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Abstract

Accurate estimates of aboveground biomass (AGB) are essential for forest policies to reduce carbon 

emissions. Unmanned aerial laser scanning (UAV-LS) offers unprecedented millimetric detail but is 

underutilized in monitoring broadleaf Mediterranean forests compared to coniferous ones. This study 

aims to design and evaluate a procedure for AGB estimates based on the predictive power of crown 

features. In a first phase, we manually defined Quantitative Structure Models (QSMs) for 320 trees 

using UAV-LS, ALS, and co-registered terrestrial laser scanning (TLS) data, providing the best non-

destructive AGB reference in the absence of destructive measurements. For each reference tree we also 

measured crown projection and crown volume to build two separated models relating AGB to such 

crown features. In a second phase we evaluated the potential of UAV-LS for quantifying AGB in a 

pure European beech (Fagus sylvatica) forest and compared it with traditional ALS estimates, using 

full automatic procedures. The two obtained tree-level AGB models were then tested using three 

datasets derived from 35 sampling plots over the same study area: (a) 1130 trees manually segmented 

(phase-2 reference); (b) trees automatically extracted from ALS data; and (c) trees automatically 

extracted from UAV-LS data. Results demonstrate that detailed UAV-LS data improve model 

sensitivity compared to ALS data (RMSE = 45.6 Mg ha-1, RMSE% = 13.4%, R2 = 0.65, for the best 

ALS model; RMSE = 44.0 Mg ha-1, RMSE% = 12.9%, R2 = 0.67, for the best UAV-LS model), 

allowing for the detection of AGB differences even in quite homogenous forest structures. Overall, this

study demonstrates that combining different laser scanner data can foster non-destructive AGB 

estimation in forested areas across hectare scales (1 to 100 ha).
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1. Introduction

Forests are fundamental natural carbon sinks, actively contributing to mitigating climate change 

(Verkerk et al. 2019). In recent decades, the demand for accurate methods to estimate aboveground 

biomass (AGB) in forest ecosystems has grown due to its crucial role in the carbon cycle and in 

assessing forest health status, habitat quality, forest disturbance and restoration (Heinrich et al. 2021). 

Carbon stock estimates in forest ecosystems are strictly linked to AGB, which varies with eco-

physiological, environmental, and management stand-based factors.

General scaling rules for metabolic and structural plant allometry, such as the theory of Euclidean 

geometric scaling or metabolic scaling theory (MST (Owen, Flynn, and Lines 2021)), provide valuable 

insights into biomass patterns at broad scales. However, these theories assume a constant tree crown-

volume relation for all the trees of a given species, even though the variability in crown structure, 

rather than constancy, is crucial for a tree’s success in crowded conditions (Pretzsch and Dieler 2012). 

Therefore, developing models tailored to specific local conditions is essential for managers and 

practitioners to address site-specific management challenges and achieve their objectives (Ploton et al. 

2020; Xu et al. 2021).

One of the major limitations affecting local allometric model accuracy is the reduced number of 

calibration samples, which typically require destructive harvesting. This process can be costly when 

used through traditional tools like chainsaws, callipers, and measuring tape, and it often prevents large 

trees from being harvested (Calders et al. 2022). In addition, during the felling phase, the tree crown is 

subjected to breakages, leading to inaccurate measurements.

Terrestrial Laser Scanning (TLS) is widely recognized as one of the most accurate and non-destructive 

methods for estimating individual tree AGB (Brede et al. 2019; Calders et al. 2015, 2022; N. Puletti et 

al. 2020; Pretzsch 2021). However, its application across large areas faces considerable logistical 

challenges. TLS campaigns are time-intensive, requiring up to 3–7 days per hectare (Brede et al. 2022),

and demand substantial manual effort for individual tree segmentation, particularly in dense and 

complex forest canopies. These constraints significantly limit its feasibility for calibrating and 

validating AGB models over broad and heterogeneous landscapes.
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Generating wall-to-wall AGB maps requires the integration of field-surveyed data with metrics 

obtained from Laser Scanning devices, such as Airborne Laser Scanning (ALS) (Brosofske et al. 2014; 

G. Shao et al. 2018). Although ALS data have been extensively tested in forest ecosystems and are 

today an integral part of many national-scale environmental monitoring programs (Chirici et al. 2020), 

challenges remain in their application for AGB assessment. In particular, estimating AGB for 

deciduous trees is more difficult than for conifers, likely due to differences in growth patterns (Næsset 

2004). For example, Beech (Fagus sylvatica L.) trees, which have deliquescent tree forms, allocate a 

great amount of biomass into lateral branches, introducing noise into the relationship between height 

and volume/biomass. Recent studies have demonstrated that ALS data can be profitably used in such 

stands when forest structure and species mixture have great variability, particularly if specific variables

like site productivity are included (G. Shao et al. 2018). Without such ancillary data, ALS models for 

pure deciduous forests remain inaccurate (J. Shao et al. 2022; G. Shao, Fei, and Shao 2023; Cao et al. 

2023). Despite the widespread use of ALS for AGB estimation, its application in deciduous forests, 

such as pure beech stands, remains challenging due to the unique structural variability of these forests, 

characterized by deliquescent branching and lateral biomass allocation.

The recent miniaturisation of LiDAR instruments (Z. Wang and Menenti 2021) has paved the way to 

integrate more detailed data above the canopy (Brede et al. 2019). Laser scanners mounted on 

Unmanned Aerial Vehicles (UAV-LS) offer a promising solution to enhance the quality of ALS-based 

statistical allometric models in temperate and boreal forests (Nicola Puletti, Innocenti, and Guasti 

2024), particularly in pure-broadleaved forests (Brede et al. 2019; N. Puletti et al. 2020; J. Shao et al. 

2022, Table–A1). UAV-LS offers several advantages over traditional ALS systems (Torresan et al. 

2017; Alvites et al. 2022). First, it provides a much higher point density (>1000 points m-2), enabling 

detailed crown reconstruction. Second, UAV-LS is highly flexible, with faster flight planning (10-20 ha

hour-1) and lower costs, making it suitable for covering large forest areas efficiently.

To address these limitations, this study evaluates how detailed crown metrics derived from UAV-LS 

can improve the accuracy of AGB estimates in pure beech forests, leveraging precise crown feature 

measurements and automated individual tree segmentation (ITS). This study aims to assess the 

potential of UAV-LS in improving AGB estimates in pure beech forests by leveraging precise crown 

feature measurements. The analysis combines TLS reference data, manually extracted crown metrics, 

and an automated ITS algorithm to evaluate UAV-LS’s effectiveness compared to ALS-based methods.

The experiment was conducted in managed pure beech forests characterized by homogeneous, dense 
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canopy cover and minimal differences in vertical structure, but a wide range of three diameters (i.e., 

diameter at breast height, dbh, ranging from 4 to 85 cm). TLS data were used as input reference data 

for variables like tree position, dbh, and tree volume derived from quantitative structure models 

(QSMs, Georgi et al. 2018). In the first phase, UAV-LS data were manually processed to obtain a 

precise measure of crown features and tree volume for over 300 trees used as reference. Then, AGB 

was derived as the product of tree volume, Biomass Expansion Factor (BEF), and Wood Basal Density 

(WBD). Based on this, an AGB~crown model was developed. In the second phase, the AGB~crown 

model was applied using crown features derived from an automatic ITS algorithm as predictor. Finally,

plot-level products obtained by ALS and UAV-LS point clouds were compared with reference data to 

assess their performance.

2. Material and methods

2.1. Study area and data collection

This study was conducted in Alpe di Catenaia, Italy (Figure 1). Terrestrial (TLS) and UAV LiDAR 

(UAV-LS) data were collected in October-December 2023 across 12 circular sampling plots (15 m 

radius) in pure beech forest stands with similar climate conditions, soil types, forest structure, and 

management history (Nicola Puletti, Innocenti, and Guasti 2024).

Figure 1: Study area and sampling sites location.

TLS-inventory measurements were conducted by GeoSLAM ZEB-REVO (GeoSLAM Ltd., 

Ruddington, England) lightweight mobile laser scanner. It features a rotating 2D scanning device and 
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an inertial measurement unit in the handle body. The system acquires 3D information of the 

surrounding area using the motion provided by the scanning head on the motor drive, enabling the 

application of 3D simultaneous location and mapping algorithms (N. Puletti et al. 2020). This TLS 

requires the starting and ending points of the scan process to coincide with some overlaps during the 

scan path. The centre of each plot was georeferenced using an RTK GPS. Using TLS data, 320 

sampling trees were measured following the procedure described in Section 2.2. Forest stand 

characteristics are summarized in Table 1.

Table 1: Stand characteristics based on trees manually isolated in the Terrestrial Laser Scanning (TLS) 
point cloud. Volume was derived from Quantitative Structure Models (QSMs).

min mean (st.dev.) max𝑁 h𝑎−1 141.5 443.4  (239.1) 1174.2𝑑𝑏h (𝑐𝑚) 4.0 34.9      (6.6) 85.0𝑇𝐻 (𝑚) 2.9 14.1      (4.0) 26.4𝑡𝑟𝑒𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 (𝑚3) 152.4 282.1   (90.7) 474.8

Airborne LiDar data were acquired over a 42 km2 area surrounding the surveyed plots using a Riegl 

Q680i discrete-return sensor mounted on a Partenavia/Vulcanair P68-Victor aeroplane. The flight, 

performed on July 15, 2021 at an altitude of 915 m above the ground, used a 400-kHz pulse repetition 

rate, resulting in an average density of 25 pulses per m2. LiDAR points were first classified into ground

and non-ground (vegetation) using the lidR package (Roussel et al. 2020). A 1-m resolution digital 

terrain model raster layer was obtained by interpolating ground points to normalize the point cloud.

We simultaneously collected UAV-LS data and field measurements over the sampling plots. The UAV-

LS LiDAR platform consisted of a DJI Matrice 350 quadcopter integrated with a Zenmuse L1 LiDAR 

sensor (DJI Inc. in Shenzhen, China), an advanced scanning sensor designed for aerial surveying 

applications. It integrates a LiDAR module, an RGB camera with a non-full-frame configuration, and 

an inertial measurement unit (IMU). With a detection range of 450 m under 80% reflectivity 

conditions, a high point rate of up to 240,000 points per second and ranging accuracy of 3 cm at a range

of 100 m (Diara and Roggero 2022; Štroner, Urban, and Línková 2021), the system provides high-

quality data. Flights were conducted approximately 55 m above the digital terrain model uploaded to 

the UAV-LS at a speed of approximately 13 h-1, resulting in a mean point cloud density of more than 

1500 points m-2. Data processing was carried out in Terra® which allowed the import and the 
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alignment of drone flight trajectory data. From Terra® the complete point cloud was exported in LAS 

format.

TLS, UAV-LS, and ALS data were aligned by assigning RTK GPS positions to TLS data and using 

Cloud Compare software (GPL software 2021; Nicola Puletti et al. 2024). The aligned three-point 

cloud data (TLS, UAV-LS, ALS) collected over the 12 sampling plots were clipped to the 

corresponding 15 m radius circles, producing a separate point cloud for each sampling plot.

Figure 2: Processing workflow. In the first phase (upper panel) 12 sampling plots among 35 measured 
were processed. QSMs for more than 300 trees were obtained from manual segmentation. Vertical 
Profiles Features (VPFs) were derived from voxelised point clouds of each sampled tree. The outputs 
of this first phase are: (i) plot level AGB, used as reference for phase 2, and (ii) AGB~VPFs model. In 
the second phase (right panel), two fully automatic procedures were compared using UAV-LS and ALS
data from all 35 sampling plots measured over the study area. Single trees were automatically identified
and segmented using a well-established approach. AGB was estimated using the AGB~VPFs model 
created in phase 1. Finally, the estimated values of different procedures were compared for evaluation.

2.2. Benchmark: single tree QSM to quantify volume and AGB

The workflow combines both manual and automatic steps. In the first phase (see Figure 2), Trimble 

Real Works software (TRW) was used for tree segmentation and QSM production. Each segmented 
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tree was then reconstructed through a semi-automatic cylinder-fitting procedure, resembling the 

traditional approach based on Smalian method for stem volume estimates, using virtual cylinders of 

about 1 m in length. The total tree volume (V tree, in m3) was computed by summing all the cylinders 

and then converted to biomass using Equation 1:

AGB tree=V tree ⋅ BEF ⋅WBD (1 )

where BEF is the Biomass Expansion Factor, used to expand growing stock volume to the aboveground

woody biomass volume, and WBD is the Wood Basal Density, used to convert fresh volume to dry 

weight (Mg m-3). For beech trees in central Italy BEFBeech = 1.36 and WBDBeech = 0.61 (Marino et al. 

2021, Table A2).

For each tree, different architectural traits were also measured: (1) total tree height (TH); (2) the 

surface of the crown at its maximum extension, considered as the crown projection (CrPrj); (3) and the 

crown volume (CrVol). A set of algorithms was developed using functions from lidR package (Roussel 

et al. 2020) to characterize crown features from the xyz-data of each focal tree and its neighbors. First, 

the original point cloud of each tree was voxelised at a resolution of 25 cm, for a balance between 

achieving suitable results and minimising computation time. To avoid residual noise in the original 

point cloud, only voxels containing at least three points were classified as “vegetation” and used to 

compute single-tree vertical profiles. From the smoothed curve (red-line in Figure 2), the height of the 

maximum crown projection (Z-peak, in meters), crown base height (Z-peak-start, in meters) and total 

tree height (Z-peak-end, in meters) were derived. Crown volume (CrVol) was computed as the sum of 

all vegetation voxels between Z-peak-start and Z-peak-end, while crown projected area (CrPrj) was 

determined using a 2D convex hull at the maximum crown projection. All these features were 

identified by analysing the single-tree vertical profile with the findpeaks function from the pracma R-

package.

2.3. AGB allometric modelling approach

Following a strengthened procedure (He et al. 2018), the general biomass equation for each tree is 

defined as:

Y=α X β (2 )

where Y represents AGB and X is a correlated tree attribute, typically the dbh. In this study, X 

corresponds to one of the considered crown features (i.e. crown projection or crown volume). To 
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address the heteroscedasticity often present in nonlinear regressions with original scales of 

measurements (Packard, Birchard, and Boardman 2010), the Equation 2 was log transformed:

ln (Y )=α 1+β1 ln (X ) (3 )

AGB of an individual tree was modeled as a function of both crown projected area (CrPrj) and crown 

volume (CrVol) of the tree, expressed as:

ln ( AGBCrPrj )=αCrPrj+βCrPrj ln (CrPrj ) (4 )

ln ( AGBCrVol )=αCrVol+βCrVol ln (CrVol ) (5 )

The log-transformation, however, introduced a systematic bias, tipically corrected using the following 

correction factor (CF):

CF=exp (SE E2/2 ) (6 )

where CF is the correction factor, and SEE is the standard error of the estimate, calculated as follows:

SEE=√∑
i=1

n

( ln (Y i )−ln (Ŷ i ) )
2
/ (n−2 ) (7 )

The final equation for estimating AGB is:

AGB=eα X βCF (8 )

where X is either crown projection or crown volume.

2.4. Automatic ITS from ALS and UAV-LS point clouds

After the first phase focused on the calibration of AGB modelling using manually measured trees, the 

second phase tested the performance of automatic algorithms for Individual Tree Segmentation (ITS) in

structurally homogeneous broadleaf temperate forests. Cao et al. (2023) recently reviewed ITS methods

for broadleaf tropical forests - with a heterogeneous forest structure, from which Li et al. (2012) 

method was selected for this study. This rule-based ITS algorithm, integrated into the lidR processing 

packages (Roussel et al. 2020) offers a low cost-benefit ratio in the forest stands measured. Moreover, 

rather than relying on raster CHM, which limits detection to dominant trees, Li et al. (2012) analyses 

point cloud structures and has shown a detection accuracy rate of up to 90% in mixed forests. The same
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workflow was applied to both UAV-LS and ALS data for comparison (Figure 2). To avoid time-

consuming procedures, specific and fixed parameters were established in the ITS algorithm.

2.5. Statistical analysis

In the first phase (Figure 2), the two previously presented models (Equation 4 and Equation 5) were 

evaluated using data from 320 manually segmented beech trees, from the 12 sampling plots (Figure 

FS1). AIC was used as a validation technique to assess model performance with new data. Finally, to 

evaluate the accuracy of AGB estimates at the plot level, observed and modelled results from the same 

12 sampling plots were compared. Model assessment metrics included R2 and RMSE computed using 

Equation 9 as follows:

RMSE=√∑i=1
n

[ ln (Y i )−ln (Ŷ i ) ]
2

n

   (9)

The second phase (Figure 2) evaluated the performance of the selected ITS algorithm (Li et al. 2012) 

for individual tree identification and crown feature extraction aimed at AGB estimation, using ALS or 

UAV-LS data separately. Tree mapping evaluation was also conducted using completeness and 

correctness (Laino et al. 2024). Finally, the performance of the proposed models was assessed using 

data extrapolated from the fully automated ITC and crown featuring methods.

3. Results

3.1. Phase 1: Crown features

The process of crown feature extraction (projection and volume) was effective over the 320 manually 

segmented reference trees. The beta coefficient (βCrVol=0.78) obtained from the best model 

(Equation 5) representing the metabolic scaling coefficient aligns closely with the theoretical value 

equal to 0.75. The 12 sampling plots show significant variability in the crown sizes of the trees. The 

average crown area is 15.4 m2 (min = 0.2, max = 75.7) with a standard deviation of 13.5 m2, while 

crown volume has an average of 39.9 m3 (min = 1.8, max = 194.2) with a standard deviation of 36.4 

(Figure FS2). Pearson correlation coefficients (r) between crown features and traditional tree attributes,

such as dbh and total tree height, are consistently below 0.45. However, correlations increase 

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233



significantly to 0.88 and 0.90 when comparing tree volume with crown projection and crown volume, 

respectively.

3.2. Phase 1: AGB model assessment

The AIC used for tree-level model assessment indicates that the model from Equation 5 (AIC=364.4) 

performs slightly better than that from Equation 4 (AIC=397.9). Although a lower AIC (92.3) is 

achievable using both CrPrj and CrVol, the model with CrVol as the sole predictor was preferred for 

simplicity. Using CrVol as the predictor (Equation 5) we obtained the best result (R2 = 0.74, RMSE = 

0.41, RMSE% = 2.9 %, Figure 3).

Figure 3: Scatterplot and relations between crown volume and aboveground biomass of the 320 

sampled trees.

3.3. Phase 2: individual tree detection

Figure 4 (together with Table TS1 and Figure FS3, see supplementary materials) displays results for 

both ALS and UAV-LS individual tree detection. Under the given conditions, ALS proved to be less 

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248



effective, consistently performing worse than UAV-LS. ALS fails to detect many trees in several cases 

(3 out of 35 plots). On the other hand, UAV-LS tends to overestimate tree numbers in less dense forests

and underestimate in denser forest conditions (Figure 4). The indices used for ITD assessment 

(completeness and correctness) exhibit similar patterns, with UAV-LS also showing better 

performances (Figure 5).

Figure 4: Number of trees observed over 35 plots and estimated using both ALS and UAV point clouds

by automatic segmentation.
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Figure 5: Distributions of completeness and correctness over 35 plots from both ALS and UAV data.

Phase 2: AGB estimates from ALS and UAV-LS

Figure 1 shows the results of the fully automatic procedure in estimating AGB under the given 

conditions. Using the crown surface area and the model from phase 1 (Equation 4), UAV-LS 

consistently overestimates AGB with a relatively constant coefficient. On the other hand, ALS always 

underestimates AGB without any clear pattern. When applying the model from Equation 5, ALS results

remain less accurate, while UAV-LS data produced more reliable results Figure 1.

4. Discussion

This study demonstrates that tree architectural traits (Dorji et al. 2019) influence the accuracy of AGB 

estimates from ALS and UAV-LS, regardless of forest mixture or structure, as previously noted in 

ground-based studies (Penanhoat et al. 2024; Pretzsch 2021).

Despite the homogeneous nature of the beech forests studied, there was significant variability in the 

crown sizes of the trees we examined, with standard deviations of 13.5 m² for crown area and 36.4 m³ 

for crown volume. Reference tree crown dimensions from TLS and UAV-LS are manually defined in 

CloudCompare, ensuring a realistic representation of 320 standing trees for TLS and 1000 for UAV-LS
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systems (Barbeito et al. 2017). These segmented trees were modelled using MST allometries (Li et al. 

2012; Pretzsch and Dieler 2012).

When UAV-LS was analysed using the ITS algorithm developed by Li et al. (2012) dominated trees 

were barely detected, achieving only moderate correctness and completeness (~30% for UAV-LS 

compared to <10% for ALS). ). For correctly segmented trees, crown height variability is captured by 

analysing the 3D vertical uniformity distribution (thresholds at the 75th and 95th percentiles) (Nicola 

Puletti et al. 2024). However, the phenotypic plasticity and deliquescent architecture of beech trees 

affected the crown-boundary delineation of standing trees in ALS and UAV-LS point clouds, impacting

the AGB estimation accuracy, as noted in previous studies (Y. Wang et al. 2016). Secondary factors 

affecting detection include forest stand characteristics (i.e., tree density: maximum 1,174 trees ha ¹) ⁻

and competition (Barbeito et al. 2017; Nicola Puletti et al. 2024); individual tree architecture (i.e., 

deliquescent architecture and plasticity in growth forms) (Pretzsch 2021), and technical aspects such as 

point cloud occlusion (Alvites et al. 2021; Bruggisser et al. 2019). Following previous classifications 

(Liang et al. 2018; Y. Wang et al. 2016), the selected forest sites fall into the moderate-to-difficult 

complexity forest category (~443 trees ha ¹).⁻

High-resolution TLS point clouds enable accurate tree architectural traits reconstruction (CrVol, 

CrPrj), aligning closely with AGB estimates in the MST-based allometry model (RMSE% = 2.9%). 

The MST model produced an acceptable beta coefficient for AGB estimates (equal to 0.78) (Lin et al. 

2013). However, UAV-LS produces more accurate AGB estimates than ALS (Figure 6), likely due to 

point quality captured by UAV-LS systems, allowing occlusion handling through penetration and 

closer proximity to the top canopy (Bruggisser et al. 2019). Considering that all forest sites (except 

ads_26; Figure 7) exhibit mono-layered vertical stratification, the primary factor probably affecting the 

tree AGB estimation is occlusion caused by large branches overlapping smaller ones, worsened by the 

incorrect segmentation of nearby crowns. The incorrect tree segmentation in pure stands is implicit in 

ITS analysis, especially in the closed-canopy broadleaf stands (Barbeito et al. 2017; Cao et al. 2023). 

Previous studies show that ALS-based crown segmentation algorithms achieve accuracies below 30% 

for Commission I (extra trees detected within crowns) and less than 40% for Commission II (trees 

detected outside crowns) (Y. Wang et al. 2016). Nevertheless, the tree detection method we used (Li et 

al. 2012) achieved an F-score of 0.5 in mixed conifer forests (Pirotti, Paterno, and Pividori 2020) and a 

75% detection rate in mixed conifer-broadleaf forests (Torresan et al. 2020), which aligns with our 
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findings. Another challenge in tree detection was the configuration of parameters for 3D forest site 

analysis, which was time-intensive and site-specific (Li et al. 2012).

Figure 6: Estimated AGB by both Equation 4 and 5 and with different LiDAR vectors (ALS (red) and 

UAV-LS (green)).
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Figure 7: Vertical profiles of 35 sampling plots, as derived from UAV-LS point clouds. With few exceptions (e.g. ads_26), 

the distribution is unimodal from the ground to the top of the canopy.

In this regard, unsupervised algorithms such as DBSCAN (Density-Based Spatial Clustering of 

Applications with Noise) (Alvites et al. 2021), hierarchical filtering and clustering (HFC) (Zhang et al. 

2024), or learning algorithms (i.e., convolutional neural network) (Straker et al. 2023) could prove 

more effective in detecting trees. However, the unavailability of these ITC algorithms in R software 

limits their accessibility for non-expert users. Therefore, developing R packages to integrate these 

advanced algorithms would be essential for expanding their use in tree detection. AI-based approaches 

hold promise for future tree detection and segmentation tasks. Once these challenges are addressed, 

311

312

313

314

315

316

317

318

319

320

321



UAV-LS data could enable more frequent, cost-effective updates for AGB monitoring with high 

resolution (Fassnacht et al. 2024).

Accurately delineating tree architectural traits can significantly affect the accuracy of AGB estimates 

from aerial LiDAR systems, especially ALS. As expected, segmenting dominated trees remains a 

primary challenge in our workflow; however, our findings align closely with previous studies (Liang et 

al. 2018; Y. Wang et al. 2016). Nevertheless, the manually segmented reference trees in Phase 1 

provided a robust validation step for the outputs in Phase 2, thanks to the detailed representation of 

forest plots using point clouds. Integrating aerial with terrestrial LiDAR data may improve detection 

rates, allowing closer alignment with reference AGB estimates (Alvites et al. 2022). Implementing the 

MST to beech trees to capture crown irregularities, regardless of purity (Barbeito et al. 2017), requires 

high-resolution point clouds, which currently limits its application to terrestrial and drone-based 

LiDAR systems (Barbeito et al. 2017; Owen, Flynn, and Lines 2021; Martin-Ducup et al. 2020).

5. Conclusions

Quantifying forest aboveground biomass is crucial for climate action and forest management policies. 

This study confirms that UAV-LS systems, with their high-density point clouds, significantly improve 

local AGB predictions in homogeneous beech forests compared to ALS. Applying the Metabolic 

Scaling Theory to beech trees effectively requires high-resolution point clouds, ideally from drone-

based LiDAR systems. Although segmenting dominated trees remains challenging, traditional crown 

measurement methods are time-intensive and prone to errors. Integrating terrestrial and UAV-LiDAR 

data offers an efficient and promising alternative for accurately capturing tree architecture. These 

findings underscore the value of UAV-LS data for AGB estimation and demonstrate the potential of 

precise crown measurements to advance climate and forestry goals.
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