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Abstract

Maternal effects (the consistent effect of a mother on her offspring) can inflate estimates of

additive genetic variation (VA) if not properly accounted for. As they are typically assumed

to cause similarities only among maternal siblings, they are often accounted for by modelling

maternal identity effects. However, if maternal effects have a genetic basis, they create addi-

tional similarities among relatives with related mothers that are not captured with maternal

identity effects. Unmodelled maternal genetic variance (VMg) may therefore still inflate VA in

common quantitative genetic models, which is underappreciated in the literature. Using pub-

lished data and simulations, we explore the extent of this problem. Estimates from 14 studies

of eight species suggest that a large proportion of maternal variation is genetic. Both these

data and simulations confirmed that unmodelled VMg can inflate VA and underestimate total

maternal variation (VM), the bias increasing with the amount of non-sibling maternal relatives

in a pedigree. Simulations show these biases are further influenced by the size and direction

of any direct-maternal genetic covariance. The estimation of total VA (i.e., the weighted sum

of VA and VMg) is additionally affected, limiting inferences about evolutionary potential from

simple maternal effect models. Unbiased estimates require modelling VMg explicitly, but these

models are often avoided due to perceived data limitations. We demonstrate that estimating

VMg is possible even with small pedigrees, reducing bias in VA and maintaining accuracy in

estimates of VA, VM , and total VA. We therefore advocate for the broader use of these

models.

Keywords: Animal model; genetic variation; maternal effects; bias; wild population
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Introduction

Mothers (and more generally parents) can have strong effects on the phenotype of their

offspring, above the effect of their shared genes. These effects of the maternally provided

environment on offspring phenotype are generally known as ‘maternal effects’ and, in quanti-

tative genetics, refer specifically to the consistent effect of a mother across all her offspring

(also known as ‘maternal performance’; Riska et al., 1985). Maternal effects are ubiquitous

(Moore et al., 2019b), occurring in a wide range of taxa, with the strongest impact on traits

expressed in juveniles (Wilson & Reale, 2006; Pick et al., 2016a; Moore et al., 2019b; Gauzere

et al., 2020b).

From an evolutionary perspective, maternal effects can impact the evolutionary potential of

traits. Generally, we think of the response of a trait to selection (R) to be dependent on the

additive genetic variation (VA) in that trait and the strength of selection, summarised by the

breeder’s equation (R = h2S; Lush, 1937) or Lande’s gradient equation (R = VAβ; equation 7

in Lande, 1976, where h2 is the heritability of the trait (VA/VP ), S is the selection differential

and β the selection gradient). Maternal effects have historically been seen as a ‘troublesome’

parameter in the estimation of selection response (Falconer, 1981), as not accounting for

these shared effects across siblings can dramatically inflate estimates of VA (e.g., Kruuk &

Hadfield, 2007), and so lead to the overestimation of the evolutionary potential of a trait.

However, when the traits mediating the maternal effects have a genetic basis (i.e., maternal

genetic effects), then the response to selection of these traits is no longer predicted by VA

alone (even when maternal effects are properly modelled), and will instead be determined by

the ‘total’ genetic variation available, which can be calculated as:

VAt = VA +
1

2
VMg (1)

(Willham, 1963, 1972), where VMg is the maternal genetic variance. When maternal genetic

effects exist, VAt gives a better measure of evolutionary potential (note that this assumes that
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selection only acts on the focal offspring trait and not directly on maternal performance, a

point that we will return to in the discussion; Cheverud, 1984; Hadfield, 2012). To date, several

empirical studies have estimated a considerable genetic component to maternal effect variation

(e.g. Wilson et al., 2005b; Kruuk & Hadfield, 2007; McFarlane et al., 2015), consistent

with studies demonstrating genetic variation in parental care behaviours (Freeman-Gallant &

Rothstein, 1999; Maccoll & Hatchwell, 2003; Walling et al., 2008; Dor & Lotem, 2010; Adams

et al., 2015; Bell et al., 2018; Räsänen & Kruuk, 2007).

Equation 1 assumes that direct and maternal genetic effects are independent. There may,

however, be a genetic correlation between the direct genetic effects acting on an individual’s

trait and the maternal genetic effects that individual exerts on its offspring (for example, a

shared genetic basis between juvenile size and parental provisioning). Indeed, studies from

livestock show that direct and maternal genetic effects likely negatively covary (Wilson &

Reale, 2006; Räsänen & Kruuk, 2007), although this correlation is probably small. Evolutionary

potential is further dependent on such a joint genetic basis, with a negative genetic correlation

lowering the evolutionary potential of a trait and vice versa. The evolutionary potential can

therefore be fully described as:

VAt = VA +
3

2
COVA,Mg +

1

2
VMg (2)

(Willham, 1963, 1972). Not incorporating maternal genetic variance and any direct-maternal

genetic covariance will therefore further bias the estimation of the total evolutionary potential

of a trait.

Quantitative genetic studies in the wild typically focus on long-term studies of vertebrates,

which show a considerable amount of maternal (or more generally parental) care. There is a

large potential for maternal (genetic) effects in these systems, and consequently for VA to be

inflated when these effects are unaccounted for. Whereas these confounding effects can be

accounted for using breeding designs in captive populations (Lynch & Walsh, 1998), typically
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Table 1: Glossary of symbols and terms.
Term Definition
VA Additive genetic variance; the variation in direct genetic effects, also known

as breeding values.
VM Total maternal variance (VMg + VMe); the variation in a given phenotype

due to the consistent effect of the environment that the individuals’ mothers
provide

VMc Maternal identity variance; the variance estimated by a maternal identity
term in a simple maternal effects model

VMg Maternal genetic variance; the part of the maternal variance that is due to
genetic variation in maternal phenotypes

VMe Maternal environmental variance; the part of the maternal variance that is
due to environmental variation in maternal phenotypes, estimated by the
maternal identity term in a full maternal effects model

COVA,Mg Direct-maternal genetic covariance. This is the genetic covariance between
an individual’s direct genetic effect and the same individual’s maternal ge-
netic effect on its offspring (e.g., the genetic covariance between juvenile
size and parental provisioning.)

VAt Total additive genetic variance, see equation 2. This is a measure of evolu-
tionary potential, although it ignores that selection may act separately and
even in opposite directions on offspring and maternal phenotypes.

Non-sibling
maternal links

Links in a pedigree where the two individuals’ mothers are related, that are
not maternal siblings (e.g., mother-offspring; see Table 2). Calculation of
the proportion of non-sibling maternal links involved only the relationships
in Table 2.
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this has to be done statistically in wild populations (although note the use of cross fostering for

this purpose). Animal models are currently the most common method for estimating additive

genetic variation in the wild (Postma, 2014; Young & Postma, 2023a). They are an extension

of a mixed model that allows the incorporation of relatedness information from the pedigree

to estimate VA. Perhaps most importantly, they can be used to account for other sources

of confounding variation, including a common environment (e.g. the maternal environment;

Kruuk, 2004; Kruuk & Hadfield, 2007). They therefore allow for the explicit modelling of

additive genetic and maternal effects. Although many studies of genetic variation in the wild

have estimated maternal variance (Moore et al. (2019b) collated 770 estimates from 116

studies in the wild), by far the majority of these (97.8% of the estimates in Moore et al.,

2019b) do not model maternal genetic effects. Typically, maternal variance is estimated by

including maternal identity as a random term in an animal model. We refer to these models

as ‘simple’ maternal effects models, and the estimate of maternal variance as VMc. Although

the paucity of ‘full’ maternal effects models may mainly be driven by the perception of data

constraints (estimating maternal genetic variance requires more data, over more generations,

which is often limited in studies of wild populations), we believe there is also a common

assumption that all maternal genetic and maternal environment variance is captured by the

maternal identity variance (i.e. VM = VMc = VMg + VMe), in the same way that modelling

individual identity captures permanent environment and additive genetic effects. Moore et al.

(2019b), for example, sum VMe and VMg to get a total measure of maternal variance (VM)

to compare with models that modelled only VMc.

Although the assumption that VMc captures all VMg intuitively seems reasonable, several

studies contain evidence that not directly modelling VMg and COVA,Mg may bias estimates

of VA even when VMc is modelled (simulations: Clément et al. 2001; Satoh et al. 2002; wild

empirical studies: Wilson et al. 2005b; Kruuk & Hadfield 2007). We can see why this might

happen when considering the sources of covariance between different individuals in a pedigree,

which are commonly presented in classic maternal effect papers from the animal breeding
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literature (Willham, 1963, 1972; Thompson, 1976, see Table 2). Whilst only maternal siblings

(full siblings and maternal half-siblings) share maternal environmental effects (i.e., are raised

by the same mother), any relatives whose mothers are related will share some VMg. Imagine

two cousins related through their mothers being full siblings: as their mothers are related,

the maternal genetic effects that the cousins experience will be similar due to their mothers’

relatedness, but they will not share maternal environment effects (Figure 1A). In this way,

the phenotypic covariance between any two individuals related via their mothers will include

some degree of maternal genetic variation. On the other hand, two cousins with full-sibling

fathers have unrelated mothers, and so will not share maternal effects of any form (Figure

1B). COVA,Mg is shared even more widely, by any two individuals who are related via one of

their mothers. This means that even the phenotypic resemblance between fathers and their

offspring includes some COVA,Mg, as they are both related to the paternal grandmother (see

the individual-sire covariance in Table 2). This is because the father’s phenotype is affected

by its inherited breeding value and the genetic effect of its mother, which are correlated if

there is COVA,Mg (Figure 1C). A positive correlation between these two leads to an increased

resemblance between a father and his offspring, because the correlated maternal effect causes

the father’s phenotype to be even more like the offspring’s breeding value than expected by the

father’s breeding value alone (and vice versa). Table 2 shows how different sources of variance

contribute to the covariance between an individual and a variety of different relatives. These

derivations are explained well in Lynch & Walsh (1998, Chapter 23) and the full workings for

Table 2 are show in the Supplementary Materials S1.

For multiple types of relationships, the presence of VMg and COVA,Mg generates covariance

between relatives who do not share a mother and therefore do not share VMe. Modelling

VMc will, therefore, account for the maternal variance (environmental and genetic) shared

between maternal siblings, but not the maternal genetic variance and covariance shared by

other individuals related via their mothers. Consequently, we may expect that some of this

genetic variation that is not captured by VMc to be captured by the VA term. Unmodelled
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Figure 1: In the presence of maternal genetic effects, two cousin that are related via their
mothers (A) will be more similar to each other than two cousins related via their fathers (B).
Direct-maternal genetic covariance (COVA,Mg) affects the phenotypic covariance between any
individuals related via one or both of their mothers, for example fathers and their offspring (C),
as the correlated maternal genetic effect causes the two individuals to be more or less similar
to each other (depending on whether the covariance is positive or negative) than expected
from the inherited breeding values alone. Orange arrows represent the maternal genetic effect,
pink arrows the direct genetic effect (or relatedness) and the red dotted line the covariance
between the two. The blue dotted line represents the phenotypic covariance between the two
individuals of interest.
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Table 2: The different components making up the expected covariance between a focal in-
dividual and a given relative, for a set of close relationships. For example, the covariance
between an individual and its mother is 0.5VA + 0.5VMg + 1.25COVA,Mg. In the aunt/uncle
relationships, MHS and PHS refer to the relationships between the focal individual’s parent
and their sibling, indicating whether the parent and their sibling are maternal or paternal half
sibs, respectively. These covariances assume no inbreeding (i.e. an individual’s parents are
unrelated). Bold rows show those with non-sibling maternal links

Relationship Variances included in covariance
VA VMg COVA,Mg VMe

Dam 0.5 0.5 1.25 0
Sire 0.5 0 0.25 0
Full sib 0.5 1 1 1
Maternal half sib 0.25 1 1 1
Paternal half sib 0.25 0 0 0
Maternal grandparent 0.25 0.25 0.625 0
Paternal grandparent 0.25 0 0.125 0
Maternal full uncle/aunt 0.25 0.5 0.75 0
Paternal full uncle/aunt 0.25 0 0.25 0
Maternal half uncle/aunt (MHS) 0.125 0.25 0.5 0
Maternal half uncle/aunt (PHS) 0.125 0 0.25 0
Paternal half uncle/aunt (MHS) 0.125 0 0.25 0
Paternal half uncle/aunt (PHS) 0.125 0 0 0
Cousin - sires full sibs 0.125 0 0 0
Cousins - dams full sibs 0.125 0.5 0.5 0
Cousin - sire and dam full sibs 0.125 0 0.25 0
Cousin - sires half sibs 0.0625 0 0 0
Cousins - dams half sibs 0.0625 0.25 0.25 0
Cousin - sire and dam half sibs 0.0625 0 0.125 0

VMg would therefore be expected to bias VA upwards (as this induces a positive covariance

among maternal relatives), whilst COVA,Mg would bias VA in the direction of the covariance

(as it makes relatives resemble each other more when positive, and less when negative). The

extent and direction of any bias in VA estimates from simple maternal effects models will

therefore depend not only on the relative amounts of VMg and COVA,Mg, but also on the

structure of the pedigree, and in particular the degree to which the relationships in a pedigree

are dominated by non-siblings that that share VMg and/or COVA,Mg. We do not, however,

know systematically to what extent estimates of VA are affected, or the relative impact of

pedigree structure. The only simulation work to date (to our knowledge) focuses on breeding

designs (and so pedigree structures) that are not very realistic to natural populations (Clément
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et al., 2001; Satoh et al., 2002). Pedigrees from natural populations will vary widely, due to

factors such as life history variation, (sex specific) dispersal and mating system, with previous

work showing that immigration has a large impact on the bias induced by unmodelled common

environment effects (Kruuk & Hadfield, 2007). Given the wide usage of these simple maternal

effect models in evolutionary ecology (Moore et al., 2019b), it is important to understand the

extent of the bias in the estimation of VA caused by VMg and COVA,Mg if only VMc is

modelled and how this may vary with pedigree structure. This will facilitate an understanding

of how prevalent such biases may be in previous estimates of pedigree analyses from wild

populations.

A final complication arises when we consider how these biases may affect the estimation of

evolutionary potential. When using simple maternal effect models, the only measure of genetic

variation comes from VA, meaning that we are implicitly assuming VM is all environmental.

If these models correctly estimated VA and VM and some or all of the maternal variance had

a genetic basis, we would therefore be systematically underestimating evolutionary potential

(measured as VAt ; equation 2) by considering VA alone, depending also on the direction

and size of any direct-maternal genetic covariance (equation 2). On the other hand, any

upward bias in VA that occurs in the simple maternal effect models may compensate for this

underestimation of evolutionary potential; even if our estimates of VA are biased, VAt may still

be well estimated. To our knowledge, only one empirical paper has compared VAt estimated

from different models, finding that the total heritability of traits were similar between simple

and complex maternal effect models (Table 2 in Wilson et al., 2005b).

Here, to address the issues introduced above, we investigate several questions. First, we assess

the extent to which maternal effects in wild populations have been shown to have a genetic

component. Second, using simulations, we assess how simple maternal effect animal models

are affected by the presence of unmodelled VMg, and to what extent these biases are affected

by pedigree structure. Third, we investigate the impact of COVA,Mg on these biases. Fourth,

we assess the impact these biases have on our estimation of VAt and hence evolutionary
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potential. Finally, we investigate the feasibility of fitting full maternal effect models to small

pedigrees as a means of mitigating these biases.

Methods

All simulations and analysis were carried out in R (version 4.2.1; R Core Team, 2022).

Previous Estimates of VMg

Although the extent of maternal genetic effects is well characterised in an animal breeding

context (e.g., Wilson & Reale, 2006), the prevalence of these effects is much less well known

in the wild. To this end, we made a non-exhaustive search for estimates of maternal genetic

variation in wild populations using animal models. This search was not designed to be system-

atic, but we believe that it will have captured most estimates and so at least be representative.

Initially we were aware of four wild mammal species in which maternal genetic effects had

been estimated, three of which LEBK has been directly involved with. To find any additional

estimates, JLP searched Web of Science on 22/05/2024 for the topic ‘maternal genetic’,

subsetting by the Web of Science Categories ‘Evolutionary Biology’, ‘Ecology’ and ‘Zoology’,

and for all papers citing the early wild maternal genetic effects papers (McAdam et al., 2002;

Wilson et al., 2005b). All resulting papers were screened. Through this process, we discovered

one further paper on a wild species (Roe Deer; Quéméré et al., 2018), two papers estimating

such effects on different captive (but not domesticated) mammals (Blomquist & Williams,

2013; Ibáñez et al., 2014) and one study on greenhouse plants (Galloway et al., 2009). We

excluded Gauzere et al. (2022) as it used a very similar dataset to Gauzere et al. (2020b).

There are likely two sources of estimates that we may have missed: papers that included these

effects in their models, but they were not the main focus of the analysis, and unpublished

studies. We have no reason to believe that the first source would be systematically different

in size, and the second may be smaller due to publication bias. Our search gave 63 estimates

of 8 species, from 14 studies ( Soay sheep: Beraldi et al. 2007; Bérénos et al. 2014; Regan
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et al. 2017; Wilson et al. 2005b; Bighorn sheep: Wilson et al. 2005a; Réale et al. 2009; Red

Deer: Kruuk & Hadfield 2007; Gauzere et al. 2020b, 2021; Roe Deer: Quéméré et al. 2018;

Red Squirrel: McFarlane et al. 2015; Squirrel Monkey: Blomquist & Williams 2013; Culvier’s

Gazelle: Ibáñez et al. 2014; American Bellflower: Galloway et al. 2009 ). These estimates are

shown in supplementary table S1.

From these studies JLP extracted the point estimates of VA, VMg and (where estimated)

VMe. Most estimates were presented in tables, and we used the metaDigitise R package

(version 1.0.1 Pick et al., 2019a) to extract variance estimates from figures. We did not

undertake a formal meta-analysis of these estimates - they came from few study systems, and

in some of the systems included multiple estimates for the same traits from different papers.

The model specifications were also different across studies. Furthermore, meta-analysis of

variances estimated from mixed effects models is complicated for many reasons (such as zero-

bounded estimates, presentation of frequentist point estimates and standard errors versus

summaries of Bayesian posterior distributions, and inflation of effect sizes when power is low).

Whilst we believe our presentation of these estimates gives a reasonable impression of the

available estimates, these caveats should be borne in mind.

As maternal effects are likely to be stronger at earlier life stages, we categorised the estimates

as being for phenotypic traits measured in the first year (n=34) vs at older ages (n=29). From

these estimates we present the proportion of total phenotypic variation due to VMg (m
2
g), and

the proportion of total VM due to additive genetic effects (
VMg

VMg+VMe
). The latter of these we

subset the data to only consider models that estimated both VMg and VMe and those estimates

where the total phenotype variation due to VM (m2) was above 0.05, as the proportions are

very unstable when m2 estimates are very low (the proportions were all exactly 0, 0.5 or 1;

see Figure S3). As VM represents the variation due to consistent effects of a mother on

her offspring, this is similar to calculating VA

VA+VPE
, rather than a typical heritability (where

VPE is the ‘permanent environment effects’ variance; Kruuk & Hadfield, 2007). Additionally,

from studies where different analyses were available (n=38), we took estimates of h2 and m2
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from simple and complex maternal effects models and calculated the difference between them

(simple model estimate - complex model estimate). We used estimates of the simple maternal

model in McFarlane et al. (2014) to compare with some of the estimates in McFarlane et al.

(2015). If the simple models typically overestimate VA, then we expect the difference in h2

to be generally positive across these comparisons.

Pedigree Simulations

Maternal environment effects will only be shared by siblings, but maternal genetic effects

will be shared by a larger set of maternal relatives, both siblings and non-siblings (Table 2).

Therefore, whilst VMc in simple maternal effects models will completely capture the VMe, we

expect that VMg will contribute to both VMc and VA, and that the bias in VA may depend

on the relative numbers of non-sibling maternal relatives. As a first step in testing this, we

used individual-based simulations to generate pedigrees that would vary in their structure in a

realistic way, and consequently vary in the proportion of non-sibling maternal links. Here, we

varied three parameters in the pedigree simulations: the mean number of offspring per mother,

the breeding system (monogamy versus polyandry) and sex-specific immigration rates.

The pedigrees were simulated by JLP using the pedAgree R package (version 0.0.1; Pick,

2024a). Across all pedigrees we simulated 5 discrete generations in addition to the founder

population, a fixed population size (though the relative number of adults vs juveniles varied

across pedigrees; see below), and a constant equal sex ratio. In all pedigrees 600 offspring

were generated per generation, but the number of breeding females varied by pedigree type

according to the fecundity (see below). We assumed that all individuals with known parents

(i.e., all individuals ’born’ in the population) had a phenotype, meaning that all pedigrees

had the same number of phenotyped individuals (3000), although varied slightly in the total

size of the pedigree. These are large pedigrees compared to those typically studied in the

wild; it is above the 95th quantile of sample sizes from studies using animal models based on

the database from Young & Postma 2023a (using data from Young & Postma, 2023b). We
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deliberately used large pedigrees in these simulations to ensure that any bias is not due to low

sample size.

We simulated three mating systems, defined by the resulting proportions of full vs half siblings

within families: full-sib (each female only ever mates with one male and each male only ever

mates with one female, so all offspring within a family are full sibs), intermediate (probability

of 0.75 that a paired male sires the offspring, so families are a mixture of full and half sibs)

and half sib (paternity of offspring was randomly assigned across all males, so offspring were

almost always half siblings). Immigration was simulated as a certain proportion of breeders

in each generation having unknown parents. We simulated four immigration scenarios: No

immigration (closed population), unbiased immigration (25% of breeding females and 25%

of breeding males were immigrants), female biased immigration (40% female, 10% male)

and male biased immigration (10% female, 40% male). Finally, we simulated three fecundity

scenarios (low, medium, and high). These were broadly based on the mean (lifetime) number

of offspring per female from the 19 populations used in Bonnet et al. (2022), to ensure they

were within realistic bounds for commonly studied wild animal populations. Low fecundity

was three offspring per female, medium was six and high was 12. Pedigrees were simulated

so that all females in the pedigree had the same fecundity. Sex-specific juvenile survival was

dependent on the fecundity and immigration rates (2*(1 - immigration)/fecundity), to ensure

a constant population size. We simulated 100 pedigrees for each of the 36 combinations of

the mating system, immigration, and fecundity scenarios (3 x 4 x 3 = 36 combinations, 3600

pedigrees in total). Given the large sample size within each of the pedigrees, this number of

simulations is sufficient to well estimate bias.

For each of these pedigrees we calculated the proportion of non-sibling maternal links, by

calculating the number of each of the non-sibling maternal relationships shown in Table 2

(shown in bold) as a proportion of the total number of the relationships in Table 2. Note,

that these relationships can be calculated using the pedtricks R package. Relationships were

counted when both individuals had a phenotype (i.e., had a known mother). We were not
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seeking to create a metric to exactly predict the bias, but simply demonstrate the impact

of the pedigree structure on the bias. The relationships shown in Table 2 are likely the

most influential relationships, and so will largely capture the meaningful difference between

pedigrees in the informative relationships. Figure S4 shows how the proportion of these links

varies across pedigree types.

To check that the proportion of non-sibling maternal links in the simulated pedigrees were

within a sensible range, we compared these values to two known pedigrees from real animal

populations; a pedigree of a large ungulate (red deer, Cervus elaphus) used in Gauzere et al.

(2020b) (data from Gauzere et al., 2020a) and a hole nesting passerine bird (blue tit, Cyanistes

caeruleus) used in Pick et al. (2022) (data from Pick & Hadfield, 2022). These pedigrees are

broadly representative of many wild animal populations, and both have been used to analyse

parental effects in juvenile size. It is important to note that metrics used to describe the

pedigree are relative to the ‘pruned’ pedigree used in any given analysis (i.e., restricted to

individuals relevant to analysis of a particular phenotypic trait), not the general characteristics

of the whole population. Depending on what phenotypic trait is being analysed, and when

in the life cycle it is expressed, the informative component of a pedigree will change, as it

will be pruned for informative relationships prior to analysis (Morrissey & Wilson, 2010). For

example, in a system with high numbers of offspring but low recruitment (such as blue tits), the

structure of the pruned pedigree will change dramatically between analysing juvenile and adult

traits, dependent on which individuals have phenotypes measured at which stages. Pedigrees

for juvenile traits will include most individuals born in the population, whereas pedigrees for

adult traits will only comprise of those surviving to adulthood and immigrants, meaning the

average number of offspring per mother will dramatically change. To demonstrate this, we

generated a juvenile pruned pedigree and an adult pruned pedigree for each of the two full

real pedigrees, by assuming that all individuals with known mother had phenotypes in the

juvenile pedigree, and all individuals with offspring (i.e., recruits) had phenotypes in the adult

pedigree. These values are shown in Figure 3.
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Our simulated pedigrees are relatively deep (5 complete generations), and pedigree depth has

previously been shown to affect pedigree structure and biases in VA (Kruuk & Hadfield, 2007).

In the Supplementary Materials (Section S4), we explored how pedigree depth affects the build-

up of non-sibling maternal links and found that the proportion of non-sibling maternal links

increases with pedigree depth, but stabilises after a couple of generations (Figure S6).

Simulated scenarios and models

We simulated a dataset from each of 12 scenarios with varying parameter sets (see Table 3) for

each of the 3600 pedigrees, resulting in 43,200 datasets. Simulations were performed by JLP

using the squidSim R package (version 0.2.3; Pick, 2024b). Phenotypes were simulated to have

0 mean and unit variance. Simulated VA, VMe and VMg therefore represented their respective

proportions of total phenotypic variance explained (e.g., VA = h2). We assumed all effects

were additive, and there was no dominance genetic variance (note the covariances shown in

Table 2 also assume no dominance). We make this assumption for simplicity and because few

studies in the wild model dominance effects and so implicitly assume no dominance. VA, VMe

and VMg were simulated to be either 0, 0.25 or 0.5, with varying genetic correlations (-0.6,

-0.3, 0, 0.3 and 0.6), in different combinations to represent 12 different scenarios (shown in

Table 3). We did not simulate all combinations of these values, but focused on those that

would allow for interesting comparisons to be made. Residual variance (Vϵ) was calculated as

1− (VA + VMg + VMe + COVA,Mg) (Willham, 1972).

We first simulated scenarios with the same total VM , but varying in the proportion of maternal

variation that was genetic. To do this we created three scenarios with no VA and a total VM

of 0.5, with either all (scenario A), half (scenario B) or none (scenario C) of the maternal

variation being genetic. To show the effect of the presence/absence of both direct genetic

and maternal environmental effects, we simulated a scenario with only VMg (0.25; scenario

D) and another with the same amount of VMg and additionally VA (0.25) and VMe (0.25;

scenario E). To show the impact of COVA,Mg, we simulated scenarios with maternal genetic
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and additive genetic variance with varying magnitude and direction of maternal and direct

genetic covariance (no COVA,Mg in scenario F, positive COVA,Mg in scenarios G and H and

negative COVA,Mg in scenarios I and J). For the sake of completeness, we also simulated two

additional scenarios that we present in the supplements, with VA but no VMg, and either with

or without VMe (scenarios K and L, see Figure S7).

Table 3: Simulated scenarios.
Scenario VA VMg VMe COVA,Mg rA,Mg

A 0 0.5 0 0 0
B 0 0.25 0.25 0 0
C 0 0 0.5 0 0
D 0 0.25 0 0 0
E 0.25 0.25 0.25 0 0
F 0.25 0.25 0 0 0
G 0.25 0.25 0 0.075 0.3
H 0.25 0.25 0 0.15 0.6
I 0.25 0.25 0 -0.075 -0.3
J 0.25 0.25 0 -0.15 -0.6
K 0.25 0 0 0 0
L 0.25 0 0.25 0 0

As we were specifically interested in the bias in estimates from ‘simple’ maternal effects

models, each dataset was analysed using an animal model estimating VA and VMc.

zi = ai +mC,j + ϵi (3)

where phenotype z of individual i is affected by its breeding value ai, a maternal identity effect

mC of mother j and a residual ϵi. a, mC and ϵ were all assumed to be normally distributed

as follows:

a ∼ N (0, VAA)

mC ∼ N (0, VMc)

ϵ ∼ N (0, Vϵ)

, where A is the relatedness matrix based on the pedigree. All models were run using ASReml-
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R (version 4.1.0 Butler et al., 2017). Using the results of these models, we estimated the bias

in VA, VM (total maternal variance) and VAt . The bias was calculated for each combination

of the 12 scenarios and 36 pedigree types. Bias was defined as 1
n

∑
(θ̂k − θ) (where θ is the

true value, θ̂k is the model estimate from kth simulation in a parameter set, and n is the

number of simulations of that parameter set, i.e., 100). For VM , θ was calculated as the sum

of the simulated VMe and VMg, and θ̂k was calculated using model estimates of VMc. For VAt ,

θ was calculated as VA + 3
2
COVA,Mg +

1
2
VMg and θ̂k was calculated using model estimates of

VA.

We compared the bias for each scenario-pedigree combination to the mean proportion of

non-sibling maternal links for that pedigree type. Although this metric specifically describes

the links that contain unmodelled VMg, it is also informative for the amount of covariation

shared due to COVA,Mg as the portion of informative links for both is highly correlated (Figure

S5).

We also extracted the sampling covariance of VA and VMc from the models. Sampling co-

variance gives information about how well the model can independently estimate the two

variances. We looked to see whether the sampling covariance was predictive of the bias, or

indicated the risk of bias - these results are presented in the Supplementary materials (Section

S6).

Modelling VMg as a solution

The results from the simulations above will inform us about the risk of bias in estimates of

VA when accounting for maternal effects by modelling VMc. We also wanted to investigate

whether we might be able to mitigate this bias. The clearest solution would be to run a full

maternal effect animal model, and estimate VMg and COVA,Mg regardless of the power we

have to detect them. As discussed in the introduction, maternal genetic effects are often

not modelled, likely because there is an assumption that estimating them would require a

large and deep pedigree, as used in the simulations above, rather than the pedigrees typically
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available. Indeed, Meyer (1992) showed that the SE increased dramatically between models

just estimating VA and full maternal effect models estimating VA, VMe, VMg and COVA,Mg

(see Table 3 in Meyer 1992), although this appears at odds with results presented in (Clément

et al., 2001). In both cases, the simulations used what would be considered large pedigrees

in the context of wild populations.

To assess the feasibility of running a full maternal effects model on smaller pedigrees, we ran

an additional set of simulations. We wanted to create scenarios in which modelling maternal

genetic effects would be challenging. To this end, we simulated two pedigree sizes. Based

on the studies in Young & Postma (2023a), the median pedigree size used with an animal

model was 420 individuals and the lower 10 and 25% quantiles were 105 and 175 individu-

als, respectively (Young & Postma, 2023b). We therefore simulated a small pedigree with

20 breeding females in each of two generations (the minimum needed to estimate maternal

genetic effects), and a medium pedigree with 30 breeding females in each of four generations.

Pedigrees were simulated with low fecundity (three offspring per female) and an intermediate

mating system value, across the four immigration parameters, as these varied both in the

proportion of non-sibling maternal links (Figure S4), and in pedigree quality (i.e the amount

of missing parentage). This resulted in the small pedigree having 120 individuals with phe-

notypes (160-170 individuals in total), and the medium pedigree having 360 individuals with

phenotypes (420-465 individuals in total). We then simulated data across all 12 scenarios

outlined in Table 3, for each of the 8 simulated pedigrees.

For each simulated data set, we ran four models; Model 1 included only additive genetic

effects (allowing comparison to the results of Meyer, 1992):

zi = ai + ϵi (4)

with a and ϵ being normally distributed as outlined above (equation 3). Model 2 was the

simple maternal effects model above (equation 3). Model 3 separated maternal genetic (mG)
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and maternal environment effects (mE), by additionally estimating maternal effects that were

linked to the pedigree:

zi = ai +mG,j +mE,j + ϵi (5)

where

mG ∼ N (0, VMgA)

mE ∼ N (0, VMe)

. In this model COVA,Mg was assumed to be 0. Model 4 has the same structure as model 3,

but additionally estimated COVA,Mg:

zi = ai +mG,j +mE,j + ϵi (6)

[a,mG] ∼ N(0,

 VAA COVA,MgA

COVA,MgA VMgA

) (7)

To assess how well the different models performed, we calculated several metrics. We first

calculated bias as outlined above. We also calculated precision as 1/

√
1
n

∑
(θ̂k − ¯̂

θ)2, where

¯̂
θ is the mean of the the model estimates from a parameter set. Because variance estimates

are limited by 0, the standard deviation of the sampling distribution will decease as effect

size nears zero, giving the appearance that precision decreases as effect sizes increase (Pick

et al., 2023). To account for this we also calculated relative precision as
¯̂
θ/

√
1
n

∑
(θ̂k − ¯̂

θ)2,

which also represents the expected z-value. Finally, we calculated the Mean Absolute Error

as 1
n

∑
|θ̂k − θ|. This is a measure of accuracy, combining both bias and precision, and

represents the deviation from true value. Whilst we would expect that modelling VMg and

COVA,Mg would address the issue of bias in the estimates of VA, these models may increase

the uncertainty, creating bias-variance trade-off. Considering a measure of accuracy allows us
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to incorporate both when comparing the models. We therefore focus on this last metric in

the results, and fully present all metrics in the Supplementary Materials.

Results

The extent of VMg across systems

From our survey of published estimates from wild animal populations, the overall mean pro-

portion of phenotypic variation due maternal genetic effects (m2
g) was 0.143 (first year and

older combined), and the mean for first year traits was 0.208 (Figure 2a, Table S1). Note that

these averages do not consider sampling variation in the individual estimates (see Methods).

These values are similar to those in Moore et al. (2019b). The proportion of VM due to VMg

was generally high (mean=0.662), and again higher for first year phenotypes (mean=0.720;

Figure 2b). Two of the three very low values for this proportion come from estimates with

low m2 (see Figure S3). In most cases, VA was higher, and VM lower, in the simple maternal

effects models than when VMg was additionally estimated (Figure 2c and d, red bars). Inter-

estingly, in the two cases with a notable decrease in heritability between simple and complex

maternal effect models (red bars in Figure 2c), a negative COVA,Mg was also estimated in

the complex model (see Table S1).

Non-sibling maternal links

Our simulations produced a large amount of variation in the proportion of non-sibling maternal

links (defined in the methods and Table 1), that was similar to the range that might be

encountered in common pedigrees of wild populations (Figure 3). Comparing pruned pedigrees

for adults and juvenile phenotypes generated from the two wild pedigrees, we can also see

that the pedigree structure can change dramatically between juvenile and adult phenotypes,

with this difference being particularly pronounced in the avian system.
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Figure 2: A) The proportion of total phenotypic variation due to maternal genetic effects

from published estimates (i.e.,
VMg

VP
; n= 14 studies; see Table S1). B) The proportion of total

maternal variation due to maternal genetic effects (i.e.,
VMg

VMg+VMe
). This is subset for those

estimates where the total proportion of VM is above 0.05. C) and D) show the difference
between h2 (C) and m2 (D) estimated in simple and complex maternal effect animal models.
Red bars are those in which h2 was larger and m2 smaller in the simple model (estimating VA

and VMc) than in the full model (estimating VA, VMg and VMe), which suggests overestimation
of h2 and underestimation of m2 in the simple model.
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Figure 3: The distribution of non-sibling maternal links in simulated pedigrees (grey histogram)
compared to observed pedigrees from two study systems red deer (red lines) and blue tits
(blue lines). For each of the two real pedigrees, we generated a juvenile pedigree (solid lines),
assuming that all individuals with a mother had a phenotype, and an adult pedigree (dashed
lines), assuming only those that became parents (recruited) had a phenotype.

Bias in VA and VM

Figure 4 shows the bias in the estimates of VA and VM across the different scenarios, and

Figure 5 the relationship between the two (full simulations results are shown in Figures S15-

S26). When considering scenarios with no COVA,Mg (Figure 4A-D), we can see that as

the proportion of non-sibling maternal links (see Table 1) increased, estimates of VA from

the simple maternal effects model became increasingly upwardly biased (Figure 4A and C),

and maternal variance correspondingly downwardly biased (Figure 4B and D). There was a

clear correspondence between the bias in VA and the bias in VM , with the bias in VM being

approximately half the magnitude of the bias in VA (solid line in Figure 5A). Although the

proportion of non-sibling maternal links was clearly a strong predictor of the bias in VA and

VM , there was still additional unexplained variation in the bias caused by variation in pedigree

structure (i.e., the scatter around predicted lines in Figure 4).

Scenarios A, B and C had the same amount of total maternal variance but vary from all to none

of the variance being genetic. The comparison of these scenarios (Figure 4A and B) showed

that the effect of proportion of non-sibling maternal links on the bias in VA is dependent on
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Figure 4: Bias in VA (first column; A, C and E) and VM (second column; B, D and F) in
relation to the proportion of non-sibling maternal links across different simulated scenarios
(indicated by the colours; see Table 3) and pedigree structures. The top row (A and B)
compares scenarios with the same total VM but different proportions of VMg. The second
row (C and D) compares a scenario with just VMg with one that has the same VMg and
additionally VMe and VA. The bottom row (E and F) shows the impact of different directions
and magnitudes of COVA,Mg. Dotted lines are predictions from a simple linear model, the
purpose of which is just to help illustrate the pattern. Error bars show the standard error
across simulations. Note that for some simulations the errors bars are too small to see.
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the proportion of the total maternal variance that is genetic, with little or no bias when all

maternal variance is environmental (blue diamonds), to a large bias in pedigrees with a high

proportion of non-sibling maternal links when all maternal variance is genetic (black circles).

Note that in these scenarios no VA is simulated. It should also be noted that the small bias

that can be seen in some pedigree structures in Scenario C, when the maternal variance is

environmental (blue diamonds), is due to variances being upwardly biased when effect sizes

are small (VA is 0 in this case), as variances are bound by 0 (see for example Pick et al.,

2023, see also Figure S17). Scenarios L and K show that, as expected, there was no bias in

VA estimates in the absence of VMg (Figure S7). Comparison of scenarios D and E (Figure

4 C and D) showed the presence of both VMe and VA (yellow inverse triangles) decrease the

bias in VA caused by unmodelled VMg.

Effect of COVA,Mg on bias in estimates of VA and VM

The comparison of scenario F (no COVA,Mg) with scenarios G, H, I and J (Figure 4E and

F) showed the impact of COVA,Mg on the bias. The effect of non-sibling maternal links is

clearly dependent on the presence and direction of the covariance. When the covariance was

positive the bias was increased with increasing non-sibling maternal links (pink diamonds and

red squares), whilst a negative covariance (grey triangles and open inverse triangles) reduced

the effect of non-sibling maternal links, and even change the direction of the bias, leading to

an underestimation of VA when the covariance was moderately negative (r=0.6), which is in

line with the results in Figure 2c.

In contrast to the scenarios without COVA,Mg, the relationship between the bias in VA and

VM was strongly affected by the presence of a genetic covariance between the two (Figure

5B). A negative covariance resulted in relatively more bias in VM (grey and open points in

Figure 5B), whereas a positive covariance increased the bias in VA relative to VM (red and

pink points in Figure 5B).
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Figure 5: The relationship between the bias in VA and VM across different simulated scenarios
(indicated by the colours; see Table 3) and pedigree structures. A) compares scenarios with
no COVA,Mg, and B) shows the impact of different directions and magnitudes of COVA,Mg

on this relationship. Error bars show the standard error across simulations.

Estimating evolutionary potential

As we might expect, the evolutionary potential was generally (but not always) underestimated

across scenarios, when estimating VA in a simple maternal effects model (Figure 6). However,

the underestimation was lower when the proportion of non-sibling links in the pedigree was

higher. When there was negative COVA,Mg the bias was minimal (at least under the parameter

values simulated here), and in the most extreme scenario even positive (open inverse triangles

in Figure 6).

Modelling VMg in small pedigrees

The results from simulations of small and medium pedigrees were qualitatively very similar

across the different immigration parameters and pedigree sizes (Table S2) and so we focus on

the results from the small pedigrees with unbiased immigration in Figure 7. As expected, the

medium size pedigrees were generally more precise, and also less biased in several scenarios

(Figures S11-S13).
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Figure 6: Bias in total VA, from simulations with different underlying parameters (indicated
by the colours; see Table 3) and different pedigree structures.

The bias in VA, VM and VAt across scenarios was centred on zero only for model 3 (Figures

S11- S13). Model 4 was biased under many scenarios, but the bias decreased with increasing

pedigree size (Figures S11- S13), whereas it was largely unchanged in the other models.

Interestingly, precision was broadly similar across models 1-4 for VA, VM and VAt (S11-

S13).

Consequently, models that estimate maternal genetic effects were generally more accurate

(measured as mean absolute error, a combination of bias and precision) in terms of VA

estimation than simple maternal effects models (Figure 7, top row). They also displayed

similar levels of accuracy for the estimation of VM and VAt (Figure 7, middle and bottom

rows). This indicates that there appears to be no clear cost to running the more complex

models, at least under the conditions simulated here.

Model 4 (estimating COVA,Mg) had some convergence issues, with around 9% of models not

converging overall (compared to 0% for the other 3 models). This was especially problematic

in simulated scenarios where there was no simulated VA (scenarios A-D), where approx 15-25%
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Figure 7: Accuracy (measured as mean absolute error) of estimates of VA (A, B and C) VM

(D, E and F) and total VA (G, H and I), estimated using 4 different models: 1) VA only, 2) VA

and VMc, 3) VA, VMg and VMe and 4) VA, VMg, VMe and COVA,Mg. Data from these plots
is from simulations of small pedigrees with unbiased immigration, over 12 scenarios (shown
with different symbols and colours), which are separate out across the three columns, to show
scenarios with both VA and VMg, no VA and no VMg.

of the models failed to converge (Figure S14). In these scenarios, model 3 also outperformed

model 4 (middle column in Figure 7), especially for VA estimation. In scenarios where there

was both VA and VMg, it was either better or no different in terms of accuracy to estimate

COVA,Mg (first column in Figure 7).

Discussion

Here we show that, based on available estimates, maternal variation is likely to have a consid-

erable genetic component. Simple models of maternal effects (which dominate the literature)

are biased in the presence of maternal genetic effects: the direct additive genetic variation

(VA) is likely commonly overestimated, and total maternal variation (VM) underestimated.
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This occurs because the modelled maternal identity effects only account for the similarity

between individual that share the same mother, but there are other individuals in the pedigree

that additionally share maternal genetic variance (VMg). These biases are dependent on the

underlying parameter values and the pedigree structure, and in particular the proportion of

non-sibling maternal links; pedigrees with a high proportion of these links show high bias. The

presence of direct-material genetic covariance (COVA,Mg) also affects the bias, with the pos-

itive covariance increasing the bias and a negative covariance decreasing, or even reversing its

direction. This bias in VA additionally affects the estimation of total VA. In simple maternal

effects models, this is based solely on VA, and so will be systematically underestimated in the

presence of VMg. The upward bias in VA in simple maternal effects models therefore actually

acts to reduce the bias in the estimation of total VA. However, the bias is not completely

removed and so total VA is still typically underestimated, although this is dependent on the

levels of VMg and COVA,Mg. Consequently, without fully modelling sources of direct and in-

direct genetic variation, we are limited in our understanding of the full evolutionary potential

of a trait.

Maternal variation is likely to have a considerable genetic component (>50%, Figure 2b).

This matches previous work looking at the proportion of consistent individual variation that

is genetic (mean of 0.52 for behavioural traits: Dochtermann et al., 2015). Given realistic

pedigree structures, this level of VMg will bias the estimation of VA and of VM . Consequently,

we expect that the average h2 and m2 presented in Moore et al. (2019b) are systematically

over- and under-estimated, respectively. How meaningful is the bias likely to be, and what

can we do about it?

Under intermediate levels of non-sibling maternal links, and realistic parameter values (such

as those considered here), we may expect an upward bias in VA in juvenile traits of 0.05-0.1

(note that this will be heavily dependent on underlying parameter values). Correspondingly,

we found that h2 commonly decreased between simple and complex maternal effect models by

up to around 0.15 (Figure 2c). This represents a considerable proportional increase, relative to
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the average size of h2 found across studies (0.2-0.3 Postma, 2014; Moore et al., 2019b). This

level of bias in VA would therefore result in quite substantially over-estimation of the predicted

selection response, when using models such as the breeder’s equation. Indeed, misestimation

of VA is commonly suggested as a reason for why our predictions of evolutionary change

commonly do not match our observations (‘the paradox of stasis’ Merilä et al., 2001; Pujol

et al., 2018).

Although these models will likely overestimate VA, the total VA was typically underestimated

under our simulated scenarios (Figure 6). If VMg is common, in juvenile traits at least, we

will be commonly underestimating the evolutionary potential of these traits, as we are not

explicitly considering indirect genetic effects. The use of total VA as a measure of evolutionary

potential assumes, however, that selection is acting only on the juvenile trait, and not on

maternal performance. Selection response in the juvenile trait is dependent not only on

direct selection on that trait, but also on selection acting on the maternal traits and thus

maternal performance (Cheverud, 1984; Kirkpatrick & Lande, 1989). Theoretically, we would

predict that selection acts in the opposite direction on maternal performance than on the

offspring trait, as maternal care is often predicted to be costly (Cheverud, 1984; Hadfield,

2012). Only two studies to date have directly estimated selection on maternal performance

(Thomson et al., 2017; Gauzere et al., 2022), with opposing results. Dependent on the

genetic architecture, selection on maternal performance could produce a strong enough force

to constrain the response to selection on the juvenile trait. In such situations, it is important

to know where the genetic variation is coming from to correctly predict selection response. In

situations where VAt is well estimated by simple maternal effects models (e.g. when there is a

high proportion of non-sibling maternal links), VA is overestimated and VM is underestimated

when there is VMg. Without knowledge of these biases, it may be assumed that selection

on maternal performance is not important because there are a negligible maternal effects

compared to the amount of direct genetic variation. However, although the total VA is well

estimated in these conditions, if there were selection on maternal performance, the response
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to selection would be much different than predicted. In other words, situations in which we

might wrongly dismiss maternal effects are also the scenarios in which correctly characterising

the source of the genetic variation is particularly important. It is therefore important to try

and separate out the different sources of genetic variation, where possible.

Interestingly, the biases in VA and VM may change dramatically for different traits within

the same study system (Figure 3). This is because the proportion of non-sibling maternal

links can change substantially between pedigree for juvenile and adult traits. For example,

in species with high fecundity and low recruitment (for example, passerine birds), much of

the pedigree information for juvenile traits will come from comparisons between siblings, for

whom the maternal variance is modelled. For adult traits in these systems, the pedigree

information largely comes from parent-offspring comparisons, half of which will be maternal

(and perhaps more, in systems where it is more likely that the mother is known). Maternal

effects are generally found to decrease in adult phenotypes (Wilson & Reale, 2006; Pick et al.,

2016a; Moore et al., 2019b; Gauzere et al., 2020b). Although this may be expected, as the

intensity of interactions between mothers and offspring reduces over time, this decrease may

also be accentuated by the change in pedigree structure, as the over-estimation of VA and

underestimation of VM might be stronger at this stage.

When considering the impact of these biases it is also worth considering that the error as-

sociated with estimates of VA is typically large. The mean standard error of these h2 from

animal models based on syntheses is around 0.1 (0.099 from Postma 2014, 0.097 from Young

& Postma 2023a calculated using data from Young & Postma 2023b, and 0.115 from Moore

et al. 2019b calculated using data from Moore et al. 2019a), and so the difference in h2

between simple and complex maternal effects models is likely to fall within the confidence

intervals of the h2 estimates. Consequently, for any single study, this bias might not alter

the inference too much (assuming the estimate is being interpreted in the context of the

confidence intervals). Syntheses (such as Postma, 2014; Moore et al., 2019b) will, however,

systematically overestimate VA.
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To address these biases in the estimation of VA and VM , we would ideally run full maternal

genetic effect models. This would provide us with unbiased estimates of both VA, VM and

VAt , as well as estimates of VMg and COVA,Mg. As discussed above, it is particularly useful

to have these latter parameters, as selection may act in the opposite direction on maternal

performance than on the offspring trait, if maternal care is costly (Cheverud, 1984; Hadfield,

2012). To fully predict selection response, these parameters must therefore be separately

estimated. Full maternal effect animal models are seldom run, however. This may be due to

a perception that these models require restrictively large sample sizes to run, and so this may

not be realistic in many cases. However, our simulations show that for even small pedigrees,

running full maternal effects animal models leads to the highest accuracy in the estimation of

VA, and no loss of accuracy for the estimation of VAt and VM , with the additional advantage

of separating genetic and environmental sources of maternal variation. This matches the

results shown in (Clément et al., 2001), although this was based on much larger pedigrees.

Depending on the underlying parameters, modelling COVA,Mg may prove challenging. In

simulations without VA, 15-25% of models estimating COVA,Mg failed to converge and were

slightly more biased than models that did not estimate COVA,Mg. However, our simulations

suggest that estimating VMg and VMe in addition to VA would provide an increase in accuracy

and understanding of the underlying processes. We therefore recommend that these models

are more frequently used and applied to an extended range of systems.

If running full maternal genetic effect models is not possible, then enough information about

the pedigree needs to be presented to allow the risk of bias to be assessed. Pedigree metrics

(for example, those generated by the R package pedantics; Morrissey & Wilson, 2010) are

often reported alongside animal models. However, the explicit utility of these metrics has not

been explored (i.e., whether and how they relate to precision and/or bias in estimates). Here

we show that the proportion of non-sibling maternal links provides a good prediction for the

potential for bias in VA and VM from unmodelled VMg, although we note that this metric

does not completely predict the bias (see Figure 4). There are likely additional metrics (e.g.,
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relating to the relative amount of maternal siblings) that would explain an additional amount

of variation. Importantly, this metric gives no information about the actual bias, as this is

dependent on the underlying parameters, which are unknown. Given that it explains most of

the variation in the potential for bias, we recommend reporting this metric alongside simple

maternal effects models, so that the potential for bias in estimates of VA and VM can be

assessed. To fully explore the potential for bias in a given pedigree, we recommend that a

simulation approach is taken, similar to that taken here, but focussing on that single pedigree

structure.

The maternal effect model presented here represents the variance partitioning approach to

estimating maternal effects. This method can be extended by additionally including maternal

phenotypes in the model (trait-based approach) to show the extent to which they explain

the maternal variance (referred to as the Hybrid trait-based/variance component approach

Hadfield, 2012; McAdam et al., 2014). This approach has successfully been used in several

systems (Hadfield et al., 2013; Noble et al., 2014; Pick et al., 2016a; Gauzere et al., 2021).

The biases we demonstrate here have interesting consequences in this context. If we take

the example of system where a single maternal phenotype explains all the maternal variation.

If the maternal phenotype in question has a considerable genetic component (which would

generate VMg), a simple maternal effect model will underestimate VM , and over-estimate VA.

Adding the maternal phenotype into the model will decrease the maternal variation to 0, but

it will also reduce VA, as the maternal genetic variance that was upwardly biasing it is now

explained. We can see this exact effect in the example of egg size in Japanese quail (Coturnix

japonica). Maternal egg size has considerable genetic component (Pick et al., 2016b, 2019b),

and so there would be considerable VMg in any juvenile traits that it affects. Pick et al.

(2016a) found that including maternal egg size in a simple maternal affects model of hatching

size reduced the estimates of both VA and VM to effectively zero (see Figure 2 in Pick et al.,

2016a). This indicates that the h2 detected in the simple maternal effects model (0.268) was

completely an artefact of unmodelled VMg, and suggests that, in cases where the maternal
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phenotypes driving the maternal effects are known, the hybrid approach may provide a useful

way to reduce bias in VA.

Here we focus specifically on maternal effects, which are an important source of variation in

species with uniparental care. The large focus on maternal effects in the quantitative genetics

literature is likely due to the majority of species used in animal breeding having uniparental,

maternal care (i.e., cows, sheep, pigs, chicken). Similarly, all published estimates of VMg in

the wild come from mammals exhibiting maternal care. However, many commonly studied

systems in the wild (e.g passerine birds) have biparental care. In these systems, there is likely

both maternal and paternal effects. What impact would these paternal effects have?

In avian systems, we commonly model nest effects to capture the joint parental effects in a

particular reproductive attempt. Like modelling maternal identity, these nest effects will likely

not fully capture the maternal and parental genetic variation. Under certain assumptions,

the impact of paternal genetic effects would therefore be expected to be the same (i.e.,

unmodelled paternal genetic variation would upwardly bias VA), but the bias would be linked

to the proportion of non-sibling paternal links. There are several complications, however. In

populations with extra-pair paternity, individual’s will not always be raised by their genetic

father, which dilutes the confounding between paternal genetic and additive genetic effects.

We would therefore expect less confounding between paternal and direct genetic effects in

genetic than social pedigrees, and for the bias to depend on both pedigree structure and the

extend of extra-pair paternity. This situation would be further complicated by the presence of

any genetic covariance between maternal and paternal effects, and any relatedness between

parents. These issues would make for an interesting extension to this study, and Varona et al.

(2015) have explored similar issues in the context of paternal imprinting.

Cross fostering is also a method used to help disentangle genetic and (post-natal) common en-

vironment effects in avian systems. Whole brood cross fostering (swapping whole litter/broods

between nests) should get rid of the biases caused by both parental environmental and genetic
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effects, as the genetic parents no longer rear the offspring; for example, two maternally related

cousins wouldn’t be raised by related mothers, and so wouldn’t also share VMg. This method,

however, has limited power to separate parental and genetic effects generally, especially in

the absence of a genetic pedigree. It also assumes that parental effects only occur after cross

fostering; any parental effects occurring before crossing takes place (e.g., pre-natal maternal

effects) would still bias VA estimation. In partial cross fostering (where some chicks remain

in the nest of origin and some are moved), on the other hand, the chicks that are not crossed

still receive care from their genetic mother. A back of the envelope calculation would suggest

that 25% of the bias in VA would remain if 50% of the offspring were crossed (the bias would

remain for any two maternal relatives that were raised by their mother, and each would have

a 50% chance of being crossed, meaning 25% of the maternal relations would both be raised

by their genetic mother). This would clearly need further investigation, but it maybe that

while partial cross fostering presents a more powerful approach for accounting for common

environment effects, it does not fully account for parental genetic effects. This would explain

some results shown in Kruuk & Hadfield (2007, Table 3). In collared flycatchers, both VA

and VP estimates from animal models on juvenile body mass and condition were substantially

reduced in cross-fostered chicks. The decrease in phenotypic variance was attributed to the

potential presence of COVA,Mg, but the reduction in VA was unexplained. This reduction may

therefore be the result of the confounding of direct and parental genetic effects being broken

up in the cross fostered chicks.

Conclusions

It is well established that maternal effects (and more generally common environment effects)

can affect our estimation of VA, which is a key target for estimation in quantitative genetic

studies. Our study shows that the common methods for accounting for maternal effects do

not fully do so, meaning that under commonly seen levels of maternal and direct genetic

variance and pedigree structures, our estimation of genetic variation is biased. The inference
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about the evolutionary potential that we can make from these simple maternal effects models

is therefore limited. Our simulations also show that models explicitly estimating maternal

genetic effects are no less accurate through greater imprecision, even when pedigrees are

small. We therefore recommend that maternal genetic effects are estimated if there is any

evidence for the presence of maternal effects. Models that additionally estimate COVA,Mg

can be problematic when there is no VA or VMg, and so we suggest to first run a model

estimating VA, VMg and VMe, and then further estimating COVA,Mg if there is evidence of

both VA and VMg. We also recommend to not drop VMg from models if there is no statistical

support for it (i.e., model simplification); the lack of statistical support does not indicate the

lack of VMg (it more likely indicates the lack of power to detect it), and we find no effect of

retaining VMg on accuracy. VA estimates will therefore be less biased and no less accurate

when VMg is estimated. As studies of maternal genetic effects are rare and taxonomically

limited, more detailed modelling of maternal and paternal genetic effects in the wild would

give greater insight into their evolutionary importance.
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Ibáñez, B., Cervantes, I., Gutiérrez, J.P., Goyache, F. & Moreno, E. 2014. Estimates of

direct and indirect effects for early juvenile survival in captive populations maintained for

conservation purposes: the case of Cuvier’s gazelle. Ecol. Evol. 4:4117–4129.

Kirkpatrick, M. & Lande, R. 1989. The evolution of maternal characters. Evolution. 43:485–

503.

Kruuk, L.E.B. 2004. Estimating genetic parameters in natural populations using the ‘animal

model’. Phil. Trans. R. Soc. Lond. Ser. B: Biol. Sci. 359:873–890.

39



Kruuk, L.E.B. & Hadfield, J.D. 2007. How to separate genetic and environmental causes of

similarity between relatives. J. Evol. Biol. 20:1890–1903.

Lande, R. 1976. Natural Selection and Random Genetic Drift in Phenotypic Evolution. Evo-

lution. 30:314–334.

Lush, J.L. 1937. Animal Breeding Plans. Iowa State College Press, Ames, Iowa.

Lynch, M. & Walsh, B. 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates,

Inc., Sunderland, MA.

Maccoll, A.D.C. & Hatchwell, B.J. 2003. Heritability of Parental Effort in a Passerine Bird.

Evolution. 57:2191–2195.
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Merilä, J., Sheldon, B.C. & Kruuk, L.E.B. 2001. Explaining statis: Microevolutionary studies

in natural populations. Genetica 112-113:199–222.

Meyer, K. 1992. Bias and sampling covariances of estimates of variance components due to

maternal effects. Genet. Sel. Evol. 24:487.

40



Moore, M.P., Whiteman, H.H. & Martin, R.A. 2019a. Data from: A mother’s legacy: the

strength of maternal effects in animal populations.

Moore, M.P., Whiteman, H.H. & Martin, R.A. 2019b. A mother’s legacy: the strength of

maternal effects in animal populations. Ecol. Lett. 22:1620–1628.

Morrissey, M.B. & Wilson, A.J. 2010. pedantics: an r package for pedigree-based genetic

simulation and pedigree manipulation, characterization and viewing. Mol. Ecol. Resour.

10:711–719.

Noble, D.W., Mcfarlane, S.E., Keogh, J.S. & Whiting, M.J. 2014. Maternal and additive

genetic effects contribute to variation in offspring traits in a lizard. Behav. Ecol. 25:633–

640.

Pick, J.L. 2024a. pedAgree: demographically explicit pedigree simulation. R package, version

0.0.1.

Pick, J.L. 2024b. squidSim: a flexible simulation tool for linear mixed models. R package,

version 0.2.3.

Pick, J.L., Ebneter, C., Hutter, P. & Tschirren, B. 2016a. Disentangling genetic and prenatal

maternal effects on offspring size and survival. Am. Nat. 188:628–639.

Pick, J.L. & Hadfield, J.D. 2022. Data and code from: Decomposing phenotypic skew and

its effects on the predicted response to strong selection.

Pick, J.L., Hutter, P. & Tschirren, B. 2016b. In search of genetic constraints limiting the

evolution of egg size: direct and correlated responses to artificial selection on a prenatal

maternal effector. Heredity. 116:542–549.

Pick, J.L., Kasper, C., Allegue, H., Dingemanse, N.J., Dochtermann, N.A., Laskowski, K.L.

41



et al. 2023. Describing posterior distributions of variance components: Problems and the

use of null distributions to aid interpretation. Methods Ecol. Evol. 14:2557–2574.

Pick, J.L., Lemon, H.E., Thomson, C.E. & Hadfield, J.D. 2022. Decomposing phenotypic skew

and its effects on the predicted response to strong selection. Nat. Ecol. & Evol. 6:774–785.

Pick, J.L., Nakagawa, S. & Noble, D.W. 2019a. Reproducible, flexible and high throughput

data extraction from primary literature: The metaDigitise R package. Methods Ecol. Evol.

10:426–431.

Pick, J.L., Postma, E. & Tschirren, B. 2019b. The more you get, the more you give: Positive

cascading effects shape the evolutionary potential of prenatal maternal investment. Evol.

Lett. 3:412–423.

Postma, E. 2014. Four decades of estimating heritabilities in wild vertebrate populations:

Improved methods, more data, better estimates? In: Quantitative Genetics in the Wild

(A. Charmantier, D. Garant & L.E.B. Kruuk, eds.), pp. 16–33, Oxford University Press,

Oxford.

Pujol, B., Blanchet, S., Charmantier, A., Danchin, E., Facon, B., Marrot, P. et al. 2018. The

Missing Response to Selection in the Wild. Trends Ecol. & Evol. 33:337–346.
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Supplementary Material

S1 Expected phenotypic covariance between relatives

The expected phenotypic covariance of two related individual in the presence of maternal

genetic variation is determined not only by VA, but also potentially by VMg and COVA,Mg,

depending on how the two individual’s mothers are related, and how related the two individuals

are to the other individual’s mother. Figure S1 shows how the expected phenotypic covariance

can be derived. Note that these phenotypic covariance may be further affected by other factors

such as dominance, that we do not include here.
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r1VA + r2VMg + (r3 + r4)COVA,Mg

Figure S1: Calculation of covariance between related individuals. The arrows represent the
relevant relatedness for the calculation of the covariance and the equation below shows how
these are added to give the covariance.
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Figure S2: Calculation of the expected phenotypic covariance for the relationships shown
in Table 2. Each panel shows how total expected covariance between a focal individual
(bottom left) and a given relative (bottom right is calculated from the relatedness between
the two relatives and their mothers (top left and right). The arrows represent the relevant
relatedness for the calculation of the covariance and their weighting represent how related the
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S2 Estimates from the literature
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Figure S3: Relationship between m2 and the proportion of VM due toVMg, illustrating the
justification for excluding the estimates with m2 > 0.05. Red lines shows the 0.05 cut off,
below which all estimates of the proportion are either exactly 0, 0.5 or 1.
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Table S1: Estimates of maternal genetic variation from previous studies. A csv of this table is included in the data accompanying the
paper.

Study Species Population Trait Age h2
1 c21 h2

2 m2
2 c22 Source

1 Soay Sheep wild Birth weight Juvenile 0.091 0.201 0.079 0.077 0.140 T S4 and S5
1 Soay Sheep wild Lamb Foreleg Juvenile 0.155 0.063 0.140 0.033 0.039 T S4 and S5
1 Soay Sheep wild Lamb Hindleg Juvenile 0.196 0.068 0.161 0.068 0.022 T S4 and S5
1 Soay Sheep wild Lamb Weight Juvenile 0.116 0.100 0.066 0.095 0.032 T S4 and S5
1 Soay Sheep wild Lamb Metacarpal Juvenile 0.509 0.081 0.402 0.139 0.000 T S4 and S5
1 Soay Sheep wild Lamb Jaw Juvenile 0.303 0.145 0.203 0.141 0.048 T S4 and S5
1 Soay Sheep wild Yearling Foreleg Adult 0.157 0.092 0.108 0.078 0.029 T S4 and S5
1 Soay Sheep wild Yearling Hindleg Adult 0.307 0.168 0.271 0.094 0.093 T S4 and S5
1 Soay Sheep wild Yearling Weight Adult 0.190 0.099 0.156 0.062 0.055 T S4 and S5
1 Soay Sheep wild Yearling Metacarpal Adult 0.618 0.000 0.618 0.000 0.000 T S4 and S5
1 Soay Sheep wild Yearling Jaw Adult 0.672 0.089 0.672 0.000 0.090 T S4 and S5
1 Soay Sheep wild Adult Foreleg Adult 0.296 0.005 0.286 0.021 0.000 T S4 and S5
1 Soay Sheep wild Adult Hindleg Adult 0.458 0.063 0.426 0.077 0.015 T S4 and S5
1 Soay Sheep wild Adult Weight Adult 0.273 0.057 0.246 0.082 0.000 T S4 and S5
1 Soay Sheep wild Adult Metacarpal Adult 0.631 0.018 0.610 0.032 0.000 T S4 and S5
1 Soay Sheep wild Adult Jaw Adult 0.677 0.010 0.677 0.000 0.010 T S4 and S5
2 Soay Sheep wild Birth date Juvenile 0.070 0.690 T 1
2 Soay Sheep wild Birth weight Juvenile 0.160 0.250 T 1
2 Soay Sheep wild Lamb Foreleg Juvenile 0.130 T 1
2 Soay Sheep wild Lamb Hindleg Juvenile 0.140 T 1
2 Soay Sheep wild Lamb weight Juvenile 0.200 T 1
3 Soay Sheep wild Birth weight Juvenile 0.014 0.169 0.029 T 2
3 Soay Sheep wild Birth date Juvenile 0.032 0.255 0.138 T 2
3 Soay Sheep wild August weight Juvenile 0.036 0.135 0.004 T 2
4 Soay Sheep wild Birth weight Juvenile 0.116 0.214 0.114 0.165 0.108 T 1
4 Soay Sheep wild Birth date Juvenile 0.127 0.316 0.072 0.315 0.065 T 1
4 Soay Sheep wild Natal litter size Juvenile 0.077 0.252 0.109 0.211 0.142 T 1
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5 Red Squirrels wild Female LRS Adult 0.001 0.080 0.001 0.020 0.030 T 1 in both
5 Red Squirrels wild Lifespan Adult 0.001 0.040 0.050 T 1
5 Red Squirrels wild Mean ARS Adult 0.001 0.050 0.040 T 1
5 Red Squirrels wild AFB Adult 0.000 0.060 0.070 T 1
6 Roe Deer wild Juvenile body mass Juvenile 0.100 0.120 0.050 0.000 0.110 T 1 and 2
6 Roe Deer wild Juvenile body mass Juvenile 0.530 0.080 0.440 0.230 0.000 T 1 and 2
7 Red Deer wild Birth weight Juvenile 0.134 0.370 0.041 0.429 0.035 F 5
8 Red Deer wild Birth weight Juvenile 0.221 0.353 0.177 0.307 0.081 T 2
8 Red Deer wild Birth leg Juvenile 0.380 0.169 0.335 0.170 0.001 T 2
8 Red Deer wild Neonatal survival Juvenile 0.038 0.000 0.022 0.021 0.000 T 2
8 Red Deer wild Survival age 1 Juvenile 0.063 0.032 0.051 0.026 0.000 T 2
8 Red Deer wild Survival age 2 Adult 0.047 0.031 0.052 0.026 0.000 T 2
8 Red Deer wild Female AFR Adult 0.164 0.001 0.001 0.001 0.001 T 2
8 Red Deer wild Female ABS Adult 0.040 0.000 0.040 0.000 0.000 T 2
8 Red Deer wild Male ABS Adult 0.014 0.000 0.018 0.000 0.000 T 2
8 Red Deer wild Adult longevity Adult 0.188 0.001 0.130 0.001 0.001 T 2
8 Red Deer wild Jaw Adult 0.500 0.000 0.447 0.001 0.000 T 2
8 Red Deer wild Endocranial volume Adult 0.776 0.001 0.629 0.001 0.000 T 2
8 Red Deer wild Leg Adult 0.583 0.001 0.502 0.001 0.001 T 2
9 Red Deer wild Anti-Tc IgA Juvenile 0.033 0.420 0.177 SM
9 Red Deer wild Total IgA Juvenile 0.042 0.361 0.077 SM
9 Red Deer wild Anti-Tc IgM Juvenile 0.059 0.314 0.157 SM
9 Red Deer wild Total IgM Juvenile 0.036 0.314 0.119 SM
9 Red Deer wild Anti-Tc IgG Juvenile 0.019 0.269 0.288 SM
9 Red Deer wild Total IgG Juvenile 0.000 0.086 0.000 SM
10 Bighorn Sheep wild June weight age 0 Juvenile 0.000 0.197 T 3
10 Bighorn Sheep wild June weight age 1 Adult 0.447 0.135 T 3
11 Bighorn Sheep wild Boldness Adult 0.390 0.000 T 1
12 American Bellflower breeding design Seed mass Adult 0.064 0.000 0.694 T 1
12 American Bellflower breeding design Days to germination Adult 0.361 0.303 T 1
12 American Bellflower breeding design Rosette size Adult 0.243 0.260 T 1
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12 American Bellflower breeding design Days to flower Adult 0.426 0.433 0.168 T 1
12 American Bellflower breeding design Biomass Adult 0.368 0.133 T 1
13 Squirrel Monkeys managed Female neonate mass Juvenile 0.190 0.318 0.092 0.344 0.057 T 2
13 Squirrel Monkeys managed Male neonate mass Juvenile 0.159 0.256 0.121 0.240 0.076 T 2
14 Cuvier’s gazelle managed Juvenile survival Juvenile 0.067 0.247 0.115 0.136 0.180 T 2

1: Bérénos et al. 2014 , 2:Beraldi et al. 2007 , 3:Regan et al. 2017 , 4:Wilson et al. 2005b , 5:McFarlane et al. 2014, 2015 , 6:Quéméré

et al. 2018 , 7:Kruuk & Hadfield 2007 , 8:Gauzere et al. 2020b , 9:Gauzere et al. 2021 , 10:Wilson et al. 2005a , 11:Réale et al. 2009 ,

12:Galloway et al. 2009 , 13:Blomquist & Williams 2013 , 14:Ibáñez et al. 2014
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S3 Non-sibling maternal links
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Figure S4: Variation in proportion of non-sibling maternal links across 36 pedigree types.
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Figure S5: Relationship between proportion of non-sibling links informative for VMg and
COVA,Mg across 36 pedigree types.
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S4 Effect of Pedigree depth on non-sibling maternal links

We examined the effect of pedigree depth on the the proportion of non-sibling maternal

links. Pedigree depth has previously been shown to have a strong effect on the estimation of

quantitative genetic parameters (Kruuk & Hadfield, 2007). In this case it may affect the build

up of non-sibling maternal links in the pedigree. To examine this, we simulated pedigrees

that varied in the number of discrete generations, from 2 to 10, across the four immigration

rates described in the main text. For each pedigree we simulated 100 females per generation.

We opted to have different sample sizes across the different pedigrees, rather than varying

the number of females per generation. All pedigrees were simulated with the intermediate

fecundity (6 offspring per female) and mating system (probability of 0.75 that paired male

will sire offspring) parameters used in the main simulations. 50 pedigrees were simulated per

immigration rate and pedigree depth combination. These simulations showed that proportion

of non-sibling maternal links was reduced in very shallow pedigrees, but stabilised after a

couple of generations (Figure S6).
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Figure S6: The effect of pedigree depth on the proportion of non-sibling maternal links, across
the different immigration scenarios.

9



S5 Results from scenarios K and L
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Figure S7: Bias in VA (A) and VM (B) in relation to the proportion of non-sibling maternal
links across two simulated scenarios (indicated by the colours; see Table 3) and pedigree
structures. Both scenarios have VA and no VMg. Dotted lines are predictions from a simple
linear model, the purpose of which is just to help illustrate the pattern. Error bars show the
standard error across simulations. Note that for some simulations the errors bars are too small
to see.
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S6 Sampling covariance and risk of bias

Within each statistical model, we can look the estimated sampling covariance between two

parameters, which gives us information about how well the model is able to independently

estimate the two parameters. The sampling covariance between the estimates of VA and

VMc therefore tells us how well the model is able to separate the two; if the covariance is

strongly negative, then the model is struggling to tell where the variance is coming from. We

might expect when there is more risk of bias from unmodelled VMg that the covariance is

larger.

From looking to the sampling variance from our simulations, this indeed this appears to be

the case. Figure S8 shows a clear relationship between the proportion of non-sibling maternal

links and the estimated sampling covariance, with the sampling covariance becoming more

negative as the proportion increased.
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Figure S8: Relationships between of pedigree structure (in terms of non-sibling maternal links)
and sampling covariance between VA and VMc

We can also look more closely at how the sampling covariance varied across the different

pedigrees simulated. Figure S9 shows that the clearest effect on the sampling covariance is

due the mating system, in other words the amount of half siblings. This makes sense as

generally maternal variance is harder to separate from VA when siblings share both the same
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parents and the same environment.
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Figure S9: Variation in the sampling covariance between VA and VMc across different simulated
pedigree structures. M, N, U and F, stand for male-biased, no, unbiased and female-biased
immigration respectively.

It would be interesting to know whether the sampling covariance varied systematically across

the simulated scenarios, and so whether considering the sampling covariance would enable us

to tell something about the presence of unmodelled VMg in a real datasets. However, the

sampling covariance was not clearly consistently affected by the actual underlying parameters.

Figure S10 shows that when comparing the first three scenarios (no VA, varying levels of VMe

and VMg) the range of sampling covariances was similar, and in fact the only scenario without

VMg (scenario C), had the widest range of sampling covariance. The sampling covariance

appeared to be affected by the presence of COVA,Mg (G, H, I and J), although again the

range of these covariances was almost entirely covered by the scenario without VMg. Positive

sampling covariances were rare, and interestingly only occurred when COVA,Mg was strong

and positive (scenario H).

In conclusion, the sampling covariance largely indicates the ability of the model to separate

VA and VMc, and so is strongly affects by factors such as the number of half siblings. The

sampling covariance relates in some way to the risk of bias in VA, but is not affected is a

clear way by the actual underlying parameters, and so cannot be used to assess whether the
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lated scenarios. Red points indicate the scenario where VMg was 0.

estimates are likely to actually be biased.
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S7 Small pedigree simulations

In the main text, only the results from a single pedigree (small pedigree with unbiased immi-

gration) are shown. The results across all pedigree types were very highly correlated:

Table S2: Correlation between mean absolute error across scenarios in different pedigree
structures.

nI small fI small mI small uI small nI medium fI medium mI medium uI medium
nI small 1
fI small 0.966 1
mI small 0.973 0.976 1
uI small 0.976 0.978 0.983 1

nI medium 0.941 0.927 0.936 0.946 1
fI medium 0.952 0.978 0.972 0.98 0.954 1
mI medium 0.943 0.956 0.961 0.967 0.976 0.984 1
uI medium 0.949 0.974 0.972 0.975 0.969 0.992 0.991 1

Figures S11-S13 show the bias, precision and accuracy of estimates of VA, VM and VAt across

all scenarios and pedigree structures.
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Figure S11: Bias, precision, relative precision and accuracy (measured as absolute mean error) in estimates of VA from 4 different models.
from simulations of small and medium sized pedigrees with varying immigration rates. Points show the metrics calculated for each of the
12 scenarios (see Table 3). M, N, U and F, stand for male-biased, no, unbiased and female-biased immigration respectively.
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from simulations of small and medium sized pedigrees with varying immigration rates. Points show the metrics calculated for each of the
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17



S7.1 Model Convergence

Across all pedigrees, models 1-3 had no problems running in ASReml (i.e. occasional warnings

about singularities etc, but no errors). Only the models specifying a covariance had any

problems running. These models gave a convergence error in 8.65% of models. This was not

equally distributed across scenarios; scenarios with no simulated VA (scenarios 1-4) often did

not converge (15-25%), compared to under 5% in most other scenarios (Figure S14).
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Figure S14: Number of datasets for which model 4 converged (dark) and did not con-
verge(light), split by scenario (A) and pedigree type (B). M, N, U and F, stand for male-biased,
no, unbiased and female-biased immigration respectively. In A), scenarios 1-4 are highlighted
in red as these are the scenarios where no VA was simulated.

These are also the same scenarios in which model 3 clearly performs better than model 4

(Figure S11). We wanted to make sure that the difference between these models wasn’t
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caused by including model 3 estimates from datasets where model 4 did not converge. The

mean absolute error in VA in Model 3 was systematically smaller in datasets where model 4

did not converge than in datasets where model 4 did converge (Table S3). However, when

considering only the datasets that did converge, the mean absolute error was not functionally

different from the mean absolute error across all datasets, especially in comparison to the

mean absolute error in model 4. The large different in accuracy between these two models

under these scenarios is therefore not driven by converge problems in model 4.

Table S3: Mean absolute error across different subsets of model 3 and model 4 for scenarios
1-4.

Model 3 Model 4
Pedigree m4 not converged m4 converged all all
uI medium 0.0017 0.0580 0.0442 0.1265
uI small 0.0048 0.1093 0.0887 0.2165
fI medium 0.0011 0.0465 0.0383 0.1225
fI small 0.0028 0.1101 0.0924 0.2137
mI medium 0.0004 0.0514 0.0402 0.1205
mI small 0.0032 0.1005 0.0832 0.2190
nI medium 0.0002 0.0392 0.0309 0.1064
nI small 0.0002 0.0912 0.0753 0.2017
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S8 Full simulation results

In this section, the full results of all parameters estimated in all model are shown. Figures

S15-S26 show the results from the first set of simulations aimed at assessing the bias in simple

maternal effects models, with each plot showing the results from a different scenario (Table 3).

Figures S27-S38 show the results from the second set of simulations aimed at comparing the

performance of different models in small pedigrees, again with each plot showing a different

scenario.
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Figure S15: Estimates of VA and VMc for all simulated pedigrees from Scenario A ( VA =0, VMg =0.5, VMe =0,COVA,Mg =0 ). M, N, U
and F, stand for male-biased, no, unbiased and female-biased immigration respectively.
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Figure S16: Estimates of VA and VMc for all simulated pedigrees from Scenario B ( VA =0, VMg =0.25, VMe =0.25,COVA,Mg =0 ). M,
N, U and F, stand for male-biased, no, unbiased and female-biased immigration respectively.
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Figure S17: Estimates of VA and VMc for all simulated pedigrees from Scenario C ( VA =0, VMg =02, VMe =0.5,COVA,Mg =0 ). M, N,
U and F, stand for male-biased, no, unbiased and female-biased immigration respectively.
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Figure S18: Estimates of VA and VMc for all simulated pedigrees from Scenario D ( VA =0, VMg =0.25, VMe =0,COVA,Mg =0 ). M, N,
U and F, stand for male-biased, no, unbiased and female-biased immigration respectively.
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Figure S19: Estimates of VA and VMc for all simulated pedigrees from Scenario E ( VA =0.25, VMg =0.25, VMe =0.25,COVA,Mg =0 ).
M, N, U and F, stand for male-biased, no, unbiased and female-biased immigration respectively.
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Figure S20: Estimates of VA and VMc for all simulated pedigrees from Scenario F ( VA =0.25, VMg =0.25, VMe =0,COVA,Mg =0 ). M,
N, U and F, stand for male-biased, no, unbiased and female-biased immigration respectively.
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Figure S21: Estimates of VA and VMc for all simulated pedigrees from Scenario G ( VA =0.25, VMg =0.25, VMe =0,COVA,Mg =0.075 ).
M, N, U and F, stand for male-biased, no, unbiased and female-biased immigration respectively.
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Figure S22: Estimates of VA and VMc for all simulated pedigrees from Scenario H ( VA =0.25, VMg =0.25, VMe =0,COVA,Mg =0.15 ).
M, N, U and F, stand for male-biased, no, unbiased and female-biased immigration respectively.
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Figure S23: Estimates of VA and VMc for all simulated pedigrees from Scenario I ( VA =0.25, VMg =0.25, VMe =0,COVA,Mg =-0.075 ).
M, N, U and F, stand for male-biased, no, unbiased and female-biased immigration respectively.
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Figure S24: Estimates of VA and VMc for all simulated pedigrees from Scenario J ( VA =0.25, VMg =0.25, VMe =0,COVA,Mg =-0.15 ).
M, N, U and F, stand for male-biased, no, unbiased and female-biased immigration respectively.
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Figure S25: Estimates of VA and VMc for all simulated pedigrees from Scenario K ( VA =0.25, VMg =0, VMe =0,COVA,Mg =0 ). M, N,
U and F, stand for male-biased, no, unbiased and female-biased immigration respectively.
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Figure S26: Estimates of VA and VMc for all simulated pedigrees from Scenario L ( VA =0.25, VMg =0.0, VMe =0.25,COVA,Mg =0 ). M,
N, U and F, stand for male-biased, no, unbiased and female-biased immigration respectively.
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Figure S27: Estimates of VA and VMc for all simulated pedigrees from Scenario A ( VA =0, VMg =0.5, VMe =0,COVA,Mg =0 ). M, N, U
and F, stand for male-biased, no, unbiased and female-biased immigration respectively.
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Figure S28: Estimates of VA and VMc for all simulated pedigrees from Scenario B ( VA =0, VMg =0.25, VMe =0.25,COVA,Mg =0 ). M,
N, U and F, stand for male-biased, no, unbiased and female-biased immigration respectively.
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Figure S29: Estimates of VA and VMc for all simulated pedigrees from Scenario C ( VA =0, VMg =02, VMe =0.5,COVA,Mg =0 ). M, N,
U and F, stand for male-biased, no, unbiased and female-biased immigration respectively.
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Figure S30: Estimates of VA and VMc for all simulated pedigrees from Scenario D ( VA =0, VMg =0.25, VMe =0,COVA,Mg =0 ). M, N,
U and F, stand for male-biased, no, unbiased and female-biased immigration respectively.
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Figure S31: Estimates of VA and VMc for all simulated pedigrees from Scenario E ( VA =0.25, VMg =0.25, VMe =0.25,COVA,Mg =0 ).
M, N, U and F, stand for male-biased, no, unbiased and female-biased immigration respectively.
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Figure S32: Estimates of VA and VMc for all simulated pedigrees from Scenario F ( VA =0.25, VMg =0.25, VMe =0,COVA,Mg =0 ). M,
N, U and F, stand for male-biased, no, unbiased and female-biased immigration respectively.
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Figure S33: Estimates of VA and VMc for all simulated pedigrees from Scenario G ( VA =0.25, VMg =0.25, VMe =0,COVA,Mg =0.075 ).
M, N, U and F, stand for male-biased, no, unbiased and female-biased immigration respectively.
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Figure S34: Estimates of VA and VMc for all simulated pedigrees from Scenario H ( VA =0.25, VMg =0.25, VMe =0,COVA,Mg =0.15 ).
M, N, U and F, stand for male-biased, no, unbiased and female-biased immigration respectively.
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Figure S35: Estimates of VA and VMc for all simulated pedigrees from Scenario I ( VA =0.25, VMg =0.25, VMe =0,COVA,Mg =-0.075 ).
M, N, U and F, stand for male-biased, no, unbiased and female-biased immigration respectively.
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Figure S36: Estimates of VA and VMc for all simulated pedigrees from Scenario J ( VA =0.25, VMg =0.25, VMe =0,COVA,Mg =-0.15 ).
M, N, U and F, stand for male-biased, no, unbiased and female-biased immigration respectively.
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Figure S37: Estimates of VA and VMc for all simulated pedigrees from Scenario K ( VA =0.25, VMg =0, VMe =0,COVA,Mg =0 ). M, N,
U and F, stand for male-biased, no, unbiased and female-biased immigration respectively.
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Figure S38: Estimates of VA and VMc for all simulated pedigrees from Scenario L ( VA =0.25, VMg =0.0, VMe =0.25,COVA,Mg =0 ). M,
N, U and F, stand for male-biased, no, unbiased and female-biased immigration respectively.
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