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Abstract 

Ecology often seeks to answer causal questions, and while ecologists have a rich history of 
experimental approaches, novel observational data streams and the need to apply insights across 

naturally occurring conditions pose opportunities and challenges. Other fields have developed 

causal inference approaches that can enhance and expand our ability to answer ecological causal 
questions using observational or experimental data. However, the lack of comprehensive 

resources applying causal inference to ecological settings and jargon from multiple disciplines 
create barriers. We introduce approaches for causal inference, discussing the main frameworks 

for counterfactual causal inference, how causal inference differs from other research aims, and 

key challenges; application of causal inference in experimental and quasi-experimental study 
designs; appropriate interpretation of the results of causal inference approaches given their 

assumptions and biases; foundational papers; and the data requirements and trade-offs between 
internal and external validity posed by different designs. We highlight that these designs 

generally prioritize internal validity over generalizability. Finally, we identify opportunities and 

considerations for ecologists to further integrate causal inference with synthesis science and 
meta-analysis and expand the spatiotemporal scales at which causal inference is possible. We 

advocate for ecology as a field to collectively define best practices for causal inference. 
 

Introduction 

Questions about causal relationships are common in ecology: we seek to understand the effect of 
biodiversity on ecosystem functioning (Tilman et al. 2001, 2014), the impacts of climate change 

and disturbance regimes on ecosystems (García Criado et al. 2020; Halofsky et al. 2020), the 
effects of anthropogenic activities on animal behavior (Gaynor et al. 2018), the effects of 

different abiotic variables on plant productivity across ecosystem types (Smith et al. 2024), and 
the effectiveness of restoration and conservation (Geldmann et al. 2019; Suding 2011). These are 
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fundamentally causal questions: they seek to isolate and estimate the effect of a causal variable 
on an outcome (Box 1) and rule out alternative explanations for the estimated effects (Table 1). 

 
Table 1. Matching distinct research aims with methods. Ecological studies that use 

observational data can have different aims, which require different methodological techniques. In 

addition to estimating causal relationships, we are often interested in description and prediction, 
or the ability to estimate outcomes outside of the observed data. Description, causal inference, 

and prediction ask fundamentally different questions and require different methods (Hernán et 
al., 2019). For instance, some methods ecologists use to assess the performance of their models 

are appropriate for predictive aims but not causal analysis (Addicott et al., 2022; Arif & 

MacNeil, 2022a; Pichler & Hartig, 2023). Here, we demonstrate the different data needs and 
methods required to answer descriptive, predictive, and causal questions in ecology (table 

adapted from Hernán et al. (2019) and Laubach et al. (2021)). 

 Description Prediction Causal analysis 

Urban ecology 

(Locke et al., 2021) 

Question How does historical 

redlining relate to 
current patterns of 

tree canopy cover? 

Can historical 

redlining predict 
current tree canopy 

cover? 

What is the effect of 

historical redlining on 
current patterns of 

tree canopy cover? 

Data ● Redlining 
polygons 

● Current tree cover 
 

● Redlining 
polygons 

● Current tree cover 
 

● Redlining 
polygons 

● Current tree cover 
● Current 

neighborhood-

level 
socioeconomic 

characteristics 
and zoning 

● Spatial data on 

tree-planting 
efforts 

Methods Summary statistics on 
tree cover in redlined 

vs. non-redlined 

neighborhoods 

Regression analysis 
predicting tree cover 

as a function of 

presence of historical 
redlining 

Regression 
discontinuity design 

comparing tree cover 

at boundaries of 
redlined vs. non-

redlined 
neighborhoods 

Invasion ecology 

(Knapp & Matthews, 2000) 

Question What are the 

population trends of 
introduced fish 

species and endemic 
amphibians in alpine 

Which lakes are 

likely to provide 
suitable habitat for 

both introduced fish 
and endemic 

Does the increase in 

populations of 
introduced fish 

species cause a 
decline in endemic 
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lakes? 
 

amphibians? 
 

amphibian 
populations in alpine 

lakes? 

Data ● Population of 

introduced fish 

species over time 
● Population of 

endemic 
amphibians over 

time 

 

● Presence/absence 

or abundance data 

for introduced 
fish species 

● Presence/absence 
or abundance data 

for endemic 

amphibians 
● Lake-level data 

on nutrient levels, 
elevation, surface 

area, maximum 

depth, substrate 
composition, 

solar radiation 
input, and 

isolation from 

other lakes  

● Population of 

introduced fish 

species over time 
● Population of 

endemic 
amphibians over 

time 

● Lake-level data 
on nutrient levels, 

elevation, surface 
area, maximum 

depth, substrate 

composition, 
solar radiation 

input, and 
isolation from 

other lakes  

 

Methods Summary trends over 

time for both taxa 

Species distribution 

models 

Difference-in- 

difference comparing 
population trends in 

lakes with and 

without introduced 
fish species, before 

and after their 
introduction 

Protected areas 

(Xu et al., 2022) 

Question Do protected forests 

have different land 
surface temperatures 

than unprotected 

forests?  
 

How is climate 

change likely to 
change land surface 

temperature in 

protected and 
unprotected forests? 

Do protected areas 

buffer against climate 
change impacts on 

land surface 

temperature?  
 

Data ● Protected area 
polygons 

● Land cover maps 

● Land surface 
temperature data 

 

● Protected area 
polygons 

● Land cover maps 

● Downscaled 
climate 

projections 
 

● Protected area 
polygons 

● Land cover maps 

● Land surface 
temperature data 

● Site-level data on 
elevation, 

topographic 
roughness, 
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distance to roads, 
distance to cities, 

and forest type 

Methods Compare the average 

land surface 

temperatures of 
protected and 

unprotected forests 

Use process-based 

models to project 

land surface 
temperature in forests 

under different 
climate change 

scenarios 

Matching protected 

and unprotected 

forests, then 
regression analysis to 

estimate the effect of 
protection on land 

surface temperature 

 
 

Identifying and quantifying causal relationships, however, pose challenges in complex ecological 
systems. Many factors impact an outcome of interest, and confounding variables – which affect 

both the causal variable and the outcome – can bias estimates of causal relationships. For 

example, precipitation is a confounding variable when estimating the effect of plant species 
richness on grassland productivity, by affecting both richness and productivity (Dee et al. 2023). 

Failure to account for precipitation in our model would lead to incorrect conclusions about the 
significance, magnitude, and/or direction of the effect of species richness on productivity. 

Confounding variables occur frequently in ecological systems: as researchers, we may be aware 

of and able to measure some but not all of them (e.g., we may lack data on some confounding 
variables, or our model may be misspecified, causing us to omit a confounder). This creates 

challenges for understanding causal relationships in ecology. 
 

To answer causal questions, ecologists have traditionally used randomized experiments or 

pseudo-experiments (Christie et al. 2019). However, many ecological questions face logistical 
and ethical challenges to experimentation, such as inability to replicate natural disturbances or 

ethical issues regarding manipulation of endangered or non-native species). Furthermore, 
experiments can be imperfect and do not always meet the assumptions required for causal 

inference: unexpected, non-random processes may pose challenges for their causal interpretation 

(Arif & Massey 2023; Kimmel et al. 2021). Other fields facing similar barriers, including public 
health and economics, have extended the foundations underlying experimental design to develop 

frameworks for inferring causal relationships from observational data (Greenstone & Gayer 
2009; Little & Rubin 2000). These frameworks include statistical approaches for overcoming the 

challenges posed by experimental and observational data, emphasizing clear articulation of the 

assumptions required for causal interpretations of estimated effects (Hernán & Robins 2016). 
While the conservation impact evaluation field has embraced these approaches, particularly to 

assess the effectiveness of protected areas (Ferraro & Pattanayak 2006; Jones & Shreedhar 
2024), causal inference approaches are less widely adopted in ecology. Encouragingly, recent 

reviews have provided introductions to causal inference geared towards ecologists (Butsic et al. 

2017; Larsen et al. 2019), and ecological studies have increasingly applied quasi-experimental 
approaches (Box 1) (Dee et al. 2023; Ramsey et al. 2019; Wu et al. 2023) and used causal 

graphs (Arif & MacNeil 2023; Grace et al. 2016; Shipley 1999) in empirical settings. 
 

These approaches to causal inference can improve our ability to investigate causal relationships 
using both experimental and observational data. Stronger integration of causal inference into 
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ecology can enable new insights by 1) strengthening experimental design and clarifying the 
assumptions required for deriving causal inference from experiments (Kimmel et al. 2021) and 

2) advancing rigorous assessment of causal relationships from observational data (Butsic et al. 
2017; Larsen et al. 2019). These approaches can enable ecologists to leverage novel data streams 

from remote sensing, long-term monitoring, or citizen/community science to test ecological 

theory in natural, non-experimental ecosystems (Dee et al. 2016, 2023; Larsen & Noack 2020) 
and ask ecological questions at management-relevant spatial and temporal scales at which 

randomized controlled experiments are not possible (Ratcliffe et al. 2022, 2024; Siegel et al. 
2022a, b; Simler-Williamson & Germino 2022). This integration has not yet reached its full 

potential, as applying these approaches appropriately requires an in-depth understanding of the 

assumptions, strengths, and limitations of causal inference. 
 

As ecologists, we face significant jargon and disciplinary barriers to adopting causal inference 
approaches, despite the recent proliferation of applications to ecology and open-source software 

tools. Quasi-experimental approaches to causal inference are not part of most graduate curricula 

in ecology, and experimental design courses may not equip students with tools to interpret their 
results when the assumptions underlying randomized experiments are violated. Exploring causal 

inference using texts from multiple other disciplines (e.g., Angrist & Pischke (2008, 2015), 
Cunningham (2021)), ecologists may struggle to find intuitive, applicable examples. Different 

fields’ jargon also creates obstacles (Box 1 provides a glossary). For example, other fields use 

“panel data” to describe what an ecologist might call “longitudinal data,” and “fixed effects” has 
a different – nearly opposite – meaning in ecology than in econometrics (Byrnes & Dee 2024).  

These barriers raise the risk of misusing methods and missed opportunities to advance basic and 
applied ecology. The growth of machine learning highlights the urgency of clarifying best 

practices in the field of causal inference, as these popular methods may not be the best approach 

to answering causal questions (Pichler & Hartig 2023). 
 

To help ecologists overcome these barriers, we provide an accessible translation of causal 
inference study designs by building intuition around the assumptions, strengths, and limitations 

of different approaches. We present the underlying frameworks of causal inference; the 

assumptions upon which causal inference – both from experimental and observational 
approaches – rest and how our interpretation of “arguably causal” results should reflect the 

assumptions underlying the approaches we use; and applications to ecological research. We 
highlight that studies are not simply “causal” or “not causal”: there is a spectrum based on the 

strength of assumptions given the study design, data context, and research question (Kimmel et 

al. 2021). Throughout, we introduce readers to foundational texts. For additional, self-guided 
study, we provide a curated reading list and reproducible demonstrations of individual causal 

inference approaches (Supporting Information), drawing on our experiences teaching a 
graduate-level causal inference course for ecologists (Box 2). Building from previous 

introductions (e.g., Arif & MacNeil (2022b), Butsic et al. (2017), Fick et al. (2021), Grace 

(2021), and Ramsey et al. (2019)), we discuss how strengths of causal inference approaches in 
terms of reducing bias – internal validity – can be weaknesses in terms of generalizability and 

emphasize that these approaches require substantial amounts of data to detect effects. To increase 
generalizability, we discuss potential integrations of causal inference with synthesis science and 

meta-analysis and highlight how the use of new data streams (e.g., from remote sensing) can 
increase both the scale of inference and sample sizes for causal inference. We end with a 
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forward-looking view for the field to collectively define best practices for causal inference in 
ecology. 

 
Causal inference frameworks 

Causal analysis – including experiments and quasi-experiments – must contend with the 

fundamental problem that we can only observe one state of the world (Hernan 2004). We cannot 
directly observe how a change (e.g., a treatment, exposure, or altered condition) affects the same 

individual unit (e.g., person, plant, place) under both treatment and control conditions 
simultaneously (Holland 1986). In other words, we cannot directly observe the counterfactual: if 

a given unit received the treatment, we cannot observe the alternative scenario in which that 

same unit did not (Box 1). To address this, two complementary frameworks for causal inference 
have emerged: the potential outcomes (PO) framework (Rubin 1972) and the structural causal 

model (SCM) (Pearl 2009). In both, and throughout this paper, we define a treatment as a 
potential manipulation or “intervention” by humans or nature. Treatments can be binary (e.g., 

species presence/absence), categorical (e.g., ecosystem type), or continuous (e.g., precipitation 

levels). Treatments may be the result of active manipulation by humans (e.g., species 
introductions) or nature (e.g., beavers’ transformation of hydrology) or a characteristic of a 

system (e.g., edaphic gradients) (Holland 1986).  
 

The PO framework defines a causal effect based on a set of potential outcomes that could be 

observed in alternative states of the world (Rubin 1972, 2005): the causal effect is the difference 
in potential outcomes across two states of nature (Figure 1). The unobserved potential outcomes 

are counterfactuals (Morgan & Winship 2014). Counterfactuals, or well-defined alternatives to 
the outcomes that we observe in the world, are central to causal inference (Ferraro 2009). 

Different approaches are used to construct a counterfactual, all of which – including 

experiments, where control groups are often the counterfactual – require assumptions (Kimmel et 
al. 2021).  
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Figure 1. The fundamental problem of causal inference poses a challenge for experimental and 
observational studies. a) We cannot observe the outcomes of different treatment scenarios – 

receiving the treatment (Di = 1) and not receiving the treatment (Di = 0) – for a single unit 
(Splawa-Neyman 1923). In this example assessing nitrogen’s effect on plant growth, because of 

the fundamental problem of causal inference, we can only observe the outcomes Y1i when Di = 1 

and Y0i when Di = 0. The individual treatment effect is Y1i -Y0i , which is the causal effect of the 
treatment for unit i. b) Different approaches to causal inference range in the strength of the 

assumptions they make to estimate causal effects, from randomized controlled experiments 
(which make the weakest assumptions) to purely observational studies (which make stronger 

assumptions). c) Randomization of treatment assignment ensures there is no systematic 

relationship between treatment assignment and underlying characteristics of the unit that could 
otherwise affect the outcome, allowing for estimation of the treatment (or causal) effect as the 

average difference between the outcomes for the different treatments. d) Observational data, 
lacking randomization, poses challenges for causal inference. In this example, the sample plots 

vary in their background characteristics (e.g., past land use, elevation), which affect soil nitrogen 

and plant growth, complicating our ability to estimate the potential outcomes. Icons from Saxby 
et al. (2024). Photo credits: N. Emery and K. Siegel. 

 
 

The other dominant causal inference framework is the SCM (Pearl 2009, 2010), which is related 

and complementary to the PO framework (Malinsky et al. 2019; Pearl 2009; Richardson & 
Robins 2013). The SCM framework combines counterfactual causality from PO with graphical 

model approaches (Spirtes et al. 2001), generalizing structural models more common in ecology, 
with roots in path analysis (Wright 1921). Recent reviews introduce the SCM to ecologists (Arif 

& MacNeil 2023; Laubach et al. 2021). Briefly, the SCM uses directed acyclic graphs (DAGs) to 

quantify the effects of interventions (Pearl 2009). Drawing on domain knowledge, previous 
research, and ecological theory, DAGs are causal diagrams that map causal relationships among 

variables as directional arrows or paths in a graph (Figure 2). DAGs make transparent our 
assumptions about the relationships in our study system (Pearl 2009). DAGs include all known 

potential confounding variables (Box 1) (Arif & MacNeil 2023) – whether or not they are 

observed in our data – and can clarify variables that fall on the causal path (mediators) or that 
create other sources of bias (e.g., colliders, Box 1) (Figure 2). DAGs thus provide a useful 

starting point for clarifying and articulating assumptions about causal relationships based on 
prior knowledge (Figure 3a) and for thinking through the spatial and temporal scales of the 

dynamics and variables of interest. We recommend drawing a DAG before performing an 

analysis, and ideally before data collection. Arif & MacNeil (2023) provide guidance for 
ecologists on developing a DAG and testing its consistency with the underlying data, including R 

code.  
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Figure 2. When confounding variables are not accounted for, endogeneity occurs: the treatment 

term is correlated with the error term, yielding biased estimates of the treatment effect. We 
demonstrate this issue using directed acyclic graphs (DAGs) to visualize a hypothesized causal 

effect of the presence of rare plant species on grassland productivity. We show the regression 
equations corresponding with each DAG to demonstrate how omission of observed or 

unobserved confounding variables (e.g., precipitation, historical land use) leads to biased 

estimates of the treatment effect. We overcome challenges to endogeneity by conditioning on all 
confounding variables: this is equivalent to applying the back-door criterion (i.e., blocking all 

back-door paths). This can be challenging: all paths must be specified and correct, and all 
confounding variables must be controlled for and measured without error (Huntington-Klein 

2022). Icons from Saxby et al. (2024).   

 
 

 
Figure 3. a) A workflow for causal inference in ecology. Dashed arrows indicate steps that may 

require iteration. For example, the process of drawing a DAG may lead us to modify our research 
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question by clarifying the outcome we believe, based on prior knowledge, would actually be 
impacted by the treatment we have identified. Similarly, the process of collecting or assembling 

data may change our DAG by forcing us to use proxies for important confounders. b) A decision 
tree for choosing a study design and statistical approach for causal inference. The research 

question, domain knowledge about the study system (e.g., understanding whether there are issues 

of simultaneity or compliance), and properties of the available data (e.g., presence of panel data) 
all shape the decision about which, if any, approaches will be appropriate and feasible. For each 

method in a gray box, we note additional key assumptions or requirements that must be met. 
 

 

Challenges for causal inference 

As previously introduced, the frequent occurrence of confounding variables makes causal 

analysis difficult in ecological systems. Confounders pose challenges for experimental and quasi-
experimental approaches to causal inference: failure to account for confounding variables can 

bias estimates of the treatment effect (i.e., the estimated effect will differ from the true effect) 

because if confounders are omitted from the model, the model error will be correlated with the 
treatment (Figure 2). This phenomenon, where the treatment variable is correlated with the error 

term, is called endogeneity (conversely, if the treatment term is not correlated with the error 
term, then it is exogenous). Endogeneity can arise from other causes, like reverse or bidirectional 

causality or measurement error (Box 1) in the explanatory variable, but the challenge of 

confounding variables is especially pertinent in ecology. When confounding variables are not 
accounted for and thus cause bias in the estimator (Box 1), this is called omitted variable bias. 

Notably, omitted variable bias is an issue regardless of the sample size: increasing the sample 
size does not reduce the bias in the estimate. Thus, confounding variables threaten causal 

inference. Note that we discuss regression-based approaches to estimating causal effects, but 

other approaches exist (Pearl 2010). 
 

DAGs can help identify whether we have measured or unmeasured confounding variables (so-
called “back-door paths” that introduce endogeneity and lead to spurious correlations and bias) 

(Rohrer 2018). To satisfy Pearl’s “back-door criterion,” we can use DAGs to identify which 

confounding variables to control for so that the effect of our causal variable of interest is 
conditionally independent (or d-separated) given this control (Arif & MacNeil 2022b; Pearl 

2009). The back-door criterion must be completed for each pathway of interest to interpret the 
results causally. 

 

As nonparametric causal graphs, DAGs encode our assumptions about causal relationships in a 
system to help guide the choice of variables to include or not when estimating their effects (e.g., 

in regression analyses). On their own, however, they do not quantify or estimate the magnitude 
of causal effects. For causal estimation, we next describe statistical designs for causal inference 

that fall along a spectrum from those that require the weakest assumptions for causal 

interpretation, to approaches that require much stronger assumptions. 
 

Experimental designs  

The counterfactual model of causality described above was at the heart of Fisher’s randomized 

controlled experiments (Fisher 1935). Randomized controlled experiments, or randomized 
control trials (RCTs), compare treated units to control units: control units serve as the 
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counterfactual. Randomization – or random treatment assignment – ensures that every unit has 
the same probability of receiving the treatment and therefore that there is no systematic 

relationship between the outcomes and observed or unobserved confounding variables (Figure 

1b). Randomization makes the treatment independent of confounders (Figure 1c), and the 

expected potential outcome for the control units is the same as the expected potential outcome 

for the entire population. Thus, random assignment makes two or more comparable groups. With 
perfect randomization, groups should be identical on average prior to the treatment because 

every unit has an equal probability of being treated. In an ideal randomized controlled 
experiment, the effect of confounding variables is eliminated and the key assumptions of causal 

inference are met (Kimmel et al. 2021). Then, we can compare the differences-in-means of 

treatment groups to estimate an average treatment effect (Box 1) of the population in the 
experiment.  

 
Randomized controlled experiments require the fewest and weakest assumptions for causal 

inference (Fernainy et al. 2024). However, even in experiments, several key assumptions must 

be met for potential outcomes – and thus counterfactuals – to be well-defined. First, experiments 
assume that the treatment T does not affect the outcome Y except through its effect on X, the 

cause being studied (the “excludability” assumption): the treatment is solely responsible for the 
different outcomes observed, and there are no confounding variables. In addition, experiments 

must satisfy the stable unit treatment value assumption (SUTVA), an assumption common to all 

causal inference approaches we discuss. SUTVA has two key components: no interference (a 
unit’s outcome is only conditional on whether it received treatment) and no multiple versions of 

the treatment (there is only a single, well-defined version of each treatment level). Finally, 
experiments assume that there is no “non-compliance”: units have or maintain the treatment they 

were assigned (e.g., in a seed addition experiment, the planted seeds emerge, no other species 

invade, and no species fail to emerge). However, these assumptions can be challenging to meet; 
thus, experiments can deviate from perfect randomization and compliance, highlighting the need 

to engage explicitly with causal thinking when interpreting the results of experiments (Kimmel et 
al. 2021). Furthermore, while randomized controlled experiments are viewed as the gold 

standard for causal inference in terms of internal validity (or the extent to which a study 

accurately estimates a causal relationship within a study population), generalizing from 
experiments and creating experiments that replicate the conditions and scales of processes found 

in nature pose challenges. 
 

Quasi-experimental designs 

Without randomized treatment assignment and experimental control, quasi-experimental designs 
can facilitate causal inference but require more assumptions – many of which are inherently 

untestable – to be met (Imbens 2024). These approaches require careful probing and justification 
of their assumptions based on system-specific knowledge to support interpretation of arguably 

causal relationships. Quasi-experiments can be used at any spatial and temporal scale, while 

randomized, controlled ecological experiments in the field and lab are mostly restricted to 
smaller scales. Quasi-experiments often use specific data structures, such as cross-sectional and 

panel data. Cross-sectional data are observations from multiple units at a single point in time, 
facilitating comparison of treatment effects across individuals. Panel data are observations of 

multiple units across multiple time points. 
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Quasi-experimental approaches to causal inference must often contend with selection bias 
resulting from non-random treatment assignment. For example, we may be interested in the 

effect of land-based nutrient pollution on kelp cover (Krumhansl et al. 2016) (Figure 4a). To 
answer this question, we might relate remotely-sensed water quality data to long-term kelp cover 

monitoring data. However, distance to human settlements and the coast is likely an important 

confounding factor: it affects the amount of land-based pollution to which a kelp forest is 
exposed (the treatment), and it also affects fishing pressure on predators of sea urchins, which in 

turn affect kelp cover (Ling et al. 2009). If we simply compared kelp forests with high vs. low 
levels of nutrient pollution, we might attribute observed differences in kelp cover to pollution 

without accounting for the confounding effect of remoteness on fishing pressure. This example 

demonstrates selection bias: kelp forests exposed to the treatment are systematically different 
from untreated kelp forests in ways that affect the outcome. Kelp forests with the highest nutrient 

pollution are likely closer to coastal areas with high human population densities and thus also 
subject to higher fishing pressure, while kelp forests with minimal pollution are far from the 

coast with less accessible fishing grounds (Witman & Lamb 2018). Selection bias stems from 

non-random treatment assignment: the units exposed to the treatment we wish to study are not 
randomly selected, which introduces confounding. When study designs fail to account for 

selection bias, the estimated difference in the mean outcomes for the treated and untreated 
groups actually represents the average causal effect plus the effect of selection bias.  

 

 
Figure 4: Illustrations of quasi-experimental methods. a) A DAG illustrates assumed causal 
relationships and confounders for a hypothetical study of land-based nutrient pollution’s impact 

on kelp cover. b) Difference-in-differences compare treated and untreated units before and after 
treatment implementation (here, a policy improving water quality discharged by rivers by 

reducing fertilizer use and restoring wetlands). c) Instrumental variables isolate treatment effects 

through variables that impact the treatment but only influence the outcome through their 
relationship with the treatment. Here, green outlining indicates the instrumental variable (nearest 

river mouth’s nutrient load). d) Regression discontinuity designs compare units on either side of 
interventions (here, implementation of the policy from 4b). e) Inverse probability of treatment 

weighting uses propensity scores to weight units based on the likelihood that their treatment 

status is the status predicted by their observable confounders. f) Matching uses propensity scores 
to identify treated and untreated units with comparable confounding variables.  
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Confounding variables may be observable (i.e., factors that the investigator has identified as 
potential confounders and measured) or unobservable (i.e., factors that are known and not 

measured, or unknown). It may not be possible to measure unobservable variables: the study site 

may lack historical records (Butsic et al. 2017), data may not be publicly available, or collecting 
these data may be prohibitively expensive. Different quasi-experimental methods take different 

approaches to dealing with, and make different assumptions about, the presence and importance 
of observable and unobservable confounders. And while quasi-experimental designs require 

more assumptions than randomized experiments to derive arguably causal findings, these 

approaches have the benefit of observing natural conditions (rather than conditions manipulated 
by the researcher) and enable analyses at broader scales. 

 
We review the main approaches to quasi-experimental causal inference, categorizing them 

according to whether or not they condition on unobservable confounders in addition to 

observables. We discuss each approach’s assumptions, strengths, limitations, and data 
requirements (Figure 3b). Butsic et al. (2017) and Larsen et al. (2019) provide further 

introductions to these approaches. Across all these approaches, we recommend, as a first step, 
drawing a DAG – based on knowledge of the study system and ecological theory – with the 

treatment, outcome, and all potential confounders, and mediators and moderators, when they are 

relevant to the research question (Box 1). 
 

Conditioning on observable and unobservable confounders  
Among quasi-experimental approaches to causal inference, approaches that condition on both 

observable and unobservable confounders require the weakest assumptions for causal 

interpretation, by relaxing the assumption that we have observed all confounders (Figure 4b-d). 
These approaches can yield arguably causal interpretations even if we cannot measure or do not 

know all confounding variables in our system, or if we have drawn an incorrect DAG and thus 
do not know the true data-generating process. We briefly review the core ideas and assumptions, 

applications to ecology, and recent trends for these approaches, focusing on difference-in-

difference designs, panel regressions, instrumental variables, and regression discontinuity 
designs. In Table 2, we highlight more recent extensions for these designs.  

 
We start with difference-in-difference (DiD) designs – similar conceptually to before-after 

control-impact (BACI) and thus familiar to ecologists (Green 1979; Stewart-Oaten & Bence 

2001) – which compare the differences in control and treated groups before and after an 
intervention or exposure (reviewed, with extensions, in (Wauchope et al. 2021)). This approach 

compares the differences between the (treated group after − treated group before) - (untreated 
group after − untreated group before) to estimate how much more the treated group changed as 

compared to how much the untreated group changed (Figure 3b; Figure 4b). To create a 

counterfactual, difference-in-difference relies on the untestable assumption that the trends in time 
for these groups would be the same (or parallel) without the treatment. While most textbook 

examples consider binary treatments, difference-in-difference also applies to continuous 
treatments or treatments of different intensities (Callaway et al. 2024). This field is rapidly 

evolving, with emerging methodological extensions for cases where the parallel trends 
assumption is violated and effects are not homogenous (reviewed in Roth et al. (2023)).  
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Similarly, panel regressions or “within” estimators make comparisons within groups, such as 

sites, individuals, or time periods. Panel regression controls for fixed differences across units and 
time-specific effects, or variables that affect all sites in a unit of time) (Wooldridge 2010) 

(Figure 3b). Time-invariant characteristics of sites can be confounding (e.g., more remote kelp 

forests also tend to be less impacted by land-based pollution (Figure 4)); these across-site 
differences are “between variation.” To control for these differences, panel approaches use 

“fixed effects” – dummy variables for each group to control for time-invariant, confounding 
differences across groups, whether or not the confounding variables are observed. Here, a fixed 

effect has a different meaning than its use in mixed effect and hierarchical modeling, which 

instead considers a fixed effect to be a parameter that does not vary by group (Bolker et al. 
2009). With this approach, we can track how, within a location, kelp cover changes through time 

in response to other variables that change through time, like sea surface temperature. Thus, we 
can compare sites to themselves at different treatment levels (e.g., levels of nutrient pollution) 

observed at different points of time as the counterfactual (Dee et al. 2023).  

 
These approaches differ from, and make weaker assumptions for causal identification than, 

mixed effects models using random effects (Byrnes & Dee 2024) or conditioning on observable 
confounding variables along (Dee et al. 2023). The downside is panel approaches “throw out” 

the between variation (both confounding and otherwise) and require large panel datasets because 

they estimate a coefficient for each group and time (Angrist & Pischke 2008; Wooldridge 2010). 
Nested sampling designs can exploit cross-sectional data with multiple plots sampled across 

multiple sites and retain between-group variation (reviewed in Byrnes & Dee (2024) and 
Wooldridge (2010)). These approaches are increasingly used in ecology (e.g., Dudney et al. 

(2021), Ratcliffe et al. (2022) Suskiewicz et al. (2024)) and are straightforward to implement in 

R (Bergé 2018): see Dee et al. (2023) and Byrnes & Dee (2024) for tutorials. 
 

Instrumental variables (IV) regression can eliminate sources of bias from all forms of 
confounding variables (including the time-varying confounding variables missed in DiD), 

measurement error, reverse causality, and simultaneity (Box 1; Figure 3b). IV regression uses a 

third variable (an “instrument”, Z) that is related to the treatment, X, but not to the outcome, Y, 
except through its effect on X (or at least, after controlling for other variables in the system) 

(Angrist & Krueger 2001; Imbens 2014) (Figure 4c). An IV in a regression mimics what an 
experiment’s randomization process would do, where the randomly assigned treatment process is 

independent of Y. The IV must be strongly related to the treatment, but not with the outcome 

(after controlling for other covariates). When these two assumptions are met, IV regression 
yields a local average treatment effect (Box 1). The challenge is finding a valid and relevant IV.  

 
For example, Macdonald & Mordecai (2019) used IV regression to isolate the effects of 

deforestation on malaria transmission and vice versa in the Amazon; because their effects are 

simultaneous, isolating one from another is challenging with standard methods such as mixed 
effect models. They used dry season aerosol pollution as an IV to isolate the effects of annual 

deforestation on malaria transmission from the reverse relationship. For causal interpretation, a 
key, untestable assumption is that dry season aerosol pollution and deforestation are strongly 

related (because most deforestation occurs and cleared forests are burned in the dry season) but 
that dry season aerosol pollution does not directly affect annual malaria transmission after 
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controlling for other factors.  
 

The final quasi-experimental approach to controlling for observable and unobservable 
confounders we discuss is regression discontinuity design (RDD) (Figure 4d). RDD is an option 

when there is a spatial, temporal, or policy discontinuity that separates treated from untreated 

units (Hahn et al. 2001; Imbens & Lemieux 2008); Figure 3b). In RDDs, the treated and 
untreated units are sorted according to their position relative to a threshold in the “running” 

variable (which defines the location of the discontinuity): on one side of the threshold, all units 
receive the treatment, while all units on the other side are untreated. RDDs compare the 

outcomes of units located directly on either side of the threshold to estimate the treatment effect 

(Cattaneo et al. 2019).  
 

RDDs assume that the location of the discontinuity is exogenous: all observable and 
unobservable confounding variables are constant or continuous on either side of the threshold, 

without jumps in their values. As a result, units located directly on either side of the threshold are 

very similar to one another (there are generally no units observed directly at the threshold). In 
ecological systems, it can be difficult to identify appropriate, exogenous discontinuities in the 

absence of policy changes and management interventions (Englander 2019), although temporal 
discontinuities (e.g., before and after a disturbance event) may meet the assumptions of RDDs 

(Grainger & Costello 2014).  RDDs assume that in the absence of the treatment, the outcome 

would not change discontinuously at the threshold (Hahn et al. 2001). To assess the validity of 
this assumption, RDDs require sufficient data on both sides of the threshold (Wuepper & Finger 

2023). We also assume that all unobserved confounders are either correlated with the running 
variable or not discontinuous across the threshold. Generally, RDDs estimate the treatment effect 

using a narrow bandwidth of units on either side of the threshold to avoid making assumptions 

about the shape of the underlying regression functions. 
 

RDDs also assume that the probability of treatment changes discontinuously at the threshold 
(Cattaneo et al. 2019). In a sharp RDD, we assume perfect compliance: all units above the 

threshold receive the treatment, while none of the units below the cutoff receive it (Figure 3b). 

We can relax this assumption and use fuzzy RDD, which merely assumes that the probability of 
treatment changes discontinuously at the threshold (Wuepper & Finger 2023). Fuzzy RDDs 

allow for treatment noncompliance: the value of the running variable is a predictor of whether a 
unit received the treatment but does not completely determine its treatment status. The value of 

the running variable relative to the threshold thus functions as an IV that affects the outcome 

solely through its effect on the likelihood of treatment. RDDs also assume that there is no 
endogenous sorting of units: units do not seek to be on one side of the threshold (Lee 2008). In 

ecological applications, endogenous sorting may occur where animal behavior comes into play – 
e.g., the landscape of fear shapes animal movement (Gaynor et al. 2019) – or where treatments 

cause spatial spillovers – e.g., protected area establishment increases extractive activities directly 

outside reserve boundaries (Ewers & Rodrigues 2008). 
 

A strength of RDD is that many of the underlying assumptions can be tested visually (Cattaneo 
& Titiunik 2022). We can test whether the discontinuity is exogenous by plotting the values of 

confounding variables across the threshold and checking for discontinuous change (Cattaneo et 
al. 2019). Plotting the data using placebo thresholds can reveal whether there are locations with 
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similar treatment effects in the absence of a treatment discontinuity (Noack et al. 2022; Wuepper 
& Finger 2023). Density tests that check for increased sample unit density on one side of the 

threshold can test for endogenous sorting (McCrary 2008).  
 

Conditioning on observable confounders  

Quasi-experimental designs that condition on observable confounders (Figure 3b) make the 
strong, untestable assumption that all important confounders are observable. Two such 

approaches are inverse probability of treatment weighting (hereafter, “weighting”) and matching 
(Figure 4e and 4f). Both use observable confounders to calculate propensity scores, or the 

probability of a unit receiving a treatment based on that unit’s covariate values (Rosenbaum & 

Rubin 1983; Stuart 2010). In matching, we develop a set of control and treated units by 
identifying the control units with propensity scores closest to those of the treated units (Figure 

4f). We discard untreated units that do not have similar propensity scores to treated units and 
vice versa, maintaining only units with sufficient overlap in their covariate values (i.e., common 

support). In weighting, each unit is weighted based on its propensity score such that treated units 

with high propensity scores and untreated units with low propensity scores have lower weights 
than other units (Figure 4e). Weighting retains all units. We use the weights in the subsequent 

regression model to estimate the treatment effect. In both matching and weighting, including the 
covariates used to calculate the propensity score in the subsequent regression model increases the 

robustness of the treatment effect estimate (Jones & Lewis 2015). Matching is more commonly 

used with a binary treatment, although continuous treatments are sometimes stratified, and there 
is ongoing development of approaches for continuous treatments (Brown et al. 2021; Fong et al. 

2018; Hirano & Imbens 2004).  
 

Weighting and matching integrate well with regression methods and work with both panel and 

cross-sectional data. Estimated treatment effects are also less sensitive to mis-specified models 
(Butsic et al. 2017), and propensity scores reduce bias from measurement error in the covariates 

(Austin 2010). There are also simple diagnostics to assess the quality of matches, including 
comparison of standardized mean differences pre- and post-matching. Matching can also reveal 

where there is not sufficient common support to make plausible causal claims (Ho et al. 2011). 

Finally, if unobserved confounders are correlated with the observed confounders, these 
approaches can adjust for unobservables. 

 
The essential assumption of weighting and matching is that selection bias is caused by 

observable confounders or unobserved confounders that are correlated with observed variables: 

they suffer from omitted variable bias when there are unobservable confounders (Simler-
Williamson & Germino 2022). Compared to experimental designs and quasi-experimental 

approaches that condition on unobservables, weighting and matching require stronger 
assumptions for causal interpretation. Finally, matching has several distinct limitations: it relies 

on sufficient common support for treated and untreated units, and it reduces the variation in the 

dataset because units without quality matches are dropped. The results must be interpreted in the 
context of the reduced dataset: the estimated treatment effect is valid for the range of units 

included in the matched dataset, but it may not be appropriate to extrapolate the estimated effect 
to the full dataset.   

 
In addition, and complementary to, these quasi-experimental designs rooted in the PO framework 
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are approaches from the SCM framework. In SCM, conditioning on all confounding variables is 
equivalent to applying Pearl’s back-door criterion (blocking all back-door paths). This makes 

two assumptions: that all paths are specified correctly, and that confounding variables are 
observable and measured (Huntington-Klein 2022). When this cannot be achieved, an alternative 

is the front-door criterion, which adjusts for a mediator that is uncorrelated with the confounding 

variables of concern (Bellemare et al. 2024; Pearl 1995, 2009). Controlling for an exogenous 
mediator blocks the effect of omitted confounding variables and isolates the effect of the causal 

variable of interest (Pearl & Mackenzie 2018). To implement the front door criterion, one first 
estimates the effect of the treatment on the mediator without confounders, then estimates the 

effect of the mediator on the outcome. These two effects are multiplied to get the total effect of 

the treatment on the outcome (Arif & MacNeil 2023). However, identifying situations in which 
the front door-criterion works is challenging, so it is less frequently used (Huntington-Klein 

2022) 
 

Discussion 

Causal questions are central to ecological understanding, and ecology has a rich tradition of 
experiments to address causal questions and estimate the magnitude of causal effects. In recent 

years, ecological literature reviewing or applying causal inference approaches that complement 
experimental approaches has exploded, highlighting a variety of approaches that can exploit new 

data streams to extend ecological understanding to broader spatial and temporal scales. However, 

making sense of how and when to apply these approaches, and navigating the wide-ranging, 
rapidly evolving, technical, and jargon-filled fields that causal inference spans still pose 

challenges. In response, we review key challenges for causal inference using experimental and 
observational data in ecology, quasi-experimental approaches to answering causal questions, and 

the key assumptions underlying these approaches. Building on previous reviews (e.g., Butsic et 

al. (2017) and Larsen et al. (2019)), we explicitly define quasi-experimental designs in terms of 
their treatment of unobservable confounding variables. We believe that this distinction is very 

important for ecologists, as approaches that select on both observable and unobservable variables 
require weaker assumptions for causal interpretation. We demonstrate how the use of PO and 

SCM frameworks can be complementary and provide a workflow for moving from a causal 

question, to a DAG, to the appropriate methodological approach, to interpretation of results 
(Figure 3). We also provide resources for self-guided study, including reproducible code with 

accompanying data and a curated reading list (Supporting Information).  
 

Causal inference is not as straightforward as following a recipe or implementing a pre-existing 

software package. Robust causal inference requires careful combination of pre-existing 
knowledge (formalized in DAGs), appropriate data, study design, and interpretation of estimated 

effects in light of key assumptions. Adding nuance, approaches for causal inference pose trade-
offs and require different assumptions, some of which may be more or less plausible in particular 

contexts (Grace 2024). In addition, the approaches reviewed here emphasize carefully estimating 

one causal effect at a time, rather than estimating all causal effects in a system at once, although 
causal inference can contribute to the goal of building system-level knowledge (Box 4). To 

navigate these important nuances, we synthesize some critical considerations: the spectrum of 
weak to strong assumptions required for causal interpretation of estimated effects, different 

designs’ trade-offs between internal and external validity, and data requirements for causal 
inference. We offer recommendations for overcoming these limitations and outline future 
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research needs. 
 

Tradeoffs between internal and external validity 
Causal inference designs exist along a spectrum from true randomization to purely observational: 

this spectrum reflects both the strength of assumptions needed for causal interpretation and trade-

offs in internal and external validity. While internal validity refers to accurate estimates of causal 
relationships within a study population, external validity is the extent to which a study’s results 

can be applied beyond the study sample (Spake et al. 2022). Quasi-experimental approaches and 
randomized controlled experiments prioritize internal validity: researchers rigorously eliminate 

sources of bias in their estimates of the treatment effect (Desjardins et al. 2021). Much like 

experiments with different treatments, different quasi-experimental designs yield distinct 
estimands, with varying implications for external validity. On one end of the spectrum are ideal, 

randomized controlled experiments, which prioritize internal validity and require the weakest 
assumptions for causal interpretation of effect sizes. However, experiments may struggle with 

external validity, as the controlled conditions and specific populations involved can limit the 

generalizability of findings to broader, real-world contexts (Dee et al. 2023) or other forms of a 
treatment (Wolkovich et al. 2012). Moving further along the spectrum, quasi-experiments and 

imperfect experiments also have trade-offs between internal and external validity (Kowalski 
2023). Both RDD and IV estimate local average treatment effects (LATE) rather than the 

average treatment effect (ATE) (Box 1). RDDs estimate the LATE using units located directly 

on either side of the discontinuity (Baker & Lindeman 2024): it may not be appropriate to 
extrapolate this LATE to units located far from the discontinuity, although emerging methods 

allow researchers to assess RDDs’ external validity (Wing & Bello-Gomez 2018; Wuepper & 
Finger 2023). Similarly, the estimated causal effects of IV designs only apply to compliers (the 

units that vary in response to the IV, Box 1) (Imbens, 2010). 

 
However, we often seek generalizability, or external validity, to extend our findings beyond the 

units and spatiotemporal scale that we studied (Spake et al. 2022). Moving further along the 
spectrum to observational studies that condition only on observables, approaches like matching 

estimate average treatment effects or average treatment effects on the treated (Box 1) but make 

stronger assumptions about our ability to identify and include all confounders. Still, in matching, 
because we exclude unmatched units, we cannot assume that the estimated treatment effect 

would apply to units whose covariate values fall outside the area of common support (Crump et 
al. 2009; Stuart 2010). For example, Siegel et al. (2022a) use matching to estimate the effect of 

federal vs. private land ownership on wildfire probability in western US forests. However, 

because federal wilderness areas tend to be at higher elevations than private forests, the matched 
dataset includes relatively few wilderness units (<7% of federal units in the matched dataset). It 

would thus be inappropriate to naively extrapolate their findings to high-elevation wilderness 
forests. 

 

Data considerations 
Available data also determine generalizability, the choice of causal inference design (and 

therefore internal validity), and the statistical power to detect an effect. Quasi-experimental 
designs have specific data requirements: their appropriateness will depend on both the research 

question and the data context. As noted previously, cross-sectional and panel data are common 
dataset structures in quasi-experimental approaches. Difference-in-difference and panel designs 
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require panel data, while IV and RDD require some plausibly exogenous sources of variation. 
With only cross-sectional data, design options are more limited (e.g., matching or weighting), 

and it is harder to flexibly control for confounding variables, particularly unobserved variables. 
 

Cross-sectional versus panel data also may reflect different effects and degrees of 

generalizability. Cross-sectional data captures a snapshot in time and can be used for space-for-
time comparisons, which are critiqued in applications such as climate change ecology for issues 

with generalizability (Lovell et al. 2023). While cross-sectional data allow us to examine how a 
particular treatment (e.g., exposure to reduced precipitation) affects multiple units (e.g., 

grassland plots in different locations), panel data allow us to examine trends over time across the 

treated and untreated units and generalize to multiple time points. This facilitates the study of 
ecologically interesting questions such as time lags in treatment effects, the effects of varying 

levels of treatment exposure over time, and interactions between the treatment and covariates 
over time. However, there may also be trade-offs in existing datasets in terms of spatial extent 

versus resampling through time. Furthermore, a reliance on panel data that includes the pre-

treatment period is ecologically limiting, as we are less likely to have these data for processes 
such as climate change impacts, species introductions, and unexpected disturbances. The realities 

of funding and data collection logistics may also restrict availability of panel data. 
 

Sample size is a related consideration; many quasi-experimental approaches require relatively 

large datasets for sufficient statistical power to detect effects. Thus, ecologists working with 
limited datasets from field-based observations may not have sufficient data to leverage causal 

inference methods or enough power to detect a treatment effect (Kimmel et al. 2023; Lemoine et 
al. 2016). When there are interactions between the treatment and other covariates, the required 

sample size increases. New data streams can not only scale up ecological understanding and 

inferences when coupled with quasi-experimental approaches, but also increase statistical power. 
 

Synthesis and meta-analyses can help expand external validity by combining multiple internally 
valid studies covering a range of naturally occurring conditions (Spake et al. 2022). Meta-

analysis is a common approach to quantitative synthesis in ecology, especially of experiments. 

However, when meta-analyses include original studies with biased estimands, they can yield 
biased estimates and inaccurate results. This limitation is true for observational designs and 

imperfect experiments (Kimmel et al. 2021). Further, the estimands may not be the same across 
studies, muddying quantitative comparisons. Similarly, if the original studies feeding into a 

meta-analysis focus on different subpopulations with heterogeneous treatment effects, it becomes 

difficult to combine and generalize the estimated effects (Spake et al. 2022). Study eligibility 
criteria can reduce the probability of including original studies with bias: we recommend that the 

field develop eligibility criteria based on the treatment of confounding variables and other 
sources of bias. We may need to develop other approaches to account for remaining endogeneity 

in the original studies (Mathur & VanderWeele 2022) and for comparisons when different 

estimands and subpopulations are involved. 
 

More generally, synthesis science combines datasets from disparate sources and often seeks to 
disentangle causal relationships (Carpenter et al. 2009; Halpern et al. 2020). Quasi-experimental 

approaches can expand and accelerate synthesis science’s contributions to ecological knowledge, 
but measurement error (the difference between the true vs. recorded value of a variable) presents 
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a challenge. Synthesis approaches combine multiple data sources, each with their own sources of 
measurement error. When the extent and types of measurement error differ across studies, error 

and uncertainty can propagate through models using synthesized data. 
  

Another opportunity is using large-scale datasets, such as time series derived from satellite 

imagery, combined with causal inference approaches. The volume of data from Earth 
observations, community science programs, and other distributed surveys and monitoring 

networks is rapidly increasing, expanding observations of ecological systems at larger scales and 
the sample sizes available for data-hungry approaches. More observations of ecosystems under a 

wider variety of time points, conditions, and scales will also increase generalizability of 

inferences and enable us to test new theories that span different spatial and temporal scales of 
causal relationships. 

 
A challenge posed by these expanding data streams, however, is mismatches in spatial and 

temporal resolution between the treatment, confounders, and outcome. For example, remote 

sensing data can facilitate analysis at broader spatial scales but often are available at coarser 
resolutions, which can obscure understanding of highly localized processes (Alix-García & 

Millimet 2023; Jain 2020). If we were interested in the effect of artificial nighttime lights on 
large mammal behavior, for example, we might have outcome data at fine spatio-temporal scales 

(e.g. multiple data points per hour, accurate within several meters) from radio-collars, treatment 

data at 30x30 meter resolutions in the form of daily nighttime light data (Román et al. 2018), and 
data on environmental and socioeconomic confounders at various resolutions. However, newer 

remote sensing techniques and products (such as LiDAR) can generate data at finer spatial and 
temporal resolutions over larger spatial extents, helping to overcome issues with scale 

mismatches. There is also a growing literature examining the unique challenges when using 

remote sensing data for causal inference, as these data are often derived using machine learning. 
This magnifies challenges for controlling for confounders and of measurement error. For 

instance, if confounders are included in the machine learning model that predicts the data, that 
can introduce bias. Analogously, errors from machine learning model predictions are a form of 

measurement error in subsequent causal models that can introduce bias (Alix-García & Millimet 

2023; Gordon et al. 2023; Jain 2020; Proctor et al. 2023). New methodological and conceptual 
advances are needed to reconcile these challenges and facilitate larger scale ecological causal 

understanding (Van Cleemput et al. 2024). 
 

Establishing shared best practices for causal inference in ecology 

Further integration of these approaches into the research design and statistics curriculum for 
graduate students in ecology can help us harness the power of causal inference (Box 2). Many 

ecologists report a desire for more statistical training and a mismatch between their formal 
training and current best-practices (Barraquand et al. 2014; Touchon & McCoy 2016). In our 

experience, graduate students are eager to learn new approaches. Through an emphasis on 

building students’ intuitions regarding the strengths, limitations, and underlying assumptions of 
causal inference designs, focused coursework can strengthen students’ research design and 

statistical skills. As the use of causal inference in ecology becomes more popular, we also need 
careful, critical reviewers to evaluate and provide input into these studies. Fortunately, a growing 

body of ecological studies, applications, and general resources can contribute to self-guided and 
course-based learning (Heiss 2022; Huntington-Klein 2022) (Supporting Information). As 
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more ecologists gain a working understanding of how causal inference can integrate with 
ecological research, we can develop a collective and evolving set of best-practices as a field (Box 

3).   
 

Finally, this synthesis is not exhaustive. Table 2 summarizes additional topics and references. 

While we focus on counterfactual-based causal inference approaches, to build on ecology’s rich 
history of experimentation, there are alternative notions of causality, such as causal detection 

(Munch et al. 2023; Runge et al. 2023; Sugihara et al. 2012) or causal discovery (Spirtes et al. 
2001). Lastly, the designs we present can also be estimated using structural equation modeling 

(Shipley 1999, 2009) and Bayesian approaches (Li et al. 2023; Oganisian & Roy 2021). 

 

Table 2: A summary of some additional topics in causal inference that could inform 

ecological research, including recent methodological advances. For each topic, we provide a 
brief description and some key readings for further self-guided study. Key readings include texts 

discussing the fundamentals of a method (denoted with a *) and texts that demonstrate an 

application of the particular method (denoted with a ⧧). 

Topic  Description Key readings 

Experimental design and techniques to deal with imperfect experiments 

Challenges for experimental 

design and interpretation: 

non-compliance and attrition 

Issues that arise when units 

do not receive the treatment 

they were assigned to or 
when units initially included 

in the sample are lost or 
otherwise not included in the 

analysis 

Gerber & Green, 2012*   

Challenges for experimental 
and observational design and 

interpretation: interference 
and spillovers between units  

SUTVA assumes no 
interference between units, 

but in ecological settings, 
there may be interactions and 

spillovers between units 

Ogburn & VanderWeele, 
2014; Tchetgen & 

VanderWeele, 2012* 
 

Ferraro et al., 2018; Reich et 

al., 2021⧧ 

Understanding mechanisms 

Mediation analysis and 

experimental design for 

mediation  

Methods for assessing the 

direct effect of a treatment on 

a response and the indirect 
effect of the treatment, which 

is due to a mediator on the 
causal pathway from 

treatment to outcome 

VanderWeele, 2015; Pirlott & 

MacKinnon, 2016* 

 

Huberman et al., 2020⧧ 

Moderators, heterogeneous 

treatment effects, and 

conditional average treatment 
effects 

Methods for assessing when 

and how different units may 

respond differently to the 
treatment (e.g., when the 

effect of one variable on the 
response differs depending on 

Athey & Imbens, 2015*; 

Wager & Athey, 2018 

 

Ferraro & Hanauer, 2014; 

Miller, 2020; VanderWeele, 
2015* 
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the level of another variable, 
or moderator) 

 Sensitivity analyses  

Partial identification An approach to causal 
inference that uses weaker 

(and more plausible) 
assumptions to estimate the 

upper and lower bounds of a 

causal effect  

Arriagada et al., 2012; 
Hazzah et al., 2014; 

McConnachie et al., 2016⧧  

Sensitivity analyses and 

placebo designs 

Methods for testing the 

robustness of estimated 
causal effects to violations of 

underlying assumptions 

Eggers et al., 2023; 

VanderWeele & Ding, 2017; 
Cattaneo & Titiunik, 2022; 

Liu et al., 2013* 

Generalizability, reproducibility, and transportability of effects 

Meta-analysis and 
generalizability 

Approaches to generalizing 
results from studies with 

varying levels of external 
validity 

Spake et al., 2022; Nakagawa 
et al., 2023; Spake et al., 

2023* 

Replication and pre-

registration 

Improving reproducibility 

(e.g., through defining 
research questions and 

approaches a priori) 

Nosek et al., 2018; 

Strømland, 2019; Filazzola & 
Cahill, 2021; Kimmel et al., 

2023* 

Extensions: emerging tools for quasi-experimental approaches 

Staggered treatments, 

heterogeneity, and robust 

difference in difference  

Extensions to difference-in-

difference methods that can 

accommodate units that enter 
treatment at different times 

and relax assumptions above 
parallel trends 

Callaway & Sant’Anna, 

2021; Goodman-Bacon, 

2021* 

Synthetic control methods Methods of developing 

control units that use 
weighted averages of all 

potential control units to 
develop counterfactuals that 

are as comparable to the 

treated units as possible 

Abadie et al., 2011* 

 
Abadie & Gardeazabal, 2003; 

Sills et al., 2015; West et al., 

2020⧧ 

Causal inference with 

measurement error  

Challenges posed by 

measurement error; methods 
for accounting for 

measurement error 

Alix-García & Millimet, 

2023⧧ 

Time series and dynamic 
panel models 

Methods that allow for time 
lags, feedbacks, and changing 

Arellano & Bond, 1991* 
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relationships between 
variables over time 

Causal discovery 

Causal discovery using 

graphical models 

Data-driven approaches to 

learning causal relationships 

from large datasets 

Glymour et al., 2019; Runge 

et al., 2019, 2023; Spirtes et 

al., 2001* 

Machine learning  

Machine learning fusion with 
causal inference  

 

Recent advances blend 
machine learning approaches 

with causal inference (e.g. 

causal forests for 
heterogeneous treatment 

effects) 

Athey, 2015; Athey & 
Imbens, 2015; Athey, 2017; 

Athey & Imbens, 2019; 

Pichler & Hartig, 2023* 

 

 

Conclusion  

With growing interest in and use of causal inference techniques, best practices – that are decided 

on and adopted by the field of ecology – are needed. This will allow us to effectively and 
constructively evaluate each other’s work and build on it. Transparency is key, as causal analyses 

rely on assumptions at multiple stages, from  study design to estimation of treatment effects and 

causal interpretation. By clearly stating and justifying our assumptions, we can create more 
credible estimates of causal effects and more reproducible results, enabling others to build on 

existing studies through improvements in data and methods. Ongoing and future improvements 
in estimation and identification (reviewed in Athey & Imbens (2019) and Roth et al. (2023)) – 

which are rapidly evolving in diverse fields, including ecology – can potentially weaken the 

underlying assumptions required for causal interpretations (Roth et al. 2023). Transparency 
about underlying assumptions can also help readers interpret the estimand, determine whether 

they believe a causal interpretation is appropriate, and understand the limits of a result’s 
generalizability (Spake et al. 2022). Finally, transparency ensures that the approaches used are 

appropriate for the question at hand. Credible causal estimates will enable us to advance basic 

and applied ecology, informing ecological theory and ecosystem management at broad scales.  
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Box 1: Key terms in causal inference 

As different disciplines have contributed to the development of causal inference, the field has 
accumulated a dizzying array of jargon. These specialized terms pose barriers to ecologists 

seeking to engage with the literature. We provide definitions for some key terms, with an 
extended glossary in Appendix 1. 



23 

 

 
● Average treatment effect (ATE): the average difference in the outcome variables 

between the treated and control populations (Figure 1). 
● Bias: the difference between the estimated effect and the true value of the effect.  

● Collider: a variable that is affected by both the treatment and the outcome. Conditioning 

on a collider can lead to incorrect estimates of the direction of the effect. 
● Complier: a sample unit that received the treatment to which it was assigned: a unit that 

was assigned to the treated group and received the treatment, or a unit that was assigned 
to the untreated group and did not receive the treatment.  

● Conditioning: an approach to isolating the effect of the treatment on the outcome of 

interest by considering the values of all other variables in a model given a certain value of 
the variable on which the model is conditioned. Also referred to as “adjusting.” 

● Confounder: a variable that affects both the treatment and the outcome. Failing to 
account for confounding variables biases estimates of the treatment effect. 

● Control: the untreated units in an experiment or quasi-experiment. 

● Counterfactual: well-defined alternative(s) to what we observe in the world. 
● Endogeneity: correlation between the treatment variable and the error term, arising due 

to omitted confounding variables, reverse causality, simultaneity, or measurement error 
in the explanatory variable. 

● Estimand: the effect of the treatment compared to the control for a specific population 

(e.g., average treatment effect, average treatment effect of the treated, local average 
treatment effect, and conditional average treatment effect (Supporting Information)). 

● Estimator: a statistical approach to estimating the value of a model parameter. 
● Exogeneity: the condition in which the treatment variable is not correlated with or 

causally influenced by other model parameters. 

● Local average treatment effect (LATE): the treatment effect for units that were 
assigned to the treated group and did in fact receive the treatment, ignoring the effect of 

non-compliance.  
● Measurement error: the difference between the true and recorded/observed value of a 

variable. Measurement error in the treatment variable biases the estimates, while 

measurement error in the outcome variable adds noise to the model without biasing the 
estimates. 

● Mediator: a variable that lies on the causal pathway between the treatment and the 
outcome. 

● Moderator: a variable that affects the magnitude of the causal effect, often implemented 

in statistical analyses and regression as an interaction term. 
● Omitted variable bias: bias in estimates of the treatment effect that occurs when study 

designs do not account for confounding variables. 
● Panel data: data collected for the same sample units over multiple time periods (i.e., 

longitudinal data). 

● Outcome: the value of the response variable. 
● Quasi-experiments: study designs that assess causal relationships in the absence of 

randomization, using variation in units’ exposure to treatment(s). 
● Random assignment: an approach to treatment assignment in which all units have an 

equal probability of receiving the treatment, regardless of underlying characteristics. 
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Randomization ensures that there are no systematic differences between the treated and 
control units, allowing for unbiased estimation of the treatment effect.  

● Reverse causality: the outcome variable affects the treatment, rather than the treatment 
affecting the outcome. 

● Selection bias: when the units that are exposed to the treatment are not randomly 

selected, there may be systematic differences between the treated and control samples, 
biasing the estimate of the treatment effect. 

● Simultaneity: the treatment affects the outcome and the outcome affects the treatment. 
● Stable unit treatment value assumption (SUTVA): the assumption that there is no 

interference in the system (the treatment status of one unit cannot influence the outcome 

of another unit) and that for each unit, there are not different versions of each treatment 
level or hidden variation in the treatment. 

● Treatment: a potential manipulation by humans or nature. Causal inference focuses on 
treatments/causes where we could hypothetically imagine an ideal controlled experiment 

with randomized treatment assignment. 

 

Box 2: Teaching causal inference 

Formal coursework can increase ecologists’ understanding of causal inference. To contribute to 
the development of causal inference curricula for ecologists, we developed and taught a 

graduate-level course on causal inference for ecology in the spring of 2023 in the Department of 

Ecology & Evolutionary Biology at University of Colorado-Boulder, USA. The course attracted 
participants from diverse fields, including PhD students and postdoctoral scholars in ecology, 

evolutionary biology, microbiology, geography, and environmental studies, as well as project 
scientists from academic research groups and a government agency. More than 90% of the 

course participants are now integrating causal inference methods into their dissertations, as side 

projects, or in their work in government agencies.   
 

Course participants had different levels of statistical training, ranging from undergraduate-level 
statistics to extensive previous coursework in graduate-level biostatistics and econometrics. 

There was a similar diversity in experience and comfort with programming in R, the software 

language the course used. To meet the needs of this student body, we emphasized developing an 
intuitive understanding of the methods we taught, rather than stressing the underlying 

mathematics. For those with more technical training in statistics, we also provided key references 
for deeper dives into the math underlying these methods.  

 

Our overall objectives were for students to gain an understanding of the main frameworks for 
counterfactual causal inference and how causal inference differs from other empirical research 

aims; familiarity with how causal inference is applied in experimental and quasi-experimental 
study designs; and experience reading the published literature with a critical eye towards 

appropriate use of methods for identifying causal relationships. Specifically, students learned to 

a) summarize key threats to causal inference and identify these threats when evaluating study 
designs; b) apply causal inference methods to real world research questions and datasets; c) 

identify the most appropriate study design(s) and methodology in non-experimental settings 
based on the available data and research question; d) implement these designs and methods using 

R and e) appropriately interpret the results and their potential biases; and f) communicate clearly 
about these methods, their results, and their assumptions. 
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The course consisted of lectures introducing key topics and methods, demonstrations of how to 

implement quasi-experimental methods in R using simulated and real datasets, student-led 
discussions of publications that used different approaches, and semester-long individual projects. 

Students demonstrated their understanding of the applications of different causal inference 

approaches, the underlying assumptions, and strengths and limitations of different methods 
through their projects: students identified a causal question, developed a DAG and revised it 

based on feedback, compiled the necessary data , conducted a preliminary analysis using a quasi-
experimental method introduced in class, and interpreted the results in the context of the 

method’s underlying assumptions (Figure 3). The projects gave the students an opportunity to 

apply causal inference to their own research areas, with a focus on understanding the underlying 
intuition and learning the mechanics of applying causal inference to real-world problems. They 

also gained experience in providing feedback on each other’s analyses, practicing skills required 
for peer review. 

 

Students readily adopted DAGs, but many struggled to align their datasets with quasi-
experimental designs. They often found matching and weighting to be the most intuitive 

approaches, even though these methods make the strongest assumptions. They also gravitated 
towards these methods due to data constraints (e.g., a single time period of data with no clear 

discontinuity or instrumental variable). Students were familiar with randomized experiments but 

not the approaches available when an experiment does not go to plan. Students’ uncertainty in 
determining which quasi-experimental method best fit their research question and data motivated 

us to create Figure 3b. 
 

We provide a curated reading list from our course (Appendix 2) as a resource for those interested 

in developing similar courses or using the reading list to structure their own, self-guided 
learning. In our experience, a course on causal inference in ecology is useful for students familiar 

with ecological statistics and experimental design, but fundamental concepts of causal inference 
– such as underlying assumptions and issues with confounding – could be incorporated 

throughout research methods and study design curricula for ecologists. 

 
In our experience, existing textbooks may not be well-suited as stand-alone texts for causal 

inference. Many textbook examples focus on binary treatments, while ecologists often encounter 
continuous or categorical treatments. This can create misconceptions about the applicability of 

quasi-experimental methods to ecological contexts (Box 4). Some textbooks pose issues for 

educators seeking to foster an inclusive and just classroom, as they may simplify complex social 
issues (e.g., positioning gender as a binary treatment). 

 
Box 3: Best practices for causal inference in ecology 

To take advantage of causal inference approaches responsibly and effectively, some 

understanding of their underlying assumptions and the contexts in which one study design is 
more robust than another is needed. To interpret an estimated effect or correlation as causal, 

assumptions are always required, even in randomized experiments (Kimmel et al. 2021). Indeed, 
just using a randomized experiment or quasi-experimental approach does not guarantee that the 

interpretation holds causal meaning. While we believe best practices should emerge collectively, 
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we suggest some (non-exhaustive) guidelines to move this process forward, based on our 
experiences teaching, applying, and reviewing papers on causal inference using ecological data. 

  
Data collection and pre-analysis planning. Best practices start before data collection and study 

design enable more robust causal inference. An emerging focus is on best practices for 

reproducibility in ecology prior to data analysis (Kimmel et al. 2023; Parker et al. 2016).  
● Create a DAG based on domain knowledge and use it to guide data collection or 

assembly of existing data. 
● Where possible, collect or assemble pre-treatment data to expand the study designs 

available for your analysis (e.g., difference-in-difference, temporal regression 

discontinuity designs, or other panel design), in both experimental and quasi-
experimental settings. 

● Use pre-registration or pre-analysis plans to define your study design in advance. This 
enhances reproducibility, clarifies assumptions, and reduces the likelihood of p-hacking.  

● Perform power analyses, particularly in field studies with low replication, datasets with 

small sample sizes, or when aiming to estimate interactions (moderator) effects, or site-
specific effects. 

 
Study and statistical design. When possible, use designs that make weaker assumptions, and 

triangulate results using complementary methods and sensitivity tests. 

● Use DAGs to guide your analysis choices and include them in a pre-analysis plan. 
● Where possible (based on the research question and data), use methods that make fewer 

and weaker assumptions about confounding variables (e.g., methods that condition on 
observable and unobservable confounders: IV, RDD, difference-in-difference, within-

estimator, and other panel designs), because even with extensive domain knowledge, 

ecological surprises are still possible. 
● Use multiple, complementary designs to assess the robustness of estimates to different 

assumptions about observed and unobserved confounding (e.g., Dee et al. (2023)).  
● Use sensitivity tests to assess the robustness of estimates to the presence of confounding 

variables that have not been controlled for (Andraczek et al. 2024; Liu et al. 2013). 

 
Communicating assumptions. Clarity around assumptions allows others to understand the study’s 

strengths and limitations and can help identify further avenues for research. 
● Include your DAG(s) in published analyses and interpret your model results in relation to 

your DAG. This will allow others to understand and critique your causal model, and we 

expect published DAGs to also help the field identify commonly unobserved confounders 
that may require new data streams to address.  

● Clearly discuss the assumptions of your study and statistical design, including in 
randomized experiments, and how they are met as well as caveats.  

● Explain how your design accounts for observable and unobservable sources of 

confounding. 
 

Interpreting results. Careful interpretation of results given your study design’s limitations and 
assumptions increases transparency and credibility. 

● Interpret your findings in the context of your study’s assumptions and all forms of bias 
that may remain in your estimates. If your model does not consider unobserved 
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confounders, note that your estimates of causal effects may include the effect of both the 
causal variable and unobserved confounders. 

● Explicitly discuss the limitations of your analysis in terms of potential reasons the 
assumptions required for causal interpretation could be violated. 

● Interpret analyses based on their external validity and avoid over-generalizing your 

inferences. 
 

Changing incentives and norms. As a community, a cultural shift that prioritizes transparency 
and robustness in publishing would improve the credibility of causal inference. As reviewers, we 

recommend viewing explicit acknowledgement of a study’s assumptions and limitations (e.g., 

transparency around issues with internal validity given potential violations of assumptions and 
limits to the generalizability of findings) as a strength, rather than a weakness or a justification 

for rejecting a study’s findings. Current publishing incentives, which may dissuade transparency 
around assumptions and limitations, put the robustness and credibility of causal inference at risk. 

More transparency around these could help the science to build on itself (e.g., by collecting new 

data to overcome assumptions, or developing new methods to relax them). 
 

Box 4: Common misconceptions about causal inference 

We clarify some misconceptions about causal inference approaches and their applicability to 

ecology. 

 
1. Causal inference is purely statistical and does not rely on domain knowledge. Researchers 

using statistical designs for causal inference do not apply these methods in a vacuum, but rather 
draw on ecological knowledge to shape their research questions, hypotheses, study design, and 

importantly, the interpretation and caveats surrounding the estimated effects and reported causal 

relationships. Drawing a DAG is a useful first step for formalizing prior knowledge (Figure 3). 
 

2. Quasi-experiments can only handle binary treatments. Quasi-experiments can accommodate 
continuous and multivalue treatments (e.g., the effect of fire severity categories on forest 

biomass). They can also estimate heterogeneous effects (Table 2). 

 
3. Causal inference does not provide information on mechanisms. The causal inference 

approaches we review can examine causal mechanisms, either by including moderators (e.g., 
interaction terms in a regression) or mediators on the causal path, using mediation analyses 

(VanderWeele 2015; Huberman et al. 2020) (Table 2, Figure 4).  

 
4. The structural causal model (SCM) and the potential outcomes (PO) framework are 

competing and non-overlapping frameworks. SCM and PO are complementary frameworks and 
have been unified and translated from one to another (Malinsky et al. 2019; Richardson & 

Robins 2013). Both seek to achieve unbiased estimates and make assumptions for causal 

interpretation transparent. 
 

5. Prior ecological knowledge can tell us the size and direction of a causal relationship and the 
bias associated with its estimate. Ecological systems are complex, and while prior knowledge 

allows us to form hypotheses about the direction and magnitude of causal relationships, our 
knowledge is limited. We may be incorrect in our assumptions about the size and direction of the 
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bias in our estimates. Bias could mean a true effect is masked (i.e., appears to be zero in an 
analysis) or the estimated effect is a mirage (i.e., a spurious effect, when there is no true effect). 

Bias can also lead to the incorrect sign of an effect or assumed relationship. Approaches such as 
the “useful approximation standard” (Grace 2024), which suggest that an estimated causal effect 

must simply be “predominantly causal” (i.e., the causal component of the estimate is greater than 

the bias component), thus make very strong assumptions, because the size of the bias versus that 
of the true causal effect is unknowable. Under these strong assumptions, researchers may run the 

risk of allowing confirmation bias to guide the interpretation of their results. 
 

6. Studies or estimated effects are either causal or not causal. Causal inference designs fall along 

a spectrum based on the strength of the assumptions they make. Applying a quasi-experimental, 
experimental, or structural modeling approach does not guarantee that the estimated effect 

reflects a true causal effect. Causal interpretation of empirical estimates relies on assumptions 
and domain knowledge about whether those assumptions are met. While causal inference 

methods attempt to reach unbiased estimates, complete lack of bias is almost always 

unachievable. However, we believe that unbiased estimates should still be the goal, as there is no 
rigorous and reproducible definition of a “good enough” estimate (sensu Grace 2024). For 

instance, if a researcher could fully randomize their experimental treatment, they would not opt 
to only partially randomize it. Interpretation of effect sizes and relationships from causal 

analyses in ecology requires transparency about their assumptions and limitations. Use of 

robustness tests can help assess the strength of findings (Box 3). 
 

7. Causal inference methods do not allow for generalizability. While causal inference approaches 
prioritize internal validity, statistical designs such as matching provide more general estimands, 

and causal inference approaches can be integrated with meta-analysis to generalize their 

findings. 
 

8. Quasi-experiments do not seek to understand how a system works. The approaches we discuss 
seek to build up ecological understanding through estimations of each individual element and 

process in the system. Often, multiple analyses and DAGs are needed to advance understanding 

of multiple relationships within that system, as an individual DAG may have many assumed 
relationships but not identify all causal pathways (i.e., an individual DAG may not satisfy the 

backdoor criterion for all relationships in the system). 
 

9. There is a silver bullet for causal understanding. There is no one-size-fits-all approach or 

formula to follow for causal inference. Instead, causal inference is a process that iteratively 
integrates prior knowledge, data, and causal assumptions. The choice of approach is based on 

best available knowledge, methods, and data – which are all evolving as science progresses.  
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Appendix 1: Extended glossary 

 

● Average treatment effect of the treated (ATT): the average treatment effect for the 
units that actually received the treatment. 

● Common support: sufficient overlap in covariate values of treated and untreated units 

(and their propensity scores). 
● Complier average causal effect (CACE): equivalent to the local average treatment 

effect (LATE). This is the treatment effect for units that were assigned to the treated 
group and did in fact receive the treatment, ignoring the effect of non-compliance. 

● Conditional average treatment effect (CATE): the average treatment effect for a 

defined subgroup of the population. 
● Directed acyclic graph (DAG): a diagram that maps the causal relationships between 

variables in a system as directional arrows or paths. 
● External validity: the extent to which a study’s results can be applied beyond the study 

sample. 

● Internal validity: the extent to which a study accurately estimates a causal relationship 
within a study population. 

● Natural experiments: events (i.e., not randomized experimental interventions) that 
divide a population into a treated and untreated group. These events are not guaranteed to 

have exogenous variation. 

● Non-complier: While compilers are sample units that actually received the treatment to 
which they were assigned, non-compliers can take several forms: never takers (units that 

do not receive the treatment, regardless of whether they are assigned to the treated or 
control group), always takers (units that receive the treatment, regardless of whether 

they are assigned to the treated or control group), and defiers (units that receive the 

opposite of their treatment status). 
● Precision: a metric of the similarity of multiple estimates to each other. Precision is 

distinct from bias: a biased estimate can be very precise. 
● Treatment effect (or causal effect): the average causal effect of a variable on an 

outcome variable of scientific or policy interest. In the potential outcomes framework, we 

define a treatment effect as the difference in potential outcomes across two alternative 
states of the world. The average treatment effect is often reported as the treatment effect. 

● Two-way fixed effects: models that incorporate both unit-specific (e.g., using an 
intercept per site, with no assumption that they are drawn from a common distribution) 

and time-specific dummy variables (e.g., a categorical variable for each year). 

● Unit: the individual (e.g., physical site or organism) whose outcome is measured at a 
specific time following either exposure to treatment or non-exposure to treatment. 

 

 

  



Appendix 2: Curated reading list for causal inference 

 

Recommended textbooks  

 

Core textbooks 

Note: Some of these texts use examples to illustrate their points that are problematic (e.g., 
treating gender as a binary or studying post-colonial economic development without considering 

the violence of colonialism). We do not agree with the assumptions underlying these examples 
and we acknowledge the problems with them. The descriptions of methods are still some of the 

easiest to read out there. 

 

● Angrist, JD & JS Pischke. 2008. Mostly Harmless Econometrics: An Empiricist’s 

Companion. (Princeton, NJ: Princeton University Press). 
● Angrist, JD & JS Pischke. 2015. Mastering ’Metrics: The Path from Cause to Effect. 

Princeton, NJ: Princeton University Press. 

● Cunningham, S. 2021. Causal Inference: The Mixtape. New Haven, CT: Yale University 
Press. https://mixtape.scunning.com/.  

● Gerber, AS & DP Green. 2012. Field Experiments: Design, Analysis and Interpretation. 
New York, NY: W.W. Norton & Company. 

● Huntington-Klein, N. 2022. The Effect: An Introduction to Research Design and 

Causality. Chapman & Hall. https://theeffectbook.net/.  
● McElreath, R. 2020. Statistical Rethinking: A Bayesian Course with Examples in R and 

STAN, 2nd edition. Boca Raton, FL: CRC Press. 
● Morgan, SL & C Winship. 2007. Counterfactuals and Causal Inference: Methods and 

Principles for Social Research. Cambridge: Cambridge University Press.  

● Rosenbaum, P.  2010. Observational Studies. New York, NY: Springer. 
 

Texts with more technical discussions of causality:  

● Holland, PW. 1986. Statistics and causal inference. Journal of the American Statistical 

Association, 81(396), 945–960. https://doi.org/10.2307/2289064.  

● Heckman, JJ. 2000. Causal parameters and policy analysis in economics: A twentieth 
century retrospective. The Quarterly Journal of Economics, 115(1), 45–97. 

● Pearl, J. 2009. Causality (2nd ed.). Cambridge: Cambridge University Press.  
 

A book geared towards a popular science audience: 

● Pearl, J, & D Mackenzie. 2018. The Book of Why: The New Science of Cause and Effect. 
Basic Books, Inc., USA. 

 
Readings for each key topic covered in the main text 

 

Introduction to causal inference and counterfactual causality 

● Hernán, MA, J Hsu, & B Healy. 2019. A second chance to get causal inference right: a 

classification of data science tasks. Chance, 32(1). 
https://doi.org/10.1080/09332480.2019.1579578 

https://mixtape.scunning.com/
https://theeffectbook.net/
https://doi.org/10.2307/2289064
https://doi.org/10.1080/09332480.2019.1579578


● Angrist, JD and JS Pischke. 2008. Chapter 1: Questions about questions. In: Mostly 
Harmless Econometrics: an empiricist’s companion. Princeton, NJ: Princeton University 

Press. 
● Gerber, AS & DP Green. 2012. Chapter 1: Introduction. Field Experiments: Design, 

Analysis and Interpretation. New York, NY: W.W. Norton & Company. 

 

Introduction to the main frameworks for counterfactual and design-based causal inference 

● Angrist, JD and JS Pischke. 2008. Chapter 2: The experimental ideal. In: Mostly 
Harmless Econometrics: an empiricist’s companion. Princeton, NJ: Princeton University 

Press. 

● Hernán, MA. 2016. Does water kill? A call for less casual causal inferences. Annals of 
Epidemiology, 26(10), 674–680. https://doi.org/10.1016/j.annepidem.2016.08.016 

 
Potential outcomes 

Overview/methods 

● Little, RJ & DB Rubin. 2000. Causal effects in clinical and epidemiological studies via 
potential outcomes: Concepts and analytical approaches. Annual Review of Public 

Health, 21(1), 121–145. https://doi.org/10.1146/annurev.publhealth.21.1.121 
● Rubin DB. 2005. Causal inference using potential outcomes: Design, modeling, 

decisions. Journal of the American Statistical Association, 100(469), 322–331. 

https://doi.org/10.1198/016214504000001880 
 

Applications and reviews for ecologists 
● Larsen AE, K Meng, & BE Kendall. 2019. Causal analysis in control-impact ecological 

studies with observational data. Methods in Ecology & Evolution, 10(7), 924–934. 

https://doi.org/10.1111/2041-210X.13190 
 

 

DAGs and the structural causal model framework 

Overview/methods 

● Morgan, SL and C Winship. 2007. Chapter 3: Causal graphs. In: Counterfactuals and 
Causal Inference: methods and principles for social research. Cambridge, UK: 

Cambridge University Press. 
● Cunningham, S. 2021. Chapter 3: Directed acyclic graphs. In: Causal Inference: The 

Mixtape (New Haven, CT: Yale University Press). 

● Rohrer, JM. 2018. Thinking clearly about correlations and causation: graphical causal 
models for observational data. Advances in Methods and Practices in Psychological 

Science, 1(1), 27–42. https://doi.org/10.1177/2515245917745629 
 

Applications and reviews for ecologists  

● Arif, S & MA MacNeil. 2023. Applying the structural causal model framework for 
observation causal inference in ecology. Ecological Monographs, 93(1), e1554. 

https://doi.org/10.1002/ecm.1554 
● Laubach, ZM, EJ Murray, KL Hoke, RJ Safran, & W Perng. 2021. A biologist’s guide to 

model selection and causal inference. Proceedings of the Royal Society B, 288, 
20202815. https://doi.org/10.1098/rspb.2020.2815 

https://doi.org/10.1016/j.annepidem.2016.08.016
https://doi.org/10.1146/annurev.publhealth.21.1.121
https://doi.org/10.1198/016214504000001880
https://doi.org/10.1111/2041-210X.13190
https://doi.org/10.1177/2515245917745629
https://doi.org/10.1002/ecm.1554
https://doi.org/10.1098/rspb.2020.2815


 
Software and R package(s) for drawing and analyzing DAGs 

● ggdag: https://cran.r-project.org/web/packages/ggdag/vignettes/intro-to-ggdag.html 
● Shinydag: https://www.gerkelab.com/project/shinydag/ 

● TETRAD: https://sites.google.com/view/tetradcausal 

● DAG program: https://hsz.dife.de/dag/ 
● dagR: Breitling, LP. 2010. dagR: A Suite of R Functions for Directed Acyclic Graphs. 

Epidemiology, 21(4), 586-587. DOI: 10.1097/EDE.0b013e3181e09112  
 

Randomized controlled experiments (RCTs) and experimental design (not comprehensive) 

● Gerber, AS & DP Green. 2012. Chapter 2: Causal inference and experimentation. In: 
Field Experiments: Design, Analysis and Interpretation. New York, NY: W.W. Norton & 

Company. 
● Kimmel K, LE Dee, ML Avolio, & PJ Ferraro. 2021. Causal assumptions and causal 
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Appendix 3: RMarkdown tutorials 

 

We provide RMarkdown tutorials demonstrating selected quasi-experimental methods for causal 
inference in a public GitHub repository: https://github.com/katherinesiegel/intro_causal_inf. The 

data used in the tutorials is stored in the same repository. A README file describes the contents 

of the repository. 
 

The file “Matching_Weighting.Rmd” demonstrates the use of matching and weighting methods, 
using data compiled by Siegel et al. (2022) on the relationship between land ownership and burn 

probability in forests of the western US. Please refer to the original paper for details on the data 

sources (Siegel et al., 2022). 
 

The file “Fixed_Effects” demonstrates the use of panel data and fixed effects models, using data 
compiled by Dee et al. (2023) on the relationship between grassland species richness and 

productivity. Please refer to the original paper for details on the data sources (Dee et al., 2023). 
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