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SUMMARY Pharmacology of antimicrobial drugs comprises pharmacodynamics (PD) and 76 

pharmacokinetics (PK).  PD refers to studying drugs' mode of action at different concentrations on 77 

their molecular targets and the resulting effect(s). PK refers to studying the way(s) by which drugs 78 

enter and are distributed to reach their targets in different compartments (such as tissues in the 79 

body) and how the local drug concentrations are modified in time, as by metabolism or excretion. 80 

PD and PK constitute pivotal knowledge to establish breakpoints used to identify the appropriate 81 

antimicrobial agents in therapy of infections. Antibiotic resistance is the biological force opposing 82 

antimicrobial pharmacological effects. However, we do not have a term similar to pharmacology 83 

for microbial resistance reactions. Here, we propose the new scientific field of Antechology (from 84 

classic Geek antechó, resistance) studying the dynamics and kinetics of antibiotic resistance 85 

molecules, opposing the effect of antimicrobial drugs. Antechodynamics (AD) refers to the study 86 

of the molecular mechanisms by which antibiotic molecules are chemically modified or degraded 87 

by particular bacterial resistance enzymes (primary effectors), or drive the modification of the 88 

antibiotic target inhibition sites by molecules released by the antibiotic action on the 89 

microorganism (secondary effectors). Antechokinetics (AK) refers to the study of the processes 90 

leading to bacterial spatial cellular (subcellular, pericellular, extracellular) localizations of the 91 

molecules involved in antibiotic detoxifying mechanisms. Molecules' local concentrations change 92 

over time due to their production, degradation, and, eventually, excretion rates. The AD and AK 93 

for the different antimicrobial families, and the relation PD/PK and AD/AK is examined here. 94 
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INTRODUCTION 99 

ANTIBIOTIC RESISTANCE DYNAMICS AND KINETICS, AN ACTION AND 100 

REACTION PROCESS 101 

 “Pharmacodynamics” and “pharmacokinetics” are well-accepted terms in the chemotherapeutic 102 

community. The first (PD) refers to the study of the mode of action of drugs at different 103 

concentrations on their molecular targets and the resulting effect(s). The second (PK) refers to the 104 

study of how drugs enter and are distributed to reach their targets in different compartments (such 105 

as tissues in the body) and how the local drug concentrations are modified in time, for instance, by 106 

metabolism or excretion. In antimicrobial chemotherapy, both PK and PD are considered when 107 

choosing a given drug to treat a particular infection, as PK influences PD and vice versa (1, 2). In 108 

fact, both PK and PD are considered by International Committees on Antibiotic Susceptibility 109 

Testing (as CLSI in the US or EUCAST in Europe) to determine breakpoints categorizing 110 

microorganisms as susceptible and resistant to agents approved for use in treating infectious 111 

diseases. 112 

Antibiotic resistance is the opposite biological force, reaction, to antimicrobial pharmaceutical 113 

action. However, we do not have a term opposing “pharmacology”. The question of how to 114 

designate the “science of resistance” was informally discussed in the 1970s by one of the authors 115 

of this work (FB) with the distinguished French microbiologist Yves A. Chabbert (1921-2018) – 116 

from the Pasteur Institute and one of the fathers of antibiotic susceptibility testing– and the 117 

distinguished Greek pharmacologist John Kosmidis (1936-2016), who immediately coined the 118 

word “Antechology”. The verb “to resist” in classic Greek is ἀντέχω (antechó). In this review, we 119 

propose an antechological reaction (resistance) mediated by bacterial molecules acting as the 120 

primary effectors of drug-specific resistance in a way that explicitly opposes, by degradation, 121 

https://www.zotero.org/google-docs/?01IxLp


extrusion or chemical modification, the pharmacological action of antimicrobial molecules on 122 

primarily susceptible cells. We also consider here the secondary effectors. These are the bacterial 123 

molecules, eventually resulting from the effect of antibiotics on the cell, that are specifically 124 

triggering the synthesis of the primary effectors, or altering the antibiotic target (Fig 1). The 125 

concept of reaction excludes from antechology the resistance mechanisms associated with the 126 

intrinsic resistome, or the random, unspecific mutational alterations of the antibiotic targets, as, 127 

even if involved in selective processes, they do not constitute any specific reaction to the antibiotic 128 

effect.  129 

As in drug pharmacology (pharmacodynamics), resistance mechanisms can be studied by 130 

measuring their effects on their targets, the antimicrobial agents; this is Antechodynamics. The 131 

molecular effectors of the “mechanisms of resistance” to most antimicrobials have been identified, 132 

as have the involved genes. However, the details about how they exert their antibiotic deactivation 133 

are not always well determined.  134 

Similarly, we should also consider how the primary or secondary effectors of antibiotic resistance 135 

are produced in different periods of cellular time (as growth phases), under or without induction, 136 

how their concentrations vary in different intracellular and extracellular compartments depending 137 

on carriers, and how they are affected by natural processes of degradation, including in the 138 

environment. This is Antechokinetics. Certainly, antechodynamics and antechokinetics 139 

parameters interact between them and with pharmacodynamics and pharmacokinetics, to provide 140 

the complete frame of antimicrobial action. For example, PK/PD parameters (Cmax, AUC, 141 

t/MIC,..) correlate with the in vivo efficiency of antimicrobials. Conversely, AK/AD parameters 142 

(Kcat, Km, Vmax…) correlate with a bacterium's resistance level (i.e., its MIC). The interplay 143 



between PK/PD and AK/AD is ultimately responsible for the success or failure of the antimicrobial 144 

treatment.  145 

Antibiotic resistance mechanisms (note that in our view antechodynamics does not include 146 

mutational mechanisms, only molecules acting on antibiotics) have been reviewed on many 147 

occasions (3, 204). Strikingly, research in the field of the kinetics of antibiotic resistance 148 

mechanisms has been disdained (4). 149 

ANTECHODYNAMICS 150 

Antechodynamics refers to the study of the molecular mechanisms by which antibiotic molecules 151 

are chemically modified or degraded by particular bacterial resistance enzymes (primary 152 

effectors), or drive the modification of the antibiotic target inhibition sites by molecules released 153 

by the antibiotic action on the microorganism (secondary effectors). In both cases, the result is the 154 

detoxification of the antibiotic agent. Efflux pumps, as multimolecular entities poorly specific in 155 

molecular interaction/detoxification with particular antibiotics, are not directly counteracting the 156 

mode of action of antibiotics and will be treated in more detail in the antechokinetics section. In 157 

fact, many of these macromolecular complexes can specifically recognize antibiotic molecules and 158 

interact chemically with them to proceed to the extrusion from the cell, in a process that could also 159 

be considered from an antechodynamic perspective. Antechodynamics also deals with the 160 

combined effect of resistance mechanisms in providing resistance phenotypes to particular drugs.  161 

 162 

 163 
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Primary effectors of antibiotic resistance: modifying and drug-degrading 164 

enzymes  165 

Antibiotic resistance mechanisms are frequently based on drug-inactivation enzymes, hydrolyzing 166 

or modifying the antimicrobial agent (5). The affinity of the resistance enzyme for the antibiotic 167 

substrate (target) is classically measured by the Km value, determined by incubating the enzyme 168 

with varying substrate concentrations. This affinity expresses the intensity of substrate 169 

recognition, based on the functional dynamics of ligand binding (6). The strength of the link 170 

between the enzyme and the antibiotic depends on intermolecular interactions between these 171 

partners. This can be evaluated by all-atom molecular dynamics (MD) computational simulations 172 

(6). An alternative is molecular docking, able to model possible binding and provide scoring 173 

affinity functions by using a known tridimensional structure of a resistance enzyme, and the 174 

antibiotic substrate (7). Depending on the concentration of the antibiotic, a proportion of binding 175 

sites are filled with the substrate molecule; in fact, the Km refers to that proportion. Indeed, the 176 

direct functional part of an antibiotic-detoxifying enzyme is the active site within the folded 177 

protein, where the antibiotic enters a pocket or groove and is captured by temporary hydrogen 178 

bonds, forming an enzyme-antibiotic complex. The antibiotic should bind at this (or at the vicinity) 179 

specific region, which catalyzes the detoxifying chemical reaction. It is formed by the folding 180 

pattern of the protein and appears as a pocket or groove that is shaped to accommodate the 181 

antibiotic. The difference among members of a single antibiotic family (as beta-lactams, or 182 

aminoglycosides) to resist a particular detoxifying enzyme (beta-lactamases or aminoglycoside-183 

modifying enzymes, respectively) essentially depends on the degree of molecular adjustment to 184 

the active site. Because of that, the evolutionary biology of antibiotic-inactivating enzymes 185 

consists of the acquisition of mutations altering the topology of the active site to accommodate 186 

https://www.zotero.org/google-docs/?EGDMIc
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new (previously non-accepted) compounds. That explains that these “modified sites” are 187 

frequently less effective in deactivating old antibiotics. For instance, acquiring resistance to third-188 

generation cephalosporins normally results in less enzymatic activity over aminopenicillins 189 

(antagonistic pleiotropy or collateral susceptibility). However, the active site can still accept poorly 190 

bound molecules of old drugs, so that these “modern” conformations can be selected by old drugs 191 

(8).  192 

It is to be noted that a high ligand binding does not necessarily correlate with a high enzymatic 193 

activity, but is required for such a function.The number of substrate molecules transformed per 194 

unit of time by an enzyme (its turnover rate) is traditionally expressed by the kcat value. Therefore, 195 

enzymatic efficiency depends on both the affinity of the enzyme for its substrate (Km) and the 196 

turnover rate of the enzyme (kcat). Traditionally, this has been expressed by the ratio kcat/Km. In 197 

general, according to classic enzymology (9), what is expected for the catalytic reaction (covalent 198 

bond making and bond breaking) of a large molecule (an enzyme) and a small molecule (as an 199 

antibiotic) is to have a kcat/Km value ranging from 108 to 109 M-1s-1. Many antibiotic detoxifying 200 

enzymes have reached an “antechological perfection”, where they are no longer limited by bond 201 

making and bond breaking, but by the diffusion of the substrate in and out of the active site. 202 

Therefore, their catalytic efficiency might depend more on the possibilities of enzyme-antibiotic 203 

encounters, and the diffusion hurdles might be critical in the process, as has been shown for beta-204 

lactamases (10). Moreover, the catalytic efficiency and diffusion could also depend on the 205 

macromolecular crowding of the cells (11). 206 

 207 

 208 
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Beta-lactams.  209 

In the case of beta-lactams, the detoxification mechanism occurs by the action of a protease, the 210 

beta-lactamase, a globular protein composed of alpha-helices and beta-pleated sheets. In the case 211 

of A, C or D beta-lactamases, detoxification is based on nucleophilic Serine residue in the enzyme 212 

active site, which attacks the carbonyl moiety of the beta-lactam to form an acyl-enzyme 213 

intermediate; other amino acids of the vicinity may contribute to substrate binding, facilitating 214 

proton transfer, or orienting catalytic residues (12, 13). In class B beta-lactamases, the hydrolytic 215 

reaction is facilitated by one or two essential zinc ions in the active site (14, 15). More than 2,300 216 

potential beta-lactamases in 673 bacterial genera have been detected (16). 217 

Aminoglycosides.  218 

Aminoglycosides are deactivated by N-acetyltransferases (AAC), O-phosphoryltransferases 219 

(APH),  and nucleotydyltransferases (ANT, frequently known as adenyl transferases, AAD), 220 

modifying the antibiotic molecule. Most acetyltransferases (AACs) belong to the GCN5 221 

superfamily of acyltransferases and include slightly different ApmA enzymes (17). AACs transfer 222 

an acetyl group to a free aminoglycoside amino group, APH transfers a phosphate group to a free 223 

hydroxyl, and also ANT or nucleotidyl transferase transfers a nucleotide to a free hydroxyl.  The 224 

consequence is altering drug transport or the binding of the drug at the site of antibacterial action, 225 

the 16S subunit at the tRNA acceptor site A in the 30S ribosomal unit (18–20). AAC(1) and 226 

AAC(3) target the amino groups found at positions 1 and 3 of the 2-deoxystreptamine ring, 227 

whereas AAC(2′) and AAC(6′) target amino groups found at the 2′ and 6′ positions of the 2,6-228 

dideoxy-2,6-diaminoglucose ring. Typically acetylation interferes with the binding of 229 

aminoglycoside to 16S rRNA. O-Phosphorylation is exerted at aminoglycoside positions 3', 2'', 230 

3'off', 6, 9, 4 and 7'' (21). The process involves a succession of ATP binding to the enzyme (acting 231 
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as monomers or dimers), followed by binding and phosphorylation of the aminoglycoside, release 232 

of the modified inactivated drug, and rate-limiting dissociation of ADP (22). Adenylation follows 233 

the formation of a complex with adenosine monophosphate (AMP) and the aminoglycoside, with 234 

the involvement of pyrophosphate. A catalytic base is probably involved in a direct AMP transfer 235 

mechanism from nucleotide to the aminoglycoside. The chemical modification occurs at positions 236 

2, 3, 4, 6, and 9 of substrate aminoglycosides.  237 

Macrolides, lincosamides, streptogramins 238 

As a first example, macrolide 2´phosphotransferase is an enzyme that phosphorylates the 239 

2´hydroxyl group of the C5-linked desoxamine or mycaminose moiety of macrolides and 240 

ketolides. Phosphorylation involves the transfer of gamma-phosphate group of GTP to these 241 

antibiotics. The C5 phosphorylation prevents the binding of the drug by specific hydrogen bond 242 

interactions to the A2058 and A2059 of 23S rRNA, detoxifying the antibiotic action. There are at 243 

least 15 types of macrolide phosphotransferases (MPHs) differing in the spectrum of macrolide-244 

ketolide inactivation (23, 24). Erythromycin can also be inactivated by the action of macrolide 245 

esterases. Esterases act on the critical ester-bond involved in the construction of the macrocyclic 246 

structure, linearizing and detoxifying the molecule, now unable to attach to the ribosomal binding 247 

target site to produce the bacteriostatic effect (25). There are several macrolide esterases in a 248 

variety of organisms (23). However, some macrolide-like compounds as ketolides, telithromycin, 249 

or solithromycin exhibit moderate to strong cidality against several bacterial species; probably that 250 

depends on the association/dissociation kinetics with the ribosome; long-term association leads to 251 

a bactericidal effect (26). The structure of the rRNA binding site (long-distance base pair) might 252 

also contribute to such association/dissociation kinetics (27). The more tightly associated 253 

molecules are possibly less prone to being inactivated by detoxifying enzymes. Long-term 254 
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exposure to macrolides might produce bactericidal effects (28). However, the dissociation constant 255 

(Kdiss) is very low for macrolides and ketolides (10-8 to 10-9) (29). 256 

Lincosamides (lincomycin, clindamycin) are inactivated by nucleotidyltransferases (NTAses) in 257 

the 3´-OH group of the drug, probably with the cooperation of chelation of magnesium cation. The 258 

modified lincosamide can not bind to 23S rRNA in the 50S subunit of the ribosome and cannot 259 

interfere with the peptidyltransferase reaction. In the microbial world, there are a big variety of 260 

NTAses, probably over 120 potential enzymes (30). 261 

Streptogramins (as streptogramin B, virginiamycin, pristinamycin, dalfopristin) are mostly 262 

inactivated by acetyltransferase enzymes (31). In addition, nucleotidyltransferases, also 263 

inactivating lincosamides, and hydrolases of streptogramins are inactivating enzymes (32). 264 

Phenicols 265 

Phenicol acetyl-transferases are among the predominant resistance mechanisms to 266 

chloramphenicol and related drugs. These enzymes have amino acids with side chains involved in 267 

catalysis (acetylation), which depends on the appropriate folding and packing of the polypeptide 268 

chains, frequently forming heterotrimers. The process includes deprotonation of the primary (C-269 

3) alcohol of the antibiotic, and the resulting oxyanion attacks the carbonyl carbon of the acetyl 270 

moiety of acetyl-CoA. The product is a tetrahedral intermediate sharing a hydrogen atom with the 271 

side chain oxygen of a serine residue, resulting in a close approximation of two oxygen atoms. The 272 

collapse of the tetrahedral intermediate yields the inactivated drug (33). The resulting chemical 273 

alteration of the antibiotic prevents the exertion of ribosomal peptidyltransferase activity. Fusidic 274 

acid can be inactivated by chloramphenicol acetyltransferases (34).  275 

 276 

https://www.zotero.org/google-docs/?6wqvWa
https://www.zotero.org/google-docs/?PWZTYD
https://www.zotero.org/google-docs/?XMl80a
https://www.zotero.org/google-docs/?etRntJ
https://www.zotero.org/google-docs/?XTXChz
https://www.zotero.org/google-docs/?v1ZPrY
https://www.zotero.org/google-docs/?rCzZDi


Tetracyclines.  277 

Tetracycline molecules (including the modern compounds tigecycline, eravacycline, and 278 

omadacycline) can be degraded (destructed) by flavin-dependent monooxygenases (tetracycline 279 

destructases) originally discovered in Bacteroides fragilis (35–38). Tetracycline destruction 280 

prevents access and binding to the 30S subunit's helix 34 of the 16S rRNA, which overlaps the 281 

anticodon stem-loop of the A-site tRNA, interfering with ribosomal protein synthesis.  282 

Fluoroquinolones.  283 

A variant of the gene encoding aminoglycoside acetyltransferase AAC(6′)-Ib inactivates 284 

fluoroquinolones by N-acetylation at the amino nitrogen on its piperazinyl substituent (39). In 285 

addition, Labrys portucalensis F11, an Alphaproteobacteria, specialized in degrading fluoro-286 

organic compounds, uses a monooxygenase replacing fluorine with a hydroxyl group, inactivating 287 

fluoroquinolones, particularly in the presence of high acetate. A similar case occurs in 288 

Rhodococcus (40). Fortunately, these mechanisms have not spread into pathogenic bacteria. 289 

Fosfomycin.  290 

The activity of fosfomycin can be impaired by Mn++-dependent glutathione thiol-transferases, 291 

also known as metallo-glutatione transferases (Fos enzymes) (41). FosA conjugate glutathione 292 

(GSH; L-γ-glutamyl-L-cysteinyl-glycine) or BSH/L-cysteine in the fosfomycin oxirane ring. 293 

Glutatione nucleophilic attack and degradation of fosfomycin is facilitated by the K+ ion binding 294 

close to the active site, which increases the rate of reaction ∼100-fold (42, 43). Conjugated 295 

fosfomycin is unable (or greatly reduced) to exert its mode of action on the active site cysteine 296 

residue of MurA (UDP-N-acetylglucosamine enolpyruvyl transferase) which is essential for 297 

bacterial cell wall synthesis.  298 
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Rifampicin.  299 

Low-level rifampicin inactivation occurs by glycosyl-transferases, nucleotidylyl-transferases, 300 

phospho-transferases and monooxygenases. Still, these enzymes have not been spreading in 301 

most pathogens (44). 302 

Glycopeptides and lipopeptides 303 

To our knowledge, vancomycin-degrading enzymes have not been found in bacteria, but 304 

microsomes from hepatic cells can fragment the aminoglycoside and the polypeptide parts of 305 

vancomycin, probably involving mixed-function oxidases or monooxygenases (45). More 306 

research is requested to find similar functions in bacterial organisms, eventually leading to 307 

vancomycin resistance. However, a deacylase heterodimeric enzyme  was found in Actinoplanes 308 

species, which can detoxify members of teicoplanin family of glycopeptides, also acting on the 309 

lipid tail and inactivating daptomycin, a lipopeptide antibiotic. In addition, daptomycin is 310 

detoxified by a serin protease with hydrolase activity in actinomycetes (46).  311 

Polymyxins.  312 

Polymyxins are cyclic peptides resistant to degradation by the currently known proteases, probably 313 

due to their cyclic structure, the presence of unusual amino acids, the attached lipid tail, and the 314 

strong binding with the bacterial envelope. 315 

Sulphonamides.  316 

Little is known about bacterial sulphonamides enzymatic degradation. However, Microbacterium, 317 

a genus belonging to Actinomycetota, can use sulphonamides as a single carbon source, using two 318 
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flavin-dependent monooxygenases possessing an acyl-CoA dehydrogenase domain and a flavin 319 

reductase (47).  320 

Nitrofurantoin.  321 

Some environmental strains that are capable of using nitrofurantoin as a source of carbon and 322 

energy; 1-aminohydantoin and semicarbazide were detected as nitrofurantoin biotransformation 323 

products; however, inactivating enzymes have not been well characterized (48). 324 

 325 

Secondary effector molecules triggering the expression of genes involved in 326 

antibiotic resistance. 327 

Here, we consider the secondary effectors of specific antibiotic resistance counteracting antibiotic 328 

action: those molecules that start the process(es) by which specific antibiotic detoxification occurs 329 

by primary effectors. In some cases, these molecules are encoded in the genome of susceptible 330 

organisms but either are not expressed or have a constitutive remarkably low expression, 331 

insufficient to provide a significant resistance phenotype. However, they can be overexpressed 332 

(de-repressed) in the presence of antimicrobials or by effector bacterial molecules resulting from 333 

the early action of antimicrobials on bacterial cells. The processes more frequently involved are: 334 

1) inducible hyperexpression of drug-degrading or modifying enzymes and 2) inducible 335 

modification of the antibiotic target site. Such gene expression leads to an antibiotic-resistant 336 

phenotype. The scarcely known field of molecules involved in the induction of genes involved in 337 

antibiotic efflux pumps, including antibiotics but also many non-antibiotic unspecific inducers of 338 

extrusion of a broad spectrum of chemical structures, will be mostly treated in the section of 339 

Antechokinetics. In this section, we briefly mention the induction of efflux pumps when the 340 
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antibiotic is presumptively considered the main (more specific) inducer of pump-mediated 341 

resistance, as in the case of antibiotic-triggered RNA-mediated regulation processes (49). 342 

Beta-Lactams 343 

The transcription of a group of beta-lactamase chromosomal enzymes, typically Class C serine 344 

beta-lactamases (frequently known as cephalosporinases, as AmpC), is strongly repressed under 345 

natural circumstances by the AmpR protein, a LysR-type transcriptional regulator. That occurs in 346 

certain clinically relevant microorganisms such as Enterobacter cloacae complex, Klebsiella 347 

aerogenes, Citrobacter freundii, Morganella morganii, Serratia marcescens complex, or 348 

Pseudomonas aeruginosa. Their expression probably involves a high fitness cost in the absence 349 

of beta-lactams. The presence of the antibiotic is detected by the early effects it produces on the 350 

bacterial cell wall, releasing “signaling” murein fragments (muropeptides), typically NAG-351 

NAM disaccharides attached to a peptide chain containing 2- to 5 amino acid residues (50, 51). 352 

Such muropeptides are transported by AmpG symporter permease into the cytoplasm, and their 353 

catabolites, as 1,6-anhydroMurNAc-peptides, bind the uridine diphosphate (UDP)-N-354 

acetylmuramic acid (52). Such complexes competitively displace UDP-MurNAC peptides that 355 

maintain the AmpR repression, acting as a negative regulator of AmpR, a tetramer molecule that 356 

recognizes D-ala-D-ala motif of the muropeptide, resulting in the activation of ampC transcription 357 

and AmpC beta-lactamase hyperproduction resulting in β-lactam resistance (53–55). The reason 358 

explaining the weak induction of AmpC in strains of Serratia nevei remains elusive at the time of 359 

writing (56). 360 

Resistance to beta-lactam agents in Gram positives can be also inducible by the presence of 361 

antibiotics. In Staphylococcus aureus the activation of the synthesis of blaZ, the gene coding beta-362 

lactamase is regulated by the transmembrane sensor/signal transducer proteins BlaR1 and 363 
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MecR1. The extracellular part of BlaR1 interacts with the antibiotic, activating the intracellular 364 

proteolytic activity of BlaR1 which cleaves the BlaI repressor and allows the synthesis of the beta-365 

lactamase blaZ. A similar mechanism of induction (involving mecRI and mecI) applies to the 366 

synthesis of an alternative beta-lactam insensitive PBP2a encoded by mecA in MRSA (57, 58). In 367 

Streptococcus,  β-lactam antibiotics at low concentrations induce a decrease in the protein targets 368 

of these antibiotics (penicillin-binding proteins, PBPs) using the response regulator protein 369 

CiaR, which mediated transcriptional increase of ccn-microRNAs (ccn: central communication 370 

networks proteins) and PBP degradation of pbp-mRNAs (59).  371 

Aminoglycosides 372 

The expression of aminoglycoside acetylases and adenylylases located in type 1 integrons was 373 

proposed to be controlled by an aminoglycoside-sensing riboswitch RNA, influencing integron 374 

internal recombination (60). However, further work did not confirm such a view and proposed that 375 

the hyperexpression was due to the increased translation rate of the integron cassettes (61, 62). 376 

. 16S rRNA methyltransferases acting on the aminoacyl site of 16S rRNA, where the binding of 377 

aminoglycosides occurs (A1408), confers high-level resistance to aminoglycosides. At least six 378 

types of these enzymes have been detected: ArmA, RmtA, RmtB, RmtC, RmtD, NpmA and 379 

NpmC (63–65). If in the current clinical resistance landscape ArmA has been frequently found in 380 

mobile genetic elements, from plasmids to ISCR elements (66). Expression analysis has shown 381 

that aminoglycoside stress increases the expression of 16S rRNA methyltransferases, 382 

including RsmI (67). Proteins similar to the previously mentioned 16S rRNA methylases are found 383 

in aminoglycoside-producing actinomycetes, suggesting that they might be inducible by low 384 

aminoglycoside concentrations. 385 
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 Any decrease in the aminoglycoside concentration inside the cell will reduce the antimicrobial 386 

effect. Subinhibitory concentrations of kanamycin, probably disturbing the cell envelope, induce 387 

the acriflavine resistance protein AcrD, a multidrug efflux pump extruding aminoglycosides 388 

(also novobiocin, and fusidic acid), a member of the RND family of transporters energized by 389 

proton motive force. Efflux of aminoglycosides by the transporter should produce coupled 390 

transmembrane movement of H+. Aminoglycosides are captured in a binding site located within 391 

the ceiling of the central cavity of a AcrD trimer. Thus, it is likely that AcrD is capable of picking 392 

up aminoglycosides via this central cavity (68–70). 393 

Macrolides, lincosamides and streptogramins (MLS) 394 

The antimicrobial effect of MLS antibiotics, mostly based on the dissociation of peptidyl-tRNAs 395 

from the ribosome resulting in translational attenuation (reduced protein synthesis), has been 396 

proposed to be the mechanism by which the genes involved in resistance (typically erm(B) gene) 397 

is induced. Erm resistance proteins (about 50 orthologous genes have been reported) demethylate 398 

a single adenine (A2058) in nascent 23S rRNA, a component of the large (50S) ribosomal subunit. 399 

The effect of this 23S-methyl-transferase is that the binding of MLS antibiotics to their target is 400 

impaired. In the absence of antibiotics, the methyl-transferase gene is inactive (non-transcribed in 401 

the normal folding structure of the mRNA of the erm gene) due to an attenuator upstream from the 402 

structural gene. The presence of the MLS antibiotic leads to physical rearrangements of the mRNA 403 

folding, exposing and stabilizing the 23S methyltransferase secondary sequence and allowing 404 

ribosomes to process with the translation of the resistance enzyme (71). The MLS effect of 405 

inducing resistance ultimately depends on ribosome stalling of the leader mRNA at Arg/Lys-X-406 

Arg/Lys motifs (72, 73). A putative-inducing signal may be the ribosomal release of short peptides 407 

after the stalling event (74). In addition, it has been suggested that macrolides might allow passage 408 
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of some nascent peptides, contributing to a “selective translation” and peptide bond modulation 409 

(75). A new mechanism of inducible erythromycin resistance based on ribosome recycling has 410 

been observed in L. monocytogenes. The process is mediated by a GTPase named HflXr, a 411 

ribosome splitting factor that is specifically produced in the presence of antibiotics targeting the 412 

ribosome, such as macrolides and lincosamides (76).  413 

Phenicols 414 

Similar dynamics of inducible resistance occur with phenicols. In this case, the acetyl-transferase 415 

and CmlA  efflux pump genes are regulated by a translation attenuation process. In the absence 416 

of antibiotics, the ribosome binding site sites are sequestered by the secondary structure of their 417 

mRNA. Induction results when the ribosome becomes stalled at a specific site in the nine-codon 418 

leader as a consequence of antibiotic action. The resulting alternative mRNA stem-loop structure 419 

discloses the ribosome binding site allowing translation of chloramphenicol resistance genes (77). 420 

In the case of CmlA efflux pump, the protein is localized in the inner membrane. It extrudes 421 

chloramphenicol in a process driven by the proton motive force (78). The Cfr rRNA 422 

methyltransferase, methylating 23S rRNA at position A2503, has a broad detoxification range 423 

including chloramphenicol (79). Finally, the ATP binding cassette proteins PoxtA and OptrA, 424 

are able to reduce the affinity of chloramphenicol (and linezolid) from the ribosome, resulting in 425 

chloramphenicol resistance (see below, oxazolidinones-resistance) (80). 426 

Tetracyclines 427 

Tetracycline binds to the 30S ribosomal subunit preventing the access of charged tRNAs to the A-428 

site. A widespread mechanism of tetracycline resistance is the direct induction by tetracycline of 429 

an specific efflux pump, TetA. In the absence of tetracycline, the transcriptional repressor TetR 430 

https://www.zotero.org/google-docs/?Or6Hmt
https://www.zotero.org/google-docs/?uYY60x
https://www.zotero.org/google-docs/?3bSIoG
https://www.zotero.org/google-docs/?bXdkYK
https://www.zotero.org/google-docs/?9SoHhC
https://www.zotero.org/google-docs/?n1gdJC


constitutively binds the tetA promoter and inhibits the expression of the TetA resistance gene (81). 431 

The direct binding of tetracycline to the tetR repressor leads to its dissociation from the DNA 432 

and drives tetA expression, leading to antibiotic resistance. Another important mechanism of 433 

tetracycline resistance is mediated by secondary effectors such as ribosome protection proteins 434 

(82) induced by tetracycline exposure, and probably originated (for self-protection) in the original 435 

tetracycline producer, Streptomyces rimosus. The proteins TetM and TetO are frequently found in 436 

clinical strains, both Gram positive and Gram negative. These proteins are able to displace 437 

tetracyclines (not glycylcyclines, as tigecycline) from their target, in a way resembling the binding 438 

of elongation factor G to the ribosome, allowing the reassumption of protein synthesis. The 439 

conformation of the tetracycline binding site is probably modified by TetM, preventing rebinding 440 

of the drug (83). The process is favored by the GTPase hydrolysis.  441 

Fluoroquinolones 442 

Fluoroquinolones act by binding at the DNA-ligation active site required for topoisomerases 443 

(topoisomerase IV and DNA gyrase) unwinding of the DNA, leading to DNA strand breaks and 444 

aborting the replication process. Qnr pentapeptide repeat protein protects the topoisomerases-445 

DNA interface by binding to the topoisomerases units and the holoenzymes (84). Qnr proteins 446 

occur both in the chromosome and in bacterial plasmids. Subinhibitory concentrations of 447 

ciprofloxacin produce the induction of Qnr (qnrS1) by a mechanism independent of SOS response. 448 

Qnr induction requires intact integration host factors (LhfA and LhFB), specific DNA-449 

binding proteins involved in transcriptional control, and probably DnaA (initiating the process of 450 

replication) influences the induction process. However, the possible natural Qnr inducers remain 451 

elusive (85). 452 

Fosfomycin 453 
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Fosfomycin resistance is controlled by the bacterial two-component signal transduction system 454 

CpxAR. Fosfomycin, altering the construction of the cell wall, triggers this envelope stress 455 

response system. CpxR directly represses the expression of two genes, glpT and uhpT, which 456 

encode fosfomycin transporters into the cell (86). 457 

Sulphonamides and Trimethoprim 458 

The antibacterial effect of sulfonamides depends on inhibiting the bacterial dihydropteroate 459 

synthase (DHPS) through chemical mimicry of its co-substrate p-aminobenzoic acid (pABA). 460 

Resistance is frequently mediated by the acquisition of sul genes (present in many mobile genetic 461 

elements), which code for sulfa-insensitive, divergent DHPS enzymes. The reason for insensibility 462 

is the sulphonamide binding in the DHPS pABA binding sites. Sul encodes an alternative DHPS 463 

synthase with an additional phenylalanine residue lacking in sensitive DHPS, which results in 464 

a conformational change, blocking the sulphonamide target. It can be suggested that the induction 465 

of the expression of sul genes could be dependent on the sulfonamide effect decreasing the 466 

thymidine levels (87). Similarly, trimethoprim resistance is typically achieved by acquiring 467 

trimethoprim-insensitive dihydrofolate reductases (DHFR) encoded in dfr genes or by the 468 

overexpression of the endogenous DHFR enzyme folA. Indeed, it has been shown that the two-469 

component system PhoP/PhoQ is involved in trimethoprim resistance under the regulation of 470 

MgrB, such a way modulating the expression of FolA by influencing the synthesis of thymidine 471 

(88). 472 

Glycopeptides and Lipopeptides 473 

Vancomycin resistance (particularly worrisome in Enterococcus) mostly depends on the 474 

expression of the resistance gene vanA. VanA, a d‐Ala‐d‐lac ligase, mediates the replacement of 475 

https://www.zotero.org/google-docs/?JQKloj
https://www.zotero.org/google-docs/?2rz8mk
https://www.zotero.org/google-docs/?syWQNH


an ester for an amide in the peptide target molecule, converting d‐Ala‐d‐Ala in d-Ala-d-lac in the 476 

terminal aminoacids in Lipid II, by forming five hydrogen bonds and multiple hydrophobic van 477 

der Waal forces, such a way altering the vancomycin binding site and reducing by 1000-fold the 478 

activity of the antibiotic (89). The induction of vanA (and the accompanying gene cluster) depends 479 

on a canonical two‐component regulation system composed of the transmembrane sensor 480 

histidine kinase VanS and its cytoplasmic transcriptional regulator VanR, which allows vanA 481 

transcription (90). The presence of vancomycin is detected by the membrane sensory kinase VanS, 482 

which phosphorylates and activates VanR, a transcription regulator that drives the expression of 483 

the vanHAX resistance operon. Induction by internal signals cannot be excluded, as cell wall 484 

precursor accumulation (91). Interestingly, subinhibitory concentrations of beta-lactam agents 485 

might induce heterogeneous vancomycin intermediary-resistance in Staphylococcus aureus (92).  486 

Daptomycin resistance in Enterococcus is mediated by the LiaFSR system, a three-component 487 

regulatory system responsive to cell envelope stress produced by the antibiotic. The membrane 488 

stress response is controlled by sensor histidine kinase-response regulator pairs communicating 489 

by signal transduction. LiaR regulates the expression of the gene LiaX, which can bind daptomycin 490 

and regulate cell membrane remodeling, adapting the cell membrane to the DAP “attack” in the 491 

words of Axell-House et al. (93). 492 

Polymyxins 493 

Polymyxins (polycation proteins such as colistin or polymyxin B) target the negatively charged 494 

bacterial lipopolysaccharide (LPS). Physical disturbance of the LPS layer can be associated with 495 

other effects, such as damaging the function of essential respiratory enzymes located in the 496 

cytoplasmic membrane.  Resistance results from chemical modifications of the LPS. Such 497 

processes involve the activation (triggered by extracytoplasmic Mg++ and Ca++ concentrations) 498 
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of two-component systems PhoP/PhoQ and PmrA/PmrB, involving an inner membrane sensor 499 

and a cytoplasmic regulator. In Salmonella, the result is the expression of PagL, a deacetylase of 500 

the lipid A moiety of the LPS. In E. coli, the two-component systems activate EptA (PmrC) and 501 

ArnT (PmrK), respectively phosphoethanolamine and 4-amino-4-deoxy-L-arabinose lipid A 502 

transferases, which results in a reduced negative charge and thus less colistin binding, leading to 503 

resistance and heteroresistance (94, 95). The widespread mcr plasmid genes determining colistin 504 

resistance have probably originated from EtpA orthologs, encoding phosphoethanolamine 505 

transferase which alters the structure of the binding site of colistin to lipid A in the bacterial 506 

lipopolysaccharide layer membrane (96); indeed, mcr-9 is inducible by low antibiotic 507 

concentrations of polymyxins (97). 508 

Oxazolidinones. 509 

Oxazolidinones (as linezolid) interact with the peptidyl transferase center of the bacterial 510 

ribosome, inhibiting protein synthesis. Oxazolidinone resistance gene, cfr, mediates resistance not 511 

only to linezolid, but also to phenicols, lincosamides, pleuromutilins, and streptogramin A type 512 

antibiotics by encoding a methyltransferase that modifies the 23S rRNA at position A2503 (79). 513 

Tedizolid is not affected by this resistance mechanism, as presents improved affinity not only 514 

against wild-type 23S rRNA but also Cfr-methylated 23S rRNA (98). In addition, linezolid is 515 

deactivated (together with chloramphenicol) by PoxtA and OptrA, apparently non-inducible ATP 516 

binding cassette (ABC) proteins of the F subtype, which distorts the P-site tRNA in the ribosome 517 

and contributes to reducing the affinity of the drugs for their binding site, in a sense “brushing” 518 

the drug from the ribosome (99). 519 

 520 
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Fusidic acid 521 

Fusidic acid prevents the release of elongation factor G (EF-G) from the ribosome due to changes 522 

in EF-G conformational flexibility. After each translocation event, the A ribosomal site should be 523 

vacant to allow incorporation of the next incoming aminoacyl-tRNA species. Fusidic acid 524 

deactivation is produced by the FusB protein family, which encodes an EF-G-binding protein, 525 

acting when EF-G is either unbound or bound to the ribosome (100). The origin of these target 526 

protection small proteins is unknown, but they certainly preceded the anthropogenic production of 527 

fusidic acid (101). FusB seems to be a fusidic acid-inducible protein. Induction probably involves 528 

(as in the case of methylase genes in macrolide resistance ) a system of translational attenuation, 529 

involving fusidic-acid ribosomal stalling, resulting in the folding of the fusB leader mRNA; this 530 

folding releases the fusB Shine-Dalgarno sequestration, allowing transcription of the EF-G-531 

binding protein that detoxify fusidic acid (102).  532 

Nitrofurantoin 533 

Nitrofurantoin, furazolidone, and nitrofurazone's antibiotic action depends on bacterial 534 

nitroreductases (mostly NfsA and NfsB), NAD(P)H-dependent flavoenzymes which activate the 535 

toxicity of the compounds. In fact, hyperexpression of these enzymes (for instance involving 536 

cpxA/R two-component system signaling) increases nitrofurantoin activity. Resistance to 537 

nitrofurans could result from a lower transcription of nitroreductases. Transcription/expression of 538 

nfsA is repressed by the oxidative stress transcriptional regulator OxyR and 539 

(postranscriptionally) by a small anti-sense RNA (sdsN137) in E. coli, and perhaps also the 540 

multidrug resistance regulator mprA  (103, 104). As OxyR is activated by oxidative and nitrosative 541 

stress, it should reduce nitroreductase transcription and might thus inactivate nitrofurantoin effect.  542 
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Combined effects of antibiotic resistance molecules 543 

Pharmacodynamic drug-drug interactions (DDIs) occur when the pharmacological effect of one 544 

drug is altered by that of another drug in a combination regimen. DDIs often are classified as 545 

synergistic, additive, neutral or antagonistic (105). Antechological resistance mechanism-546 

mechanism interactions (MMIs) can be expected when molecules involved in antibiotic resistance 547 

might have different combined effects influencing antibiotic detoxification. In the multiresistant 548 

organisms present in nosocomial infections, an apparent “functional redundancy” of beta-549 

lactamases, for instance multiple different carbapenemases in the same strain is not an infrequent 550 

finding (106). In some cases, this might produce a kind of polyploidy, but other explanations 551 

cannot be excluded. The reactive production of efflux pumps reduces the accumulation of 552 

antibiotics inside of the bacterial cells and might facilitate the induction of primary or secondary 553 

resistance effectors before the drug causes irreversible cell damage (107). This important topic of 554 

interactions between antibiotic resistance mechanism has been recently reviewed (3). 555 

 556 

Metabolic molecules influencing antibiotic detoxification 557 

A recent field of research in antibiotic resistance is the effect of metabolism on antibiotic 558 

resistance. In a sense, metabolic molecules can act as “non-canonical”, eventually poorly specific 559 

mechanisms of antibiotic detoxification, highly dependent on the nutritional and environmental 560 

conditions of the microorganism. Such an effect casts doubts about using the standard 561 

determination of minimal inhibitory concentrations in rich media as the only pharmacodynamic 562 

function used in susceptibility testing (108). For instance, rich media might contribute to a higher 563 

beta-lactamase concentration in the cell (109).Functional metabolomics studies have shown that 564 
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different metabolic states are related to antibiotic resistance phenotypes (110, 111). For instance, 565 

core enzymes involved in metabolic regulation might prevent the antibiotic-mediated induction of 566 

the tricarboxylic acid cycle functioning, reducing metabolic toxicity, basal respiration, and 567 

consequently drug lethality (112, 113). A particularly interesting fact in this process is the 568 

antibiotic induction of the “acetylome”, an ensemble of multiple acetylating enzymes, resulting in 569 

a decrease in antibiotic action (114). “Intrinsic” resistance to colistin in Staphylococcus aureus 570 

entirely depends on a functional ATP synthase (115, 116). It is difficult to differentiate if these 571 

effects due to metabolic functioning are consequences of the antibiotic action or adaptive cell 572 

responses (reaction) to the drug exposure. In any case, antibiotics frequently “disorganize” the cell 573 

metabolism, in some cases by altering the shape and subcellular structure of the microorganism 574 

(117). Such effects can produce a heterogeneous response to antibiotic action in exposed 575 

populations (118). Finally, some antibiotics, as sulfonamides or trimethoprim, are essentially 576 

antimetabolic drugs.  Sulphonamides and trimethoprim are structural analogs and competitive 577 

antagonists of p-aminobenzoic acid (PABA)interfering with the dihydrofolate reductase (DHFR) 578 

and dihydropteroate synthase (DHPS), respectively, which are sequentially involved in the 579 

synthesis of folate for the production of nucleic acids. One of the very first mechanisms of 580 

resistance that was elucidated was sulphonamide resistance resulting from hyperproduction of 581 

para-aminobenzoic acid (119). Here we can see a stoichiometric example of metabolic resistance, 582 

and an important gene-dosing effect has been shown for both sulphonamides and trimethoprim. 583 

 584 

 585 

 586 
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ANTECHOKINETICS 587 

Antechokinetics refers to the study of the processes leading to bacterial spatial cellular 588 

(subcellular, pericellular, extracellular) localizations of the molecules involved in antibiotic 589 

detoxifying mechanisms. These molecules' local concentrations change over time due to their 590 

production, degradation, and, eventually, excretion rates. Variations in the kinetics of antibiotic 591 

resistance mechanisms should influence the rate of interaction and detoxification of the antibiotic 592 

agents. To show what we know (and particularly what we do not know) about the effects of 593 

antechokinetics in antibiotic resistance, we are obliged to recall here, in a succinct way, the 594 

intracellular kinetics of the different drugs. 595 

In an extended meaning of the field of “antechokinetics,” we could also consider the movement of 596 

antibiotic resistance genes across cells, species, and populations. This aspect will not be treated 597 

here; but reviews are widely available (120). This might also apply to the dissemination of 598 

resistance genes or resistance proteins in microvesicles, spherical nanoparticles composed of 599 

bacterial lipid membranes (121). 600 

Three previous questions on antechodynamics 601 

The question of efflux pumps 602 

The field of efflux pumps, a homogeneous group of trans-envelope multimolecular complexes, is 603 

hard to contextualize in the antechodynamics field; as stated before, we consider that, in most 604 

cases, they do not directly influence the mechanisms of resistance by antibiotic detoxification nor 605 

the molecules involved in resistance by target modification. The induction of efflux pumps by 606 

repressor inactivation can be achieved by ligand binding including metabolites, antibiotics, 607 

biocides, pharmaceuticals, additives, plant extracts, or compounds released by oxidative stress 608 
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(122). The genes regulated by the antibiotic-responsive cis-acting RNA elements include several 609 

different classes of multidrug antibiotics exporters and efflux pumps (123, 124). When the 610 

antibiotic itself is the inducer or is specifically captured by the pump proteins, we can consider 611 

these interactions in the antechodynamic field. As an example, in E. coli, tetracycline resistance 612 

TetA pump is inducible by subinhibitory tetracycline concentrations, releasing the effect of the 613 

repressor TetR (125). 614 

In the antechokinetics perspective, the cellular density and perhaps the topology of efflux pumps 615 

could influence the effectiveness of antibiotic degrading mechanisms, not only by modifying the 616 

antibiotic concentration and thus the stoichiometry with these mechanisms, but eventually by 617 

scarcely known spatial relations with them (co-localization, influencing stoichiometry in cellular 618 

microspaces). In Pseudomonas, the maximal efflux efficiency occurs from the periplasm, being 619 

two orders of magnitude faster than from the cytosol (126). TetA (see above) selectively transport 620 

tetracycline from the cytosol to the periplasm in exchange of a proton (125). On the other hand, 621 

the action of the antibiotics on the cell alters the cellular chemical structure and their metabolic 622 

networks, and it can be suspected that certain molecules, Including non-antibiotics could serve as 623 

inducers of the synthesis of efflux pumps (127). Antechokinetics could study the nature, 624 

expression, location, and degradation of these presumed molecules, possibly related to those 625 

involved in general stress responses.  626 

The question of the number of reduced affinity genes 627 

In our definition of antechology, and more particularly antechodynamics, we have discarded to 628 

formally include antibiotic resistance due to mutated targets with low affinity for the antibiotic, as 629 

they do not constitute any specific “reaction” against the “action” of the antibiotics. However, In 630 

some cases, they could be considered from an antechokinetics perspective, for instance, when the 631 
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number of molecules resulting from the expression of these genes modify the antibiotic resistance 632 

phenotype. For instance, where the beta-lactam resistance mechanism is not a beta-lactamase but 633 

a modified target with reduced affinity for the antibiotic, as in the case of staphylococcal cassette 634 

SCCmec element, the tandem amplification of this gene drives high-level methicillin resistance 635 

(128). To our knowledge, nothing similar has been observed for penicillin low-affinity proteins 636 

(about 5,000-20,000 per cell) in Streptococcus pneumoniae, as PBP2x; however, the number of 637 

PBP2x molecules can be modulated in the activation of the HtrA serine protease that degrades 638 

PBP2x (129). As a final “classic” example, a mutant resistant allele of gyrA, encoded in a 639 

multicopy plasmid, was capable of producing a quinolone resistance phenotype when expressed 640 

by a formerly susceptible strain (130). Such examples show how, to a certain extent, there is a 641 

certain antechokinetic approach that can be applied to mutational events, but this perspective is 642 

not treated in the current work. 643 

The question of intracellular topology in transcription-translation efficiency 644 

The interaction between antibiotic molecules, the antibiotic resistance molecules, and the bacterial 645 

organelles and cellular structures where they meet occurs in defined (yet variable) spaces of the 646 

cell. These encounters should depend on their relative density and their proximity in the space. 647 

Very few have been done to clarify this antechokinetic problem. As an example, the number of 648 

plasmid copies carrying antibiotic resistance genes is highly variable in an otherwise monoclonal 649 

population (131), which results in a populational tuning of gene expression under different 650 

exposure intensities to antibiotic agents. For instance, the spatial distribution in the cell of the 651 

plasmids and frequent carriers of antibiotic resistance genes might influence their interaction with 652 

the translating ribosomes by mRNAs. Apparently, during the growth cycle of bacilli, both large 653 

plasmids with active segregation systems and small plasmids frequently colocalize with the 654 
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microspaces with higher ribosome density in the poles of the cell and close to the cellular 655 

membrane, forming a transcription-translation microspatial factory (132, 133). The chromosomal 656 

genes encoding antibiotic resistance effectors are relatively distant, as the nucleoid is located near 657 

the cell center (134). However, the supercoiled DNA nucleoid (volume: 1 μm³), with an average 658 

pore diameter of ∼ 50 nm, allows the internal circulation of free ribosomes, with an average size 659 

of ∼ 20 nm. On the contrary, polysomes, mRNAs with multiple bound ribosomes are much larger 660 

and diffuse to the areas of higher ribosome density (135). A significant point in antechokinetics is 661 

mRNA localization, meaning that mRNAs are directed to the subcellular microcompartments 662 

where their protein products are targeting (for instance, to degrade an antibiotic or protect a vital 663 

target) (134, 136). If a wealth of new knowledge is needed in this field, bacteria presumably have 664 

an intracellular “road map” network system apparatus involving motor proteins and cytoskeleton-665 

like filaments, as those that have started to be known for plasmid partitioning (133). 666 

 667 

Antechokinetics in resistance to different antibiotic classes. 668 

Beta-lactam resistance 669 

The access of beta-lactamases to bacterial cells occurs by transcription and translation of 670 

chromosomal genes, but, at least in pathogenic species, much more frequently by the uptake and 671 

expression (also in the progeny) of beta-lactamase genes acquired with mobile genetic elements, 672 

as plasmids, transposons (eventually containing integrons), or by the capture of free extracellular 673 

microvesicles containing the resistance proteins. In the case of gene capture, the biogenesis of the 674 

active enzyme starts a complex physiological process attracted some attention in the 1980s but 675 

was overshadowed by the genetics-bioinformatics obsession of recent research. The number of 676 
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beta-lactamase genes present in the cell, for instance, in relation to a plasmid (gene) copy number, 677 

the number of active ribosomes, or the position of the beta-lactamase gene in integron strings (that 678 

is, more or less distant to the promoter sequence), should influence the total concentration of beta-679 

lactamase in the cell, but very few is known of about these aspects. The protein genes should be 680 

first transcribed, giving rise to pre-beta-lactamases, carrying an N-terminal signal leader sequence, 681 

which interacts with the general Sec secretion system, or the twin-arginine (Tat) translocation 682 

system. The Sec system involves a SecYEG integral membrane protein complex heterotrimer 683 

probably acting as a single protein‐conducting channel. This tetrameric arrangement of SecYEG 684 

complexes and the highly dynamic peripherical bound ATPase SecA dimer together form a proton‐685 

motive force‐ and ATP‐driven molecular machine that drives the stepwise translocation of targeted 686 

polypeptides across the cytoplasmic membrane (137). These secretion systems correlate with the 687 

type of beta-lactamases; TEM-1, AmpC, CTX-M, or KPC enzymes use the Sec system; more 688 

“chromosomal” beta-lactamases, such as L2, BlaC, or PenA (and also TEM-1!) can be exported 689 

by both systems (138). The altered COOH-terminal part of the leader signal sequence is attached 690 

to the outer face of the inner membrane. In some cases, the beta-lactamase, in its active form, can 691 

be permanently bound to the membrane, without being excreted (139). Leader sequences can be 692 

used to define beta-lactamase alleles (140). The leader sequence is proteolytically excised (by the 693 

leader peptidase) when the beta-lactamase molecule crosses the cellular membrane and is 694 

exported. Therefore, the export of the beta-lactamases localizes these proteins in the periplasmic 695 

space in gram-negatives, or protruding in part outside the outer membrane, or reaching the extra-696 

membrane space, including the close exterior of the cell, mostly in the gram-positives. The signal 697 

sequence and first nine N-terminal amino acids of Lpp, the major Escherichia coli lipoprotein, are 698 

necessary for proper localization in the outer membrane (141). Possibly capsular material, mostly 699 
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polysaccharides, could retain beta-lactamases (142). There is a possibility of catalytically active 700 

beta-lactamases inside the cytoplasm. Still, they are unable, (probably dependent on the degree of 701 

excision of the leader peptide to be secreted (143). In some cases. Some enzymes (as TEM) cross 702 

the cytoplasmic membrane immediately following translation. That is due to the spatial 703 

connectivity between the cytoplasmic membrane and the dense “ribosome crown” below the 704 

membrane (117). It has been suggested that cytoplasmic chaperones influence the beta-lactamase 705 

protein oxidative folding, which results in membrane translocation (144). Then a rapid and 706 

energetically favorable folding process allows the transported enzyme to adopt the lowest energy 707 

conformation, ensuring that it will be soluble in the aqueous extra-cytoplasmic space (138). If beta-708 

lactamases are produced and secreted in high quantity (as under induction) in the periplasm, they 709 

can form inclusion bodies with low catalytic efficiency (145); in fact, increasing the propensity of 710 

beta-lactamases to aggregate might be a therapeutical strategy (146). Both in Gram positives and 711 

Gram negatives, beta-lactamases can be transported into extracellular vesicles, occasionally 712 

captured by other closely located bacteria, sometimes unable to produce beta-lactamases by 713 

themselves (147, 148). The release of beta-lactamases during the bacterial lytic processes 714 

(bacteriophages, bacterial predators, envelope-disrupting antimicrobials) and their stability in the 715 

environment (as free molecules or granules) is a scarcely investigated field.  716 

There is also meager information about the concentration of beta-lactamases in the different 717 

cellular compartments concerning induction, growth cycle, and shape-alternative cellular 718 

conformations. The volume versus surface of single cells and its consequences in the periplasm 719 

total volume should modify these concentrations (117, 149). This question is critical to evaluate 720 

the relationship between the quantity of beta-lactamase and resistance. In pharmacological terms, 721 

the parameter Vmax reflects the amount of beta-lactamase multiplied by the maximum number of 722 
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catalytic events each enzyme molecule can achieve per unit of time. Therefore, in principle, 723 

increasing the amount of beta-lactamase should increase resistance to beta-lactams (142, 150, 151). 724 

Probably shortly, fluorogenic-beta-lactam-based substrates could serve to measure beta-lactamase 725 

concentration/activity (152).  726 

The correlation between levels of inducibility of chromosomal AmpC beta-lactamase and 727 

resistance level is a good example of the relation between the quantity of beta-lactamase and 728 

antibiotic resistance. Even if the classically considered “inducible” genus Serratia, containing the 729 

whole inducibility system AmpR-AmpC, contains low inducible species that are susceptible to 730 

cephalosporins (56). However, the relationship between the quantity of beta-lactamase and 731 

hydrolytic efficiency is not necessarily linear; the effect of efflux pumps, transcriptional regulators, 732 

and porins can influence the final phenotypic outcome (153). On the other hand, a critical but 733 

hitherto poorly explored point is the speed of induction; the canonical bacterial response could 734 

be eventually delayed to localize enough beta-lactamase in the periplasm to avoid cellular 735 

destruction. To overcome such a “death-before-induction,” some strategies have been suggested. 736 

A “rapid mechanism” based on an alternative signaling system in which a membrane-associated 737 

histidine kinase directly binds β-lactams, triggering the expression of a β-lactamase before 738 

muropeptide disturbance has been suggested (154). In the case of AmpC induction resulting from 739 

the lack of AmpR repression of the AmpC promoter, we can consider that AmpR is a LysR family 740 

master regulator whose deletion influences the expression of hundreds of genes (155). That might 741 

suggest that AmpR-mediated derepression of AmpC could be considered a side effect triggered by 742 

other bacterial stresses, not necessarily the antibiotic exposure. This probably includes “envelope 743 

stress”, as AmpC might contribute to the recovery of the damages in the outer membrane-744 

peptidoglycan architecture (156). 745 
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Another process leading to variable concentration levels of beta-lactamases is gene amplification 746 

leading to an increased number of copies of a particular gene (polyploidy), which results in more 747 

resistant phenotypes. One of the first examples was the effect of multiple copies of the beta-748 

lactamase TEM-1 (by cloning the enzyme in a multicopy plasmid) in the emergence of resistance 749 

to beta-lactam/clavulanate, a beta-lactamase inhibitor (157, 158). This is a general phenomenon in 750 

many species (159). But beta-lactamase polyploidy occurs more frequently by gene amplification 751 

(gene duplication in its simplest version); the steady-state frequencies of gene duplication are 752 

extremely high, typically ranging between 10-5 and 10-2 per cell per gene (160). Polyploidy is 753 

expected to occur under bacterial stress driving filamentation; however, it remains to be 754 

ascertained if the collective protective effect of an increased number of beta-lactamase molecules 755 

per elongated multinuclear cell is diluted by the increase in total cell volume.  756 

Surprisingly, the degradation kinetics of beta-lactamases in the bacterial cell, the host (body, 757 

microbiota) or external environments under natural conditions has been scarcely examined in 758 

recent years. Body proteases (as trypsin) or microbial proteases (as ClpXP) seem to be inactive in 759 

degrading beta-lactamases and eventually might increase antibiotic resistance (161). Early 760 

observations with TEM-1 suggest that molecular folding exerts a critical role and that the disulfide 761 

bond can be essential in the process (162, 163). Outside the cell, AmpC beta-lactamase from E. 762 

coli is reversibly denatured by temperature in a two-state manner with a temperature of melting of 763 

54.6 º (164). 764 

Aminoglycosides resistance 765 

Aminoglycosides (polycationic compounds) can bind the outer membrane lipopolysaccharide, 766 

followed by a displacement of magnesium ions (self-promoted uptake) and increase cytoplasmic 767 

membrane permeability, which might result in passive rapid uptake and eventually membrane 768 
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disruption (165); they do not enter through hydrophilic porins (18, 166). The first stage of uptake 769 

is followed by a slow, energy-dependent, electron-transport-mediated process. Aminoglycosides 770 

should immediately reach their ribosomal target, in the vicinity of the cytoplasmic membrane.  771 

Even if the information is very limited, aminoglycoside resistance enzymes were classically 772 

considered cytoplasmically located. However, the efficiency of interaction and detoxification of 773 

aminoglycoside molecules acting on the ribosomes might suggest a condensation in the 774 

cytoplasmic sub-inner membrane “ribosome crown space”. Another possibility is the 775 

detoxification of the antibiotic before entering the cytoplasm. The efforts to locate 776 

aminoglycoside-modifying enzymes in the periplasm of gram-negatives have provided 777 

controversial results. Osmotic shock technology has been used to release the periplasmic 778 

molecules, but the possibility of contamination with cytoplasmic molecules cannot be discarded. 779 

The examination of putative signal sequences involved in putative periplasmic transport has been 780 

addressed. Aminoglycoside acetyl-transferases have signal-like sequences integrating a long 781 

hydrophobic stretch of amino acids, but they might also have a stabilizing function. These 782 

sequences have not been found in aminoglycoside phosphotransferases. Experiments have been 783 

done by fusing beta-lactamases (TEM type) leader peptides in the acetylase (6´)-Ib. The cells with 784 

this hybrid protein, now periplasmically located, significantly increased aminoglycoside 785 

resistance. These results suggested that the cellular location of the modifying enzyme may be 786 

important in determining resistance levels (167). Later works, on the contrary, indicate that even 787 

if the TEM leader peptide is present, it is not processed (removed), so it becomes part of a mature 788 

AAC (6´)-Ib. The conclusion was that the protein is probably located in the cytoplasm and is 789 

evenly distributed in this compartment (168). In addition, in vivo imaging of this protein confirms 790 
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that it diffuses freely within the cytoplasm of the cell, but it tends to form inclusion bodies at higher 791 

concentrations in rich culture media (169).  792 

The cellular concentration of aminoglycoside-modifying enzymes has effects on the bacterial 793 

resistance phenotype, as it is shown by gene amplification. Phosphotransferase aphA1 results in 794 

clinical resistance to tobramycin (170). Also, bleomycin acts as a transcriptional inducer of the 795 

neo-ble-str operon contained in Tn5, and the increase of the phosphorylase aph3´II results in 796 

amikacin resistance (171, 172). In a much more recent study, the level of resistance to amikacin 797 

increases linearly with a higher concentration of AAC(6′)-Ib until it reaches a plateau at a specific 798 

protein concentration (173).  799 

Macrolides, lincosamides and streptogramins (MLS) resistance 800 

Macrolides are hydrophobic molecules, their self-promoted uptake entry in the cell being favored 801 

by the hydrophobic nature of lipid A in the outer membrane LPS. The macrolides bind to the 802 

nascent peptide exit tunnel in the ribosome (74). The number of 50S ribosomal units where MLS 803 

drugs bind, inhibiting protein synthesis, is about 20,000/cell, but this number is variable with the 804 

growth phase and the bacterial species. The number of genes involved in the most frequent 805 

mechanism of macrolide resistance, 23S rRNA methylation, is comparatively low; as these genes 806 

are usually harbored by plasmids, only one gene is present per plasmid, and a generally few copies 807 

of the plasmids are harbored in the bacterial cell. If a single 23S rRNA methylase is sufficient for 808 

the methylation-deactivation process, resistance depends on the transcription rate under conditions 809 

of induction. To our knowledge, the number of intracellular macrolide molecules needed for an 810 

efficient induction of 23S rRNA methylase remains undetermined. We should also consider the 811 

ribosomal rescue and recycling rate after the prematurely terminated translation events (74, 75, 812 
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174). On the other hand, independently of ribosome stalling, macrolides might exert a protective 813 

role on mRNA decay, favoring ErmB hyperproduction (175). 814 

Tetracyclines resistance 815 

Tetracycline enters the bacterial cell by passive diffusion through the hydrophilic β-barrel protein 816 

bacterial porins (OmpC, OmpF), crossing the outer membrane and thus connecting the periplasmic 817 

space of Gram-negatives with pericellular space. The diffusion is facilitated by positive cation-818 

tetracycline complexes, which dissociate in the periplasm to make a more lipophilic molecule able 819 

to cross the cytoplasmic membrane, an energy-dependent process involving proton motive force 820 

(176). There is a dense “ribosome crown” below the cytoplasmic membrane where most ribosomes 821 

are located. Certainly, the effect of tetracyclines should depend on the number of available 822 

ribosomal targets  which depends on growth rate, and the bacterial species. The number of 823 

tetracycline molecules inside the cell is highly variable (1-100 micromolar, so that the number can 824 

reach 109  molecules). As stated in a previous section, the TetR promoter binds tetracycline, 825 

allowing induction of the TetA efflux pump, also, tetracycline can be displaced from his by 30S 826 

ribosomal target by TetM or TetO. This free tetracycline might then serve to induce TetA (if 827 

present). The spatial location of these mechanisms depends on the location of the mobile genetic 828 

elements that host the corresponding genes; it might be conceived that their resistance efficiency 829 

depends on their chances of meeting translating ribosomes, but this is a poorly investigated field.  830 

Fluoroquinolones resistance 831 

Uptake of hydrophilic fluoroquinolones occurs by passive diffusion using bacterial porins. The 832 

translocation across the bilayered cytoplasmic membrane seems to occur by permeation of the 833 

neutral form of ciprofloxacin, so that the zwitterionic ciprofloxacin, approaching the membrane in 834 
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stacks, diffuse through the membrane as neutral monomers (177). Depending on the external 835 

concentration, and the natural efflux systems (mostly AcrAB), calculations based on 836 

spectrofluorimetry and mass spectrometry yield a bias of a number of 263 ciprofloxacin 837 

molecules/cell (178). The average number of GyrA topoisomerase target molecules per cell has 838 

been estimated to be 2,200, which outnumbers that of ciprofloxacin molecules almost by a factor 839 

of 10 (179).  This indicates that, assuming that all ciprofloxacin molecules are bound to a 840 

topoisomerase complex, roughly 90% of cellular topoisomerases are not inhibited by the antibiotic 841 

and should be able to unwind DNA and facilitate replication.  The binding kinetics to 842 

topoisomerases is probably biphasic, with adhesion first and then cross-linking (180). However, 843 

topoisomerase-ciprofloxacin complexes are poisonous to the cell as they produce replication-844 

assisted double-strand breaks which are the ultimate cause of quinolone-mediated cell death. 845 

Therefore, the number of cleaved complexes containing ciprofloxacin, topoisomerase, and DNA 846 

should determine the antibacterial action. In fact,  the stoichiometry of fluoroquinolone 847 

action/resistance was suspected long time ago, as when mutated gyrA was cloned in a multicopy 848 

plasmid, that resulted in an increase in quinolone resistance (130). More recently, it has shown that 849 

ploidy facilitates fluoroquinolone persister survival (181). 850 

Trimethoprim resistance 851 

Trimethoprim can be detoxified by pumping out the molecule; efflux pumps can be inducible, as 852 

in the case of Acinetobacter baumannii. The efflux pump SxtP, a member of major facilitator 853 

superfamily, is activated by a LysR-type transcriptional regulator, SxtR (182).  854 

 855 

 856 
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Glycopeptide and lipopeptide resistance 857 

Vancomycin molecules freely diffuse through the layers of Gram-positive peptidoglycan that 858 

enclose a Gram-positive bacterial cell to reach the peptide target (183). We have previously 859 

mentioned LiaX as a molecule determining daptomycin resistance. In E. faecalis, its N-terminal 860 

domain is released to the extracellular medium, where it binds daptomycin; the complex is 861 

probably recognized on the cell surface, maintaining the cell membrane stress adaptive response. 862 

The level of daptomycin resistance is probably related to an increase in LiaX molecules (93).  863 

 864 

CROSSROADS BETWEEN ANTECHOLOGY (AD/AK) AND 865 

PHARMACOLOGY (PD/PK) 866 

In the former sections, the reader can appreciate the operative interactions linking 867 

Antechodynamics and Antechokinetics of molecules involved in bacterial resistance against 868 

antimicrobial agents. The most evident example is the effect of changing concentrations of 869 

antibiotic resistance effectors (Antechokinetics), exerting different resistance antibiotic 870 

detoxification activities (Antechodynamics), as a result of the induction of expression of resistance 871 

genes. This relation parallels what occurs with antibiotic molecules in pharmacokinetics and 872 

pharmacodynamics. In fact, PD/PK, and AD/AK studies should be combined to provide data of 873 

potential therapeutical interest. 874 

For a given antimicrobial agent, how many antimicrobial resistance molecules are needed to 875 

detoxify the antibiotic molecules present in the bacterial cell? In other words, how important is the 876 

determination of the stoichiometry of antibiotic and resistance molecules? The stoichiometric 877 

https://www.zotero.org/google-docs/?cqisOy
https://www.zotero.org/google-docs/?NYHFeg


values will probably be variable in different environments and cellular growth phases, and most 878 

importantly the presence of multimolecular mechanisms of resistance (as efflux pumps).  879 

The starting point for these (scarcely developed) studies is the determination of intra-bacterial 880 

antibiotic molecular concentrations per cell considering different external concentrations of the 881 

antibiotic. In recent years, progress has been made by applying spectrofluorimetry (including 882 

microspectrofluorimetry), and mass spectrometry to achieve this goal. These techniques can be 883 

complemented with time-lapse imaging methods able to evaluate the antibiotic transport kinetics 884 

and the subcellular localization of antibiotics in individual cells, revealing the pharmacokinetic 885 

kinetic heterogeneity in bacterial populations. An important driver of the intracellular 886 

concentration of antibiotics in the cell (for a given external concentration) is the rate of antibiotic 887 

influx and efflux. Antibiotic structure-to-intracellular-accumulation (SICAR) studies, 888 

comprehending the rate of influx across the bacterial envelope (SICARIN), the antibiotic efflux 889 

rate by particular mechanisms (SICAREF) provide insights on antibiotic accumulation inside 890 

bacteria (184). However, these studies do not provide general de quantitation in terms of the 891 

number of molecules. 892 

Second, the determination of the number of target molecules of particular antibiotics, and the 893 

number of molecules needed to inactivate a target molecule.  894 

Third, the number of antibiotic resistance molecules present in the cell should be known. That 895 

is work for future research, as our currently available data concerning these parameters are 896 

incomplete. These calculations should consider the growth phase and metabolic conditions of the 897 

cell and the variability in antibiotic-resistance molecules (number of gene copy numbers, inductive 898 

processes). Gene copy numbers are dependent on tandem amplification and an increased number 899 

of mobile genetic elements carrying the resistance gene, eventually resulting from the insertion of 900 
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the gene in cryptic high-copy plasmids (185). The kinetics of the number of antibiotic resistance 901 

is work for future research, as our currently available data concerning these parameters are really 902 

incomplete.  903 

As an example, using bacterial lysates after exposure to different ciprofloxacin concentrations, 904 

the intracellular concentrations in E. coli are about 30 times lower than the external ones; for 905 

instance, 0.08 μg/mL in the lysate when the external concentration is 2,5-3 μg/mL. That should 906 

correspond to about 200-500 ciprofloxacin molecules per cell (178), a close number to the 907 

estimated number of 300 gyrase molecules stably bound to the E. coli chromosome at any time, 908 

among the total number of DNA gyrase molecules determined by epifluorescence in the whole 909 

cell (186) distributed randomly throughout the cytoplasm (187). The number of Qnr ciprofloxacin 910 

inactivating molecules could be estimated to range from a few hundred to a few thousand 911 

molecules per cell (188). Now, the protection Antechodynamics of Qnr, in particular, the 912 

ciprofloxacin inhibitory interactions with DNA gyrase, should be also known (189).  913 

Beta lactams inhibit different PBPs (mostly transpeptidases); these targets construct the 914 

peptidoglycan and, thus, should be mostly spatially linked to this sacculus. In Gram-negatives, the 915 

peptidoglycan is a 2.5-thick structure located in a 15 nm wide periplasm, occupying from 20 to 916 

40% of the total cell volume (190, 191). As stated above, beta-lactamases are mostly located in 917 

the periplasm, protecting against beta-lactam inhibition of PBPs. However, different beta-lactams 918 

target different PBPs, which are not homogeneously located in the cell. PBP2, involved in bacterial 919 

elongation, is located in a spot at the lateral wall and also at the cell division site. PBP3, involved 920 

in cell division, is located in the space corresponding to the division septum (192). This target’s 921 

compartmentalization is probably assured by the fibrillar actin-like structures of the protein MreB 922 

(193). The local stoichiometry of PBPs and beta-lactamases should certainly be better known to 923 
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understand the effect of different concentrations of beta-lactam agents. The number of PBP 924 

molecules in Staphylococcus aureus has been estimated (more than 20 years ago) from 925 

approximately 150 to 825 PBPs/cell (194). In spite of having thinner peptidoglycan, early 926 

calculations for  E. coli yielded about 2,000 PBPs/cell, but many of them are carboxypeptidases 927 

(195). The number of beta-lactamase molecules per cell in resistant organisms is highly variable, 928 

probably ranging from 103 to 106 molecules per cell under different conditions. The whole plot 929 

should also consider the number of beta-lactam molecules in the cell, but against expectations, the 930 

information is also scarce, more focused on changes in indirect markers, such as fluorescence, 931 

immunoblotting of the resistance beta-lactamase, or mRNA transcription of the resistance gene, 932 

rather than in the intracellular molecular concentrations (196, 197).  933 

In general, it is difficult to find this type of data for most antibiotics and their inactivating 934 

molecules (198). To add complexity, the three main parameters that are needed (the number of 935 

antibiotic molecules in the cell, the number of target molecules, and the number of antibiotic 936 

resistance molecules) should probably be considered in the different subcellular locations, 937 

including membrane microdomains (199).  938 

Something to consider as an extension of the scope of the AD/AK are the presumable future fields 939 

are antechotoxicodynamics (ATD) and antechotoxicokinetics (ATK), mimicking what occurs with 940 

antimicrobial drugs (200). Similarly, as drugs may produce toxic effects in the hosts, including 941 

their normal microbiota, bacterial resistance mechanisms could be toxic for the resistant bacterial 942 

organisms, the microbiota, or directly the human or animal hosts. Such perspective has been 943 

extensively treated in the case of mutational “fitness costs” of resistance, or those associated with 944 

the presence of mobile genetic elements carrying resistance genes, which is critical to envisage 945 

possible biorestoration strategies (201–203). In conclusion, and in spite of our apparent extensive 946 
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knowledge of the processes and mechanisms associated with bacterial antibiotic resistance, the 947 

study of such mechanisms of resistance should be “continuous, resilient, and steady” (204). We 948 

hope that the antechological approach that we are proposing might offer novel research challenges 949 

leading to a complete understanding and eventually to the control of antibiotic resistance. 950 
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 1545 

 1546 

Table I: Antechodynamics: primary detoxifying effector molecules causing 1547 

direct effect on antimicrobial agents  1548 

Antibiotics Primary detoxifying effector molecules 
Beta-lactams Beta-lactamases (proteases-hydrolases) 
Aminoglycosides Acetyl-transferases, Phospho-transferases, Nucleotydyl-transferases 
Macrolides, 
Lincosamides, 
Streptogramins 

Phospho-transferases, Esterases, Nucleotydyl-transferases,         
Acetyl-transferases, Hydrolases. 

Phenicols Acetyltransferases 
Tetracyclines Monooxygenases 
Fluoroquinolones Acetyl-transferases, Monooxygenases 
Fosfomycin Metallo-glutathione-transferases 
Rifampicin Glycosyl-transferases, Nucleotydyl-transferases,                                      

Phospho-transferases, Monooxygenases 
Glyco-Lipopeptides Monooxygenases (?), Deacylases, Serin-protease-hydrolases 
Sulphonamides Flavin-Monooxygenases, Flavin-Reductases 
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 1563 



Table II: Antechodynamics: secondary effector molecules triggering the 1564 

expression of genes involved in antibiotic resistance. 1565 

Antibiotics Secondary effector molecules 
triggering antibiotic detoxification 

Detoxification mechanism 

Beta-lactams Muropeptides (murein fragments), 
Transmembrane sensor transducers                                                     
MicroRNAs transcriptases  

Induction beta-lactamases 
Induction beta-lactamases 
PBP degradation 

Aminoglycosides AttC-site integron recombinases       
16SrRNA methyl-transferases                      
AcrD efflux pump synthases 

Increase  acetyl-transferases 
Increase nucleotydyl-transferases 
Reduced ribosome binding              
Efflux pump AcrD 

Macrolides 
Lincosamides, 
Streptogramins 

23S-rRNA methyl-transferase Reduced ribosome binding 

Phenicols 23S-rRNA methyltransferase                          
ATP binding cassette proteins 

Reduced ribosome binding 

Tetracyclines tetR repressor-tetracycline complex   
TetM and TetO proteins 

Expression efflux pump TetA 
Tetracycline target displacement 

Fluoroquinolones Qnr pentapeptide repeat protein, 
requiring integration host factors 

DNA target protection 

Fosfomycin Two-component signal transduction Decreased uptake 
Sulphonamides Two-component signal transduction 

activated by reduced thymidine 
levels 

Increase in thymidine levels 

Glyco-
Lipopeptides 

Two‐component signal transduction d‐Ala‐d‐lac ligase, modifying the 
target in the cell wall 

Polymyxins Two-component signal transduction Induction of lipid A acetylase,  
phosphoethanolamine,  or 4-amino-
4-deoxy-L-arabinose transferases: 
target modification 

Oxazolidinones 23S-rRNA methyltransferase  
ATP-binding cassette 

Reduced ribosome binding 
Target modification 

Fusidic acid Elongation Factor-G-binding protein Target protection 
Nitrofurantoin Two-component signal transduction   Lower transcription of nitroreductases 

with reduced nitrofurantoin effect. 
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 1569 

 1570 

Fig 1. Antibiotics action and Resistance reaction. Blue circles, antibiotic targets; when disturbed (dark green 1571 

arrows), the result is bacterial extinction or growth inhibition. Molecules involved in resistance counteract 1572 

antibiotics’ action (red arrows), destroying or altering the antibiotic (blast) by antechodynamic primary (1) 1573 

effectors, or secondary (2) effectors, acting by triggering primary effectors, preventing antibiotic-target 1574 

binding  (red squares), or pumping out the antibiotic (cylinder), as a result of the antibiotic action on targets. 1575 

The result is bacterial cell survival or growth. Antibiotic pharmacology predicts antibiotic effectiveness; 1576 

antechology predicts antibiotic resistance. 1577 
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 1581 

 1582 

 1583 

Fig 2. A schema of antechodynamic and antechokinetic processes in a bacterial cell. Blue double circles 1584 

represent antibiotic targets. The dotted frame represents the bacterial ribosomes, mainly located in the 1585 

region below the cytoplasmic membrane;  the double grey ovals are a magnification of the ribosomes (see 1586 

magnifying glasses). Green arrows represent antibiotics entering and eventually being detoxified, either 1587 

destroyed, structurally modified to prevent binding to the target, or pumped out (red-bladed-crosses). 1588 

Antechodynamic primary effector molecules (red lines) are directly targeting (often destroying or 1589 

modifying) the antibiotic. Antechodynamic secondary effectors (yellow lines) are molecules resulting from 1590 

antibiotic action that activate primary effectors or modify the antibiotic target preventing drug binding. The 1591 

intracellular spatial trajectories of the detoxifying molecules (red and yellow lines), as their relative 1592 

abundance in relation to the target density and their stability in the cell, are much less known aspects; this 1593 

is the field of Antechokinetics. See the text for more detailed information.  1594 
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