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Abstract

The missing heritability problem, defined as the failure of genetic variants to explain variance in
phenotypes, has been an unsolved issue in genetics for the past two decades. A potential solution to
this problem stems from the idea that single nucleotide polymorphisms and copy-number variants, the
most commonly studied forms of genomic diversity, do not represent the totality of the information
that is transferred from one generation to the next. In this perspective, we offer a glimpse into hidden
dimensions of genomic diversity: frequently neglected as sources of variation, and only recently
starting to be perceived as targets for natural selection. We begin by acknowledging the existence of
disregarded genomic matter and sequence composition affecting the mutational process. We explore
how selection can act on gene expression variability and offer insight into the mechanisms behind
transcriptional regulation. Finally, we recognize the importance of modifications in the 3D genome
architecture and other large-scale genomic changes in generating phenotypic diversity. Zooming out
through these dimensions of the genome, we discuss recent findings and future avenues of research
within each one of them. Judging by the pervasiveness and diverse nature of sources of genomic
diversity, we foresee that the study of genomic variation within species is yet to see another burst.
Showcasing these hidden dimensions, we offer a broad perspective on the complexity behind the
genotype-to-phenotype map, which is crucial for understanding the action of natural selection in
populations.

Statement of significance

Genomic diversity stands as the cornerstone and ultimate target of natural selection. During the last
couple of decades, huge advances have been made in characterizing genomic diversity within a
population. Mainly single nucleotide polymorphisms (SNPs) but also copy-number variants (CNVs)
have emerged as the primary sources of genomic variation and have attracted practically all the
attention, yet, they only represent two facets of the genomic landscape. Genomes exhibit remarkable
variability in numerous alternative dimensions: epigenetic, 3D chromatin conformation and gene
expression variation are known to be heritable, have impact on phenotype and, thus, to be targets for
natural selection. These alternative dimensions have been traditionally used as complements to SNPs
and CNVs, but the vast realm of their population-specific diversity has often been ignored.
Acknowledging this diversity opens new perspectives for understanding the forces of natural selection
and molecular targets, disease mechanisms, and genetic interactions with the environment.



Main text

Beyond SNPs and CNVs

Genomic variation is the main source of heritable phenotypic variability upon which natural selection
acts. The development of sequencing technologies in the last decades has opened the gates for the
detailed exploration of this diversity, revealing numerous instances in which detectable genomic
changes explain the phenotypic diversity observed in species (e.g., Jeffares et al. 2015). During this
time, mainly single nucleotide polymorphisms (SNPs) but also copy number variants (CNVs) have
attracted most of the attention in the field. They are both essential to assess the level of
within-population variation and are known to be under selection in extant populations (Saitou &
Gokcumen 2020). However, their prominence in the field may stem more from methodological
convenience than biological significance. Importantly, there are several other forms of genomic
diversity that are also targeted by selection. Although the latter have been theoretically proposed for
many years, experimental evidence of selectable variation beyond SNPs and CNVs is relatively
recent.

In parallel, one of the great ambitions of the field in the last century has been to relate genotype to
phenotype. Despite the significant development of quantitative genetics and the infinitesimal model,
there is still a fundamental gap in our understanding of the genotype-to-phenotype map. This is
evidenced by the missing heritability problem (Pallares 2019), and the failure of genome-wide
association studies to reveal causal variants for phenotypes (Matthews & Turkheimer 2022). New
models of inheritance, such as the omnigenic model (Boyle et al. 2017), models incorporating the
spatiotemporal organization of the genome (Misteli 2007), or models considering the genome as a
generative model of the organism (Mitchell & Cheney 2024) are expanding our understanding of the
genotype-to-phenotype map, challenging the way Mendelian paradigms have influenced it.

New hidden dimensions

Inspired by the work presented in the symposium “Unlocking the hidden dimensions of genomic
diversity within species”, during the 2024 SMBE Meeting in Puerto Vallarta, Mexico, this perspective
will transit through alternative/hidden/unexplored genome dimensions harboring potentially selectable
within-species variation. We will discuss a spectrum of hidden genomic diversity, zooming out from
neglected sequence variation to genomic rewiring through large scale rearrangements, suggesting that
there are likely many more yet to be discovered.

Disregarded genome

During the last 20 years we have seen a plethora of genomes for thousands of species being published
(Lewin et al. 2022). Despite claims of completion, it is evident that many published genomes are still
missing substantial parts of genetic material. For instance, the comparison between
sequencing-independent methods with sequencing-based methods to estimate genome size suggests
that a substantial part of the genetic material is not yet included in reference genomes (Elliott &
Gregory 2015). Much of this disregarded genome stems from unassembled parts of already known
chromosomes, such as from repetitive regions that are difficult to assemble (Hartasanchez et al. 2018),
especially with short-read sequencing technologies. Recent work on chickens has, for example, found
that thousands of genes are missing from the assemblies of birds due to their locations in repetitive
content and near chromosome ends (Li et al. 2022). An even larger source of unaccounted-for
genomic matter are supernumerary chromosomes like the germline-restricted chromosome in
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songbirds (Borodin et al. 2022) or extrachromosomal DNA (Paulsen et al. 2018). Such forms of
variation are particularly interesting due to their tissue-specific consequences and ephemeral
existence.

Mutational potential

Even within extensively studied genomic sequences, there are overlooked aspects such as their
mutational potential. The mutational potential of any given sequence is defined by both its mutational
neighborhood (i.e., the number of sequential point mutations that separate any two sequences) and its
mutational propensities (i.e., the likelihood of a mutational step being taken over others). The latter
could come, for example, in the shape of molecular biases (Cano et al. 2023) or heritability biases due
to internal conflicts (Majic & Payne 2023). Mutational neighborhoods influence the evolutionary
potential of populations because they define, together with genotype-to-phenotype maps, the
accessibility to alternative phenotypes and, therefore, the mutational potential for adaptation (Martin
et al. 2024). For example, the specific architecture of the genetic code is such that certain codons are
more mutationally volatile than others, even if they encode for the same amino acid. There is,
consequently, a different evolutionary potential in each protein-coding sequence that is dependent on
its mutational neighborhood. This implies that if the genetic code had a different architecture,
neighborhoods would change together with the evolutionary potential of proteins (Rozhonova et al.
2024; Tsour et al. 2024). Furthermore, mutational neighborhoods can also influence evolution
whenever they may be revealed by non-heritable mutations during phenotypic development, through,
for example, transcriptional, translational or somatic mutations (Whitehead et al. 2008; Yanagida et al.
2015; Majic et al. 2022).

Gene expression level variability

The immense majority of studies dealing with the action of natural selection upon mutations focus on
the mean of any phenotypic trait. In contrast, the evolution of phenotypic variability, or, how far
individuals tend to be from the mean, has received less attention. In unicellular organisms, research on
bet-hedging, gene expression noise, and robustness show that phenotypic variability, though
constrained under fixed environments, helps populations find fitter phenotypes faster under
unpredictable or rapidly fluctuating environments (Wagner 2012; LaBoone & Assis 2024). It is less
clear how variability evolves in multicellular eukaryotes. The few available studies focus primarily on
variability in gene transcript levels and its correlates. Common findings include genes with lower
transcriptional variability having higher essentiality, lower genetic diversity, fewer protein-protein
interactions and tighter regulatory architectures (Sigalova et al. 2020; Wolf et al. 2023).

While these correlations point towards the evolutionary potential of gene expression variability, many
core evolutionary factors remain underexplored. For example, what is the role of cell type- or
tissue-dependent mean expression in constraining gene-specific variability? Given that multicellular
cukaryotes have functionally specialized cell and tissue types sharing a quasi-identical genomic
background, we can expect some pleiotropic constraints on the regulation of gene expression across
cells or tissues. For instance, brain-biased genes have recently been found to have low transcriptional
variability across organs in ray-finned fishes, suggesting that such genes may have evolved under
stricter regulatory architectures compared to other genes (Bucao et al. 2024), whereas high
transcriptional variability can allow for organ-specific fine-tuning, for example, in floral organs
(Hartasanchez et al. 2023). Other pressing questions relate to the environmental impact on
transcriptional variability and the nature of the genetic variation regulating such variability. Both are
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critical to (i) address how transcriptional variability can be selected for and (ii) explicitly account for
genotype-by-environment interactions, phenomena proving to be more abundant than commonly
appreciated (Tautz et al. 2020). While difficult to study in the past, these questions may now be
addressed using cost-effective techniques that allow the collection of RNA-DNAseq for thousands of
individuals from populations experimentally evolved under multiple controlled environments
(Pallares et al. 2020, 2023). Thus, while research has traditionally focused on mean transcript levels,
transcriptional variability studies contribute complementary information towards understanding how
complex traits are regulated and evolve.

Transcriptional diversity

The previous section highlights how the amount of phenotypic variability, specifically gene
expression level variability, can be a target of selection. Moreover, the transcriptional process itself
can lead to variation in transcriptional products, which can be targets of selection. Transcriptional
diversity is the result of both the existence of different transcriptional products (i.e., mRNAs, and
several types of non-coding RNAs), and of multiple transcription-related mechanisms. The best
known of such mechanisms are: (i) alternative promoter usage that provides different transcription
start sites (Reyes & Huber 2018), (ii) alternative splicing that produces different transcripts from one
gene (Wright et al. 2022), and (iii) alternative polyadenylation that generates mRNA 3’ end diversity
(Mitschka & Mayr 2022). In addition to these three, many other transcription-related mechanisms can
be found throughout the tree of life (Ji et al. 2011; Santos-Rodriguez et al. 2021). The wide variety of
transcript types and transcription-related mechanisms leads to enormous transcriptional diversity,
which varies between tissues and cell types and has been shown to contribute to evolution
(Barbosa-Morais et al. 2012; Necsulea et al. 2014; Santos-Rodriguez et al. 2021). One instance of
tissue-specific evolutionary conservation of transcription diversity is found in erythroid cells (Ji et al.
2011). For example, RNA Polymerase II pausing seems to be a shared hallmark of erythropoiesis
from chickens to humans (Murphy et al. 2021; Penagos-Puig et al. 2023).

Previous research, restricted by short-read sequencing, could only describe a small amount of the
transcriptional diversity. With long-read technologies, we can now assess full-length transcripts and
RNA modifications, leading to new studies on the phenotypic impact of transcriptome diversity in
evolution. We foresee extensive future work, focusing on how changes in regulatory mechanisms that
shape transcript levels and diversity contribute to transcriptional programs and species evolution.

3D genome architecture

Not only is the linear DNA sequence the source of hidden dimensions; the folding of the
30-nanometer DNA fiber is also crucial in defining gene expression programs. Chromosomes are
organized into structures that span different genomic scales, from chromosome territories, chromatin
compartments, topologically associating domains (TADs), to chromatin loops (Rowley et al. 2017).
Genome organization is dynamic and displays cell type-specific patterns paired with gene expression.
Understanding the diverse patterns of chromatin structure across different taxa is essential to uncover
the mechanisms behind genome evolution. This diversity is reflected at the chromosome occupancy
level, where at least four patterns of nuclear architecture including (i) chromosome territories, (ii)
clustering of both centromeres and telomeres, (iii) centromere clustering, and (iv) telomere clustering
have been described (Hoencamp et al. 2021; Alvarez-Gonzalez, Arias-Sarda, et al. 2022;
Alvarez-Gonzalez & Ruiz-Herrera 2024).
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At the fine scale, chromatin forms long-range interactions that connect enhancers and promoters. The
specificity of chromatin looping between regulatory elements is partly achieved by insulating these
interactions within TADs, which are delimited by structural proteins such as CTCF and cohesins. TAD
boundaries’ integrity is important for transcriptional regulation (Nora et al. 2017; Rao et al. 2017),
although there are differences across taxa. CTCF originated in the bilaterian ancestor (Heger et al.
2012) and is a well-documented organizer of genomic compartments in mammals (Dixon et al. 2012),
zebrafish (Franke et al. 2021) and Xenopus (Niu et al. 2021). However, in Drosophila and Anopheles
the primary means of chromatin organization is into A/B compartments, with loop extrusion via
CTCF being limited to just a few loci such as the Hox cluster (Kaushal et al. 2021), although these
species possess other architectural proteins besides CTCF (Pauli et al. 2016). Currently, the impact of
changes in genome size and structure on genome topology and gene regulation remains underexplored
(Mota-Goémez et al. 2022; Rogers & Simakov 2023; Alvarez-Gonzalez & Ruiz-Herrera 2024). The
presence of TAD-like domains outside bilaterians raises intriguing questions about the homology of
these structures and the conservation of communication between cis-regulatory elements and
promoters across diverse topological frameworks (Acemel & Lupianez 2023). Future research should
focus on overcoming methodological challenges to better evaluate TAD conservation across clades, as
current results vary significantly depending on the approaches used (Eres & Gilad 2020).
Furthermore, a systematic evaluation of population-level variation in 3D genome structures, and how
they are affected by environmental variables, is still lacking. Both dimensions (across clades and
across populations) will provide new insights into our understanding of genome evolution and the
underlying mechanisms of gene regulation.

Large-scale genomic changes

Zooming out further, we encounter large-scale genomic processes, such as chromosomal fusions,
fissions, translocations, and inversions, which can result in affected cis- and trans-regulation
(Harewood & Fraser 2014; Vara et al. 2021; Vara & Ruiz-Herrera 2022). However, the precise
mechanisms by which these chromosomal changes shape regulatory evolution and gene expression
remain unclear.

Analyses of conserved genomic regions, such as microsynteny (Irimia et al. 2012; Albertin et al.
2022), macrosynteny (Alvarez-Gonzélez, Arias-Sarda, et al. 2022; Yu et al. 2024) and spatiosynteny
(Clarence et al. 2023), along with evolutionary breakpoints (Vara et al. 2021; Alvarez-Gonzalez,
Burden, et al. 2022), reveal how intrachromosomal territories and whole chromosomes, evolve under
diverging selective constraints, altering the regulatory landscape. Whole-genome duplications add
another layer of complexity, allowing for gene family and regulatory element expansions that can
undergo neofunctionalization or enhance existing regulatory pathways (Caifiestro et al. 2013; Van de
Peer et al. 2017). Genome expansion can also be driven by segmental duplications (Braso-Vives et al.
2022; Vollger et al. 2022) or repetitive element proliferation in non-coding regions, introducing novel
regulatory elements to the genome (Sundaram & Wysocka 2020; Albertin et al. 2022).

Conversely, genome contraction through the purging of non-essential sequences, such as redundant
repeats and pseudogenes, may lead to the reorganization of existing genes and regulatory elements,
causing them to cluster closer together, rewiring expression patterns (Rogers & Simakov 2023). A
recent model integrates evolutionary genome reshuffling with DNA damage response mechanisms
and the dynamic spatial genome organization of germ cells (Alvarez-Gonzalez, Burden, et al. 2022;
Alvarez-Gonzalez & Ruiz-Herrera 2024). In this context, chromosomal interactions resulting from
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large-scale genomic processes may rewire and/or attenuate gene networks in the germline, fostering
evolutionary novelty.

Concluding remarks

Alternative facets of genomic variation offer promising perspectives for improving our understanding
of the genotype-to-phenotype map. We argue that all sources of genomic variation influence each
other in a quasi-hierarchical manner, and could be thought as layers of such a map. These layers
extend across developmental and life stages and environments, implying that a full understanding of
how genetic variation propagates through the genotype-to-phenotype map will require a systems-level
exploration. The quest for the means by which alternative dimensions of genomic variation are
transmitted from one generation to the next and are subject to the forces of natural selection is
undoubtedly a promising scientific endeavor.

One of the main reasons why alternative forms of genomic variation have not been adequately
explored is the lack of cost-efficient experimental methods to collect data from several individuals in
the population. In this perspective, we have pointed out recent developments in long-read sequencing,
RNA-seq protocols, and RNA post-transcriptional modifications that will help move the field forward.
However, additional methodological advances (e.g., methods allowing the collection of
population-level 3D genome structure data in a high-throughput and cost-efficient manner) will be
needed to study sources of genomic variation further.

We have here presented a non-exhaustive list of the most promising hidden dimensions of genomic
diversity, and believe that all of them need to be taken into account to fully appreciate the
evolutionary dynamics and consequences of genomic variation. We encourage the scientific
community to remain curious and explore deeper into alternative dimensions of genomic diversity.
Altogether, we anticipate that the unraveling of the genotype-to-phenotype map will continue to
marvel our minds for years to come.
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