 334 

(Individuals-weighted: r = -0.01, p = 0.75; basal area-weighted: r = -0.006, p = 0.44; Fig. 3a, b). 335 

 336 

Mean thermophilization rates in lowland Amazonian plots (elevation < 500 m; n = 17 plots) were 337 

significantly slower than their Andean counterparts (elevation > 500 m; n = 49 plots) for the 338 

basal area-weighted metric (Two-tailed t-test, p = 0.04; Fig. 4) but showed a non-significant 339 

difference for the individual-weighted metric (Mann-Whitney-Wilcoxon test; p = 0.26; Fig. 4). 340 

This suggests that the Amazonian tree communities are not changing directionally with regards 341 

to species’ thermal niches [Amazon TR = 0.0007 °C yr-1 (95% CI = -0.0008 - +0.0023 °C yr-1) 342 

for individuals, and -0.0007 °C yr-1 (95% CI = -0.0027 - +0.0013 °C yr-1) for basal area-343 

weighted], while Andean tree communities had very slow and heterogeneous rates of 344 

thermophilization [Andean TR = 0.0031 °C yr-1 (95% CI = -0.0001 - +0.0060 °C yr-1) for the 345 

individual-weighted metric and 0.0032 °C yr-1 (95% CI = 0.0001 - 0.00005 °C yr-1) for the basal 346 

area-weighted metric]. Finally, TR was much more variable in the Andes than in the Amazon 347 

(Levene test; p < 0.001 for both individual and basal area metrics; Fig. 4). 348 

 349 

Mortality, growth, and recruitment effects on community thermophilization 350 
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Across all plots along the Amazon-to-Andes elevational gradient, changes in plot-level TR were 351 

driven primarily by differential tree mortality (TRmortality) as opposed to differential growth 352 

(TRgrowth) or tree recruitment (TRrecruitment) (Fig. 5). In 61% of the forest plots, TRmortality 353 

accounted for the largest proportion of observed thermophilization. In contrast to TRgrowth and 354 

TRrecruitment were dominant drivers in just 26% and 13% of the plots, respectively. TRmortality 355 

showed strong positive correlations in plot-level thermophilization. TRgrowth was also positively 356 

correlated with overall TR, whereas the TRrecruitment showed no relationship with TR (Supporting 357 

Information, Table S3, Fig. S6). When analyzing Amazonian and Andean plots separately, we 358 

did not observe significant correlations between TR and TRmortality, TRgrowth or TRrecruitment in the 359 

lowland Amazonian plots. In the Andean plots, in contrast, TRmortality had a strong positive 360 

correlation with TR. TRgrowth had a significant positive correlation with TR, and TRrecruitment had a 361 

significant negative correlation with TR (Supporting Information, Table S4, S5; Fig. S7). 362 

  363 

Discussion 364 

 365 

Thermophilization rates are slower than warming rates 366 

Using comprehensive long-term monitoring datasets from 66 forest plots spanning 3 degrees of 367 

latitude, 3500 m in elevation, and ~19 °C of temperature, we found little or no evidence of 368 

thermophilization of tree communities in both the lowland Amazonian or the high Andes, but a 369 

strong signal of thermophilization in mid-elevation forests (~1200 – 2000 m). We find that 370 

observed thermophilization rates were more than an order of magnitude slower than regional 371 

warming rates, indicating that changes in community composition are not keeping pace with 372 

temperature increases, at least in the life-stages examined in this study. The overall rates of 373 
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thermophilization averaged 0.0025 °C yr-1 (individual-weighted) to 0.0022 °C yr-1 (basal area-374 

weighted). When viewed in the context of predicted climate change, our results suggest that by 375 

~2100 the community temperature index (CTI) of Amazonian and Andean tree communities will 376 

have only changed by less than a quarter degree Celsius (0.19 - 0.17 °C, based on our current 377 

migration rates), while the ambient temperatures in this region are predicted to increase by 2 - 7 378 

°C (4), depending on the location along the elevational gradient. Slow thermophilization will 379 

increase the “climatic debt” of forest communities, potentially reducing the ecosystem services 380 

they can provide and putting them at greater risk of collapse (51, 52), especially as compositional 381 

changes are driven by increased mortality of species along the lower portions of their ranges (i.e., 382 

range contractions). 383 

 384 

Thermophilization is largely absent in the Amazon and highly variable in the Andes 385 

Thermophilization rates in Andean forests were, on average, higher and more variable than in 386 

lowland Amazonian forests (Fig. 3, 4). These results indicate that tree community responses to 387 

climate warming are absent (in terms of thermophilization) in the Amazon, but slow and highly 388 

variable among plots in the Andes. Indeed, the signal appears to reflect more of a climatic 389 

disruption (via increased mortality rates) than a climatic migration (via increased recruitment 390 

rates). Although our study is one of the first to compare thermophilization between Amazonian 391 

and Andean tree communities based on plot census data, the findings broadly mirror those of a 392 

large-scale study using herbarium collection records (15). In their study, Feeley et al. (2020) 393 

found slower thermophilization rates in the lowland tropics compared to higher latitudes and 394 

elevations. 395 
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Several factors may explain the lack of thermophilization in Amazonian tree communities 396 

compared to Andean forests. First, compensatory changes in tree demographic rates (53) in the 397 

Amazonian forest may buffer population dynamics against temperature warming. Higher growth 398 

of individual trees can compensate for lower survival and recruitment rates, allowing for the 399 

persistence of Amazonian populations, though this depends critically on tree fecundity, whose 400 

response to climate change remains unknown in the tropics. For example, plots located in 401 

floodplain forests often showed negative thermophilization rates mainly driven by differential 402 

stem growth (Fig. 5, Supporting Information Table S2). Second, lowland Amazonian tree species 403 

may have greater tolerance to climate warming through local historical adaptation with 404 

persistence over time  (20, 54). Also, it is possible that our characterization of thermal optima in 405 

Amazonian trees is inaccurate for species with truncated thermal niches (19). Finally, lowland 406 

species may be able to persist longer than predicted under increasing temperatures due to the 407 

lack of immigration from hotter areas and an absence of competition with species that are better 408 

adapted to the new conditions.  409 

 410 

Positive rates of thermophilization in some lowland habitat types may also be counterbalanced 411 

by negative rates of thermophilization in other local habitat types. In Amazonian forests, 412 

physiographic differences between floodplain and terra firme forests may explain contrasting 413 

relationships between demographic processes and thermophilization. We found that 414 

thermophilization was positively correlated with tree mortality in 73 % of the terra firme plots. 415 

In contrast, thermophilization was negatively associated with growth in 50 % of the floodplain 416 

plots (Supporting Information, Fig. S8). This can be explained by the increase in tree mortality of 417 

wet-affiliated taxa (24) in terra firme forests. In addition, flooded areas could buffer the negative 418 
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effects of droughts, decreasing tree mortality and increasing tree growth. Finally, multiple 419 

droughts in the last three decades are driving slow but directional shifts in species composition 420 

toward more drought-tolerant species across the Amazon (24). The lack of thermophilization in 421 

the Amazon suggests weak relationships between drought-tolerance traits and thermal-tolerance 422 

traits. Alternatively, these drought events could also promote longer periods of tree growth in 423 

floodplain forests because the roots will potentially be closer to the water table, extending the 424 

growing season. This current inertia of Amazonian tree communities in response to climate 425 

warming could lead to future lowland biotic attrition (55) if the thermal niches of the lowland 426 

species modeled here reflect likely climatic tolerances of species. 427 

 428 

Thermophilization is driven primarily by differential tree mortality 429 

Among the three demographic processes examined in our study (growth, mortality, recruitment), 430 

rates of thermophilization were most strongly determined by patterns of tree mortality and 431 

growth. There are several possible explanations for this. First, mortality and recruitment could be 432 

decoupled in time, especially since we only considered trees with diameters ³ 10 cm. Trees 433 

reaching the minimum measurable size of 10 cm d.b.h. can be decades to centuries old, having 434 

recruited in cooler than current temperatures. In this case, thermophilization resulting from 435 

growth may be a good indicator of future plant performance, particularly as mortality is a fast 436 

demographic process, while recruitment is inherently slower. If this is true, an examination of 437 

juvenile size classes (seedling and small saplings) should show accelerated thermophilization 438 

rates, with changes concentrated in recruitment as opposed to mortality. Second, our results 439 

suggest that warming may be driving elevated mortality of cold-adapted less-thermophilic 440 

species compared to warm-adapted thermophilic species, consistent with findings from 441 
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Colombia and Costa Rica  (30, 31). High tree mortality, particularly in the Andes, can be 442 

explained by the incapability of species to persist in areas where temperature increase exceeds 443 

species’ thermal tolerance, causing dieback along the lower hotter portions of species’ ranges. 444 

Finally, the observed positive effect of tree growth on thermophilization may be due to the high 445 

growth of warm-adapted species rather than the cold-adapted species along the gradient. 446 

 447 

Drought-induced tree mortality could also be causing shifts in species composition and function 448 

in Andean forests by killing trees preferentially in the warmer (lower) portions of their ranges. 449 

This is supported by the fact that there have been three major drought events in the Amazon 450 

basin in the last two decades, increasing tree mortality and reshuffling species composition (24, 451 

56, 57). In our study, the highest thermophilization rates were found around the cloud base 452 

(~1200-2000 m, Fig. 3a, b), where high tree mortality was reported (17). These results contrast 453 

with those of Fadrique et al. 2018, who reported negative thermophilization at elevations 454 

corresponding to the cloud base and suggested that the cloud base may be a barrier to species 455 

migrations. Our results suggest that the cloud base zone is shifting in species composition to 456 

higher abundances of more heat-tolerant species, potentially due to the interplay of drought 457 

events and heat stress leading to a future forest die-off in response to climate change (58) and, 458 

therefore to a high risk for biotic attrition. 459 

 460 

In conclusion, slow thermophilization rates for Andean forests and the absence of 461 

thermophilization from lowland Amazonian forests indicate that they are likely to fall out of 462 

equilibrium with climate over the coming decades, if not already. As warming continues in 463 

tropical forests, long-term monitoring of growth, mortality, recruitment, and fecundity will be 464 
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imperative for understanding the future population and community dynamics of Amazonian and 465 

Andean forests.  466 
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Figure 1. (a) A map of the 66 permanent forest plots along the Amazon-to-Andes elevational 627 

gradient in Bolivia and Peru. The green circles represent the Amazonian forest plots (<500 m 628 

asl), and the orange triangles represent the Andean plots (³500 m asl). (b) Temperature 629 

anomalies compared to 1980 in the Amazon (climate stations in Puerto Maldonado) and in the 630 

Andes (climate stations in Cusco) downloaded via Berkeley Earth Surface Temperature 631 

(http://berkeleyearth.org). Temperatures increased by ~1.17 (~0.0292 oC y-1) in Puerto 632 

Maldonado and by ~1.17 oC (~0.0291 oC y-1) in Cusco since 1980.  633 

http://berkeleyearth.org/
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Figure 2. The estimated community temperature index (CTI) anomaly for the 66 permanent 636 

forest plots. The CTI anomaly was calculated as the difference between a plot’s CTI in year i and 637 

the plots’ initial CTI along the Andes-to-Amazon elevational transects in Bolivia and Peru over 638 

44 years (range of time intervals = 2 to 10 years per plot). Increases in CTI (i.e., positive CTI 639 

anomaly) indicate an increase in the relative abundance or basal area of more-thermophilic 640 

species from warmer climates over time-based on the (a) individual-weight CTI and (b) basal 641 

area-weighted CTI. The black horizontal line represents no change in CTI. Colored lines 642 

correspond to each plot at different time intervals along the elevational gradient.  643 
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Figure 3. The estimated plot-level thermophilization rates (TR) for the 66 Amazonian and 662 

Andean forests plots with multiple censuses based on the (a) individual-weighted community 663 

temperature index (CTI) and (b) basal area-weighted CTI. TR was calculated as the slope of the 664 

linear least-square regression between CTI and census year. Each circle (Peru) or triangle 665 

(Bolivia) represents one forest plot; red and blue colors represent positive and negative TR, 666 

respectively. Error bars represent the 95% confidence intervals based on the linear least-square 667 

regressions of the CTI versus the census year of each plot. Circles and triangles with no error 668 

bars represent plots with one census interval. The dashed vertical line indicates the approximate 669 

transition from Amazonian to Andean forests at 500 m. The solid green line is the generalized 670 

additive model (GAM) fit using the smoothing function with 95% confidence limits. Vertical 671 

rectangles represent the position of the cloud base along the gradient.  672 
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Figure 4. Boxplots showing variation in estimated plot-level thermophilization rates (TR) for the 673 

Amazonian (n = 17) and Andean (n = 49) forests plots based on the (a) individual-weighted 674 

community temperature index (CTI) and (b) basal area-weighted CTI. 675 

(a) (b) 
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Figure 5. Estimated changes in plot-level thermophilization rates (TRplot) due to tree mortality 677 

(TRmortality), tree recruitment (TRrecruitment), and stem growth (TRgrowth) along the Amazon-to-Andes 678 

elevational gradient. Forest plots are ordered from the low to high elevation. The dashed vertical 679 

lines indicate the approximate transition from Amazonian and Andean forests at 500 m. Positive 680 

changes (red bars) indicate increased abundances of taxa from relatively warmer climates. 681 


