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Abstract 

Software code (e.g., analytical code) is increasingly recognised as an important research output because 
it improves transparency, collaboration, and research credibility. Many scientific journals have introduced 
code-sharing policies; however, surveys have shown alarmingly low compliance with these policies. In this 
study, we expanded on a recent survey of ecological journals with code-sharing policies by investigating 
sharing practices in a comparable set of ecological journals without code-sharing policies. Our aims were 
to estimate code- and data-sharing rates, assess key reproducibility-boosting features, such as the 
reporting of software versioning, and compare reproducibility potential between journals with and 
without a code-sharing policy. We reviewed a random sample of 314 articles published between 2015 and 
2019 in 12 ecological journals without a code-sharing policy. Only 15 articles (4.8%) provided analytical 
code, with the percentage nearly tripling over time (2015-2016:2.5%, 2018-2019:7.0%). Data sharing was 
higher than code-sharing (2015-2016:31.0%, 2018-2019:43.3%), yet only eight articles (2.5%) shared both 
code and data. Compared to a comparative sample of 346 articles from 14 ecological journals with a code-
sharing policy, journals without a code-sharing policy showed 5.6 times lower code-sharing, 2.1 times 
lower data-sharing, and 8.1 times lower reproducibility potential. Despite these differences, the key 
reproducibility-boosting features of the two journal types were similar. Approximately 90% of all articles 
reported the analytical software used; however, for journals with and without a code-sharing policy, the 
software version was often missing (49.8% and 36.1% of articles, respectively), and exclusively proprietary 
(i.e., non-free) software was used in 16.7% and 23.5%  of articles, respectively. Our study suggests that 
journals with a code-sharing policy have greater reproducibility potential than those without. Code-
sharing policies are likely to be a necessary but insufficient step towards increasing reproducibility. 
Journals should prioritize the adoption of explicit, easy-to-find, and strict code-sharing policies to facilitate 
researcher compliance and implement mechanisms such as checklists to ensure compliance. 
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Introduction 

Sharing software code is essential for robust, reproducible, and impactful science (Peng 2011; Borregaard 
and Hart 2016; Lewis et al. 2018; Cole et al. 2024). Software code is used to process and analyze data, 
create figures, and even produce fully executable articles (Mislan et al. 2016; Lasser 2020), and code 
complexity is increasing (Touchon and McCoy 2016; Feng et al. 2020). Code helps with understanding and 
critically evaluating data analysis and, importantly, can be used and extended by others, allowing faster 
scientific progress (Cadwallader et al. 2022). The computational reproducibility of scientific findings (i.e., 
using the same code on the same data to reproduce the same results; Benureau and Rougier 2018), a 
seemingly simple but difficult-to-achieve feature in modern science (e.g., Campbell et al. 2023; Kambouris 
et al. 2024), greatly improves when analytical code is available (Laurinavichyute et al. 2022). 

Code availability has been slowly increasing in ecology (Maitner et al. 2024; Sperandii et al. 2024) and 
other fields (Cao et al. 2023; but see Serghiou et al. 2022), which is likely a consequence of several 
changes. First, software and software codes are being recognised as essential research outputs (DORA: 
https://sfdora.org/read/; ReSA: https://www.researchsoft.org/; Jay et al. 2021). Second, training and 
guidelines on reproducible codes and software management are more available to researchers (Donoho 
et al. 2008; McKiernan 2017; Kohrs et al. 2023). Third, funders and journals have slowly but steadily 
introduced code-sharing policies. For example, the percentage of journals with a code-sharing policy 
increased rapidly for a subset of 96 ecological journals, from 15% in 2015 (Mislan et al. 2016) to 75% in 
2020 (Culina et al. 2020). A larger survey of 275 journals in ecology and evolution found that 72% 
mandated or encouraged code-sharing as of 2024 (Ivimey-Cook et al. 2025). However, there is 
accumulating evidence that the mere existence of journal code-sharing policies likely increases code 
availability (Cadwallader et al. 2022; Fišar et al. 2024; Ivimey-Cook et al. 2025), even when policy 
compliance is alarmingly low. For example, only 27% of articles published between 2015 and 2019 in a 
subset of 96 ecological journals with a code-sharing policy shared their code (Culina et al. 2020), showing 
that policies are only partially efficient if they are not enforced. In addition, policies that do not specify 
and require best-sharing practices likely lead to low code reusability and, ultimately, low reproducibility 
of scientific findings. 

Code-sharing does not necessarily translate into code that is easy to understand, adapt, and reuse. 
Multiple technical challenges to code reuse range from dependencies on the original researcher's 
computational environment, such as the operating system and libraries used, to inadequate 
documentation on how to install, run, and use the code (Boettiger 2015). Code can also easily rot after 
software updates, leading to changes in functionality, compatibility, and, ultimately, the reproducibility 
of the results (Hinsen 2019). Although container technology such as Docker, which packages software and 
its dependencies into a standardized environment, has been suggested as a solution to improve portability 
and reproducibility (Boettiger 2015; Grüning et al. 2018; Essawy et al. 2020; Trisovic et al. 2022), its 
adoption remains low (e.g., Venkatesh et al. 2022). At the minimum, the software and packages that are 
fundamental for the analyses should be stated and appropriately referenced in the main manuscript, and 
the version(s) used should be clearly stated (guidelines for software citation: Chue Hong et al. 2019). The 
remaining packages should be documented as part of stand-alone documentation (e.g., README, or inline 
comments; Benureau and Rougier 2018; Jenkins et al. 2023; Ivimey-Cook et al. 2023). Software and 
package citation is important for computational reproducibility, but also to better explain the 
methodology and give credit to software developers. In addition, the code should ideally be written using 
free (i.e., non-proprietary) and open-source software (also known as FOSS; Ostermann and Granell 2016) 
such as the free and open-source R programming language (R Core Team 2023) which is widely used in 
ecology (Lai et al. 2019; Culina et al. 2020; Kambouris et al. 2024). Furthermore, code should be shared in 
a permanent repository (e.g., Zenodo) and assigned an open and permissive licence and a persistent 
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identifier such as a DOI (Krafczyk et al. 2021; Kim et al. 2022; Jenkins et al. 2023). This is particularly 
important given the far-from-ideal rates of link persistence found for scientific code in fields such as 
astrophysics (Allen et al. 2018; Sperandii et al. 2024).  

Our main goal was to examine whether the implementation of code-sharing policies by journals leads to 
higher rates of code-sharing and overall reproducibility potential. For that, we assessed the code-sharing 
and reporting features of 314 articles published in 12 ecological journals without a code-sharing policy, 
and compared them with those from the comparable sample of 346 articles published in 14 ecological 
journals with a code-sharing policy from Culina et al. (2020). We predict that ecological journals without 
a code-sharing policy will have lower rates of sharing than journals with a code-sharing policy. However, 
we do not have a clear expectation of whether the reporting of features associated with higher long-term 
reproducibility, such as the software used, its versioning and accessibility (free or not), and the location 
where code is shared, will differ between both sets of journals. This is because often code-sharing policies 
are not explicit (Ivimey-Cook et al. 2025), and thus they might not explicitly prompt authors to follow best 
practices, whereas authors who share their code in the absence of code-sharing policies might be primed 
to follow best practices. Finally, we anticipate that code availability and the reporting of features 
associated with higher long-term reproducibility will increase over time, regardless of the existence of 
code-sharing policies, given recent changes in scientific attitudes and norms and the rise of open science 
(Cao et al. 2023).  

Methods 

Our study design closely matches that of Culina et al. (2020), who surveyed 14 ecological journals with a 
code-sharing policy from 2015 to 2019. Thus, readers are referred to Culina et al. (2020) for further 
information on methodology, and importantly, results for journals with a code-sharing policy. In the 
follow-up study here, we aimed to identify 14 comparable ecological journals without a code-sharing 
policy for the same period (i.e., 2015-2019). For this, we used a set of 96 ecological journals originally 
assessed by Mislan et al. (2016) and subsequently reassessed by Culina et al. (2020) and identified 12 
journals without a code-sharing policy as of 2020. This was accomplished by carefully reading the author 
guidelines and open research policies of these journals compiled by Culina et al. (2020). While initially, we 
identified 24 potentially eligible journals (i.e., without a code-sharing policy), we later removed from the 
list two review journals (‘Trends in Ecology and Evolution’, and ‘Annual Review of Ecology, Evolution, and 
Systematics’), nine journals that mentioned code as part of their data-sharing policy (‘Aquatic Microbial 
Ecology’, ‘Behavioral Ecology and Sociobiology’, ‘Ecology and Evolution’, ‘Global Change Biology’, ‘Journal 
of Soil and Water Conservation’, ‘Marine Ecology Progress Series’, ‘Microbial Ecology’, ‘Oryx’, and 
‘Paleobiology’), and one journal that had been discontinued (‘Journal of the North American Benthological 
Society’). We judged the remaining 12 journals eligible (i.e., no code-sharing policy by March 2020; see 
Table S1 in Culina et al. 2020), as they did not mention programming code or other terms that could be 
interpreted as such (e.g., script, research artefacts) in their author guidelines: ‘Basic and Applied Ecology’, 
‘Behavioral Ecology’, ‘Ecosystems’, ‘Freshwater Science’, ‘Frontiers in Ecology and the Environment’, 
‘International Journal of Sustainable Development and World Ecology’, ‘Journal of Plant Ecology’, 
‘Landscape Ecology’, ‘Oecologia’, ‘Oikos’, ‘Polar Research’, and ‘Wildlife Research’. Note that since the 
initial screening in March 2020, some of these journals might have adopted a code-sharing policy; 
however, this would not affect our study as here we focused on articles published between 2015 and 
2019. In addition, readers should be aware that our study was designed to allow us to fully compare in 
detail our results for journals without a code-sharing policy to those with from Culina et al. (2020), so we 
restricted our searches from 2015 to 2019. Subsequently, the general figures on data- or code-sharing 
and reporting practices reported here might not be representative of current ones, for which we refer to 
recent surveys (Maitner et al. 2024; Sperandii et al. 2024). 
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We performed a search in the Web of Science Core Collection (databases covered: Science Citation Index 
Expanded (SCI-EXPANDED) since 1945, Social Sciences Citation Index (SSCI) since 1956, Arts & Humanities 
Citation Index (AHCI) since 1975, Emerging Sources Citation Index (ESCI) since 2017) in February 2022, and 
extracted all the records published in the 12 journals during the same two distinct temporal periods as 
Culina et al. (2020): (i) from the 1st of June 2015 to the 9th of December 2016 (N = 2499 records); and (ii) 
from the 1st of January 2018 to the 21st of May 2019 (N = 2275 records). We then took a random sample 
of 200 articles from each of these two periods (N = 400 in total) using the function ‘sample()’ in R v.4.3.1 
(R Core Team, 2023). We screened their titles and abstracts for eligibility using Rayyan software (Ouzzani 
et al. 2016). To meet our inclusion criteria, an article had to conduct a statistical analysis, develop and run 
a mathematical model, or conduct simulations. Following Culina et al. (2020), we excluded reviews, 
opinions, commentaries, and purely bioinformatics studies. In addition, we excluded two articles from the 
2018-2019 subset that performed landscape analyses because we lacked expertise to understand the 
analyses and software used. Each article was screened by two reviewers (AB, AST), and conflicts among 
them (~5%) were resolved collectively. In total, 314 non-molecular articles passed the title-and-abstract 
screening, and their full-text was read in detail for data extraction. The screening process is presented in 
a PRISMA diagram (Figure S1; O’Dea et al. 2021).  

Data extraction for each article was conducted by two reviewers (AB and either AST, AC, or MP) to increase 
the reproducibility and reliability of the data extraction process. Any conflicts were resolved by involving 
a third reviewer and are marked and explained in the provided data (see ‘data and code availability 
statement’). For each article, we recorded (i) bibliographic information (title, authors, journal, publication 
year), (ii) the type of analyses conducted since our interest was only on articles performing statistical 
analyses and/or simulations, (iii) whether code and data (if used) had been shared (levels: yes, no, 
partially), (iv) for instances of shared code, we recorded where it was shared (levels: repository, 
supplementary material, website), and the name of the repository (if used), and (iv) several additional key 
reproducibility-boosting features (i.e., software and additional package(s)/extension(s) (hereafter 
referred to as “package(s)”) used, number of software and package(s) for which version was provided, 
and whether the software used was free (i.e., non-proprietary; levels: yes, no, partially; where partially 
refers to having used both free and non-free software). Figures were generated using the R package 
‘ggplot2’ v.3.5.1 (Wickham 2016). 

To test whether the reproducibility potential is higher in journals with versus without a code-sharing 
policy, we revisited, updated, and extended the dataset used for the analyses presented by Culina et al. 
(2020). Specifically, for the 346 nonmolecular articles included in Culina et al. (2020), we extracted the 
package(s) used and the number of software and package(s) for which version was provided. We also 
checked the variables of interest that had already been collected by Culina et al. (2020) for inconsistencies. 

Post-hoc decisions we made when processing our data were: (1) whenever packages or extensions were 
not reported, we assigned the number of packages as 0, even if the software used may not actually have 
any packages or extensions. We did this because it was not possible for us to find out information about 
the existence of packages or extensions for all the software reported; (2) for articles that shared some or 
all of their data only within figures (e.g., in a scatterplot), we assigned them as not sharing their data; (3) 
we searched for software and package versions within the main article and supplementary text (whenever 
available), including in their reference lists; (4) in some rare cases when the article did not report the 
software used but we could infer it from the packages or extensions reported, we assigned the software 
as “Not Stated”. 
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Results 

Code- and data-sharing  

We investigated 314 nonmolecular articles that performed statistical analyses or simulations and were 
published between 2015 and 2019 (2015-2016:157 articles, 2018-2019:157 articles) in 12 ecological 
journals without a code-sharing policy as of March 2020. In these 12 journals, the statistical analysis or 
simulation code underlying the research findings was shared in only 15 of 314 articles (4.8%). These 15 
articles were accompanied by either seemingly all (10 articles, 3.2%) or some (five articles, 1.6%) of the 
code. The overall percentage of code shared increased by approximately threefold over the two periods 
(2.5% versus 7.0% in 2015–2016 and 2018–2019, respectively; Figure 1a). At the journal level, the 
percentage of articles where code was shared ranged between 0% and 8.7% (median = 1.2%, mean = 
3.1%; Table 1), indicating that not sharing code is a general phenomenon across ecological journals 
without a code-sharing policy. Of the 15 articles that shared code, 12 (80%) provided it as part of the 
article’s supplementary material, one (6.7%) at a website, and only two (13.3%) in a repository (i.e., 
Dryad).  

Table 1. Code- and data-sharing for 314 nonmolecular articles that conducted statistical analysis or 
simulations [i.e., did not use data] published between 2015 and 2019 in 12 ecological journals without a 
code-sharing policy. 

Journal 
Total number of 
articles sampled 
[using data] 

Number of articles 
providing code (%) 

Number of articles 
providing data (%) 

Basic and Applied Ecology 12 [12] 0 (0.0%) 2 (16.7%) 

Behavioral Ecology 44 [44] 3 (6.8%) 25 (56.8%) 

Ecosystems 23 [23] 2 (8.7%) 10 (43.5%) 

Freshwater Science 16 [16] 0 (0.0%) 1 (6.2%) 

Frontiers in Ecology and the 
Environment 

4 [4] 0 (0.0%) 2 (50.0%) 

International Journal of Sustainable 
Development and World Ecology 

6 [6] 0 (0.0%) 1 (16.7%) 

Journal of Plant Ecology 20 [20] 0 (0.0%) 4 (20.0%) 

Landscape Ecology 44 [44] 1 (2.3%) 21 (47.7%) 

Oecologia 79 [79] 5 (6.3%) 19 (24.1%) 

Oikos 42 [40] 3 (7.1%) 25 (62.5%) 

Polar Research 7 [7] 0 (0.0%) 4 (57.1%) 

Wildlife Research 17 [17] 1 (5.9%) 2 (11.8%) 

 

In the 12 journals without a code-sharing policy, data were shared in 116 of the 312 nonmolecular articles 
that used data (37.2%). These articles were accompanied by either seemingly all (75 articles, 24.0%) or 
some (41 articles, 13.1%) of the data, and the overall percentage of shared data increased by 
approximately 40% over the 5-year period studied (31.0% vs. 43.3%, in 2015–2016 and 2018–2019, 
respectively; Figure 1b). Furthermore, at the journal level, the percentage of articles in which data were 
shared ranged between 6.2% and 62.5% (median = 33.8%, mean = 34.4%; Table 1), suggesting large 
differences in data-sharing across the 12 ecological journals without a code-sharing policy. 
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Figure 1. Code- and data-sharing are uncommon in 12 ecological journals without a code-sharing policy. Percentage of 
nonmolecular articles surveyed that provided code (a)or data (b) for each of the periods studied (2015–2016: 157 articles, 2018–
2019: 157 articles).  

Altogether, only 8 (2.5%) articles had seemingly shared both all data (if any used) and all code, meaning 
that the potential for computational reproducibility in the 12 ecological journals without a code-sharing 
policy surveyed in our study could be as low, and likely lower than 2.5% (Figure 2). This percentage is 8.2 
times smaller than the corresponding percentage found in journals with a code-sharing policy (20.8%; 
Culina et al. 2020). 

 

Figure 2. Diagram visually representing the computational reproducibility potential of articles published between 2015 and 2019 
in ecological journals without a code-sharing policy. The value corresponding to “Data incomplete” used in the diagram (56%) 
was obtained from Roche et al. (2015); whereas all the remaining values correspond to the survey presented in the current study. 
Original illustration by Szymek Drobniak. 
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Features boosting long-term reproducibility in journals with and without a code-sharing policy 

Our survey showed that 88.2% of articles (N = 277) published in journals without a code-sharing policy 
stated the analytical software used (Figure 3a), a value that is almost identical to the 89.9% (N = 311) 
found for articles published in journals with a code-sharing policy (Culina et al. 2020; Figure 3b). For those 
stating the statistical software used, 63.9% (N = 177) of the articles published in journals without a code-
sharing policy reported the version of all software used (Figure 3c), whereas that percentage was 50.2% 
(N = 156) for articles published in journals with a code-sharing policy (Figure 3d). The mean number of 
analytical software used was 1.27 (median = 1.00, range = 1–6) in journals without a code-sharing policy 
and 1.81 (median = 1.00, range = 1–14) in journals with a code-sharing policy. The reporting of software 
versioning remained slightly higher for journals without a code-sharing policy than for those with when 
expressed as the average percentage of software with version per article (without policy: median = 100%, 
mean = 67.5%, range: 0–100%; with policy: median = 100%, mean = 59.6%, range: 0–100%). 

For articles stating that they used additional packages, 32.4% (N = 46) of the articles published in journals 
without a code-sharing policy provided the version of all packages used (Figure 3e), whereas that 
percentage was 19.5% (N = 40) for articles published in journals with a code-sharing policy (Figure 3f). The 
mean number of packages reported was 2.30 (median = 2.00, range = 1 to 10) in journals without a code-
sharing policy and 2.41 (median = 2.00, range = 1 to 14) in journals with a code-sharing policy. The 
reporting of package versioning remained slightly higher for journals without a code-sharing policy than 
for those with when expressed as the average percentage of software with version per article (without 
policy: median = 33.3%, mean = 45.1%, range: 0–100%; with policy: median = 0%, mean = 30.8%, range: 
0–100%). 

For articles stating the statistical software used, 23.5% (N = 65) of articles published in journals without a 
code-sharing policy used exclusively non-free (i.e., proprietary) software (Figure 3g), compared to 16.7% 
(N = 52) of articles published in journals with a code-sharing policy (Figure 3h). 

Discussion  

Our results show that code-sharing is almost non-existent (5%) for non-molecular articles published in 
ecological journals without a code-sharing policy, a figure that is about six times lower than a comparative 
sample from journals with a code-sharing policy. Data availability faired better, with about one-third of 
the articles published in ecological journals without a code-sharing policy sharing data, which corresponds 
to about half the rate observed in journals with a code-sharing policy. These low sharing rates lead to an 
extremely low reproducibility potential (less than 3%) of the results published in journals without a code-
sharing policy. Importantly, this is likely an overestimation because we also found that key reproducibility 
features (e.g., software name or versioning) were mostly lacking. Overall, our results confirm previous 
surveys in ecology and other fields: code-sharing is low, and simply implementing a code-sharing policy 
likely increases code-sharing but not to the desired level. Below, we place our results within and across 
fields and discuss code-sharing and the importance of explicit policies. We also provide suggestions for 
journals on how to improve code-sharing and the (long-term) reproducibility of scientific findings (Box 1). 
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Figure 3. Features boosting long-term reproducibility in journals with (b, d, f, h; right-hand side panels) and without a code-
sharing policy (a, c, e, g; left-hand side panels). The red dashed line corresponds to the mean for the category coloured in black 
(i.e., No software reported, Software versions reported, Package versions reported, and Free software, respectively). “Partially 
free” in panels g and h refers to articles that used both free and non-free software. 
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Open science practices are on the rise. When asked, most scientists agreed with the general open science 
norms and values decades ago (Anderson et al. 2007), but only recently have we started to see more 
evidence of scientists not only agreeing but also adhering to such norms and values. For example, a recent 
survey in social sciences found that the percentage of scientists who self-reported using open science 
practices increased from 49% in 2010 to 87% in 2020 (Ferguson et al. 2023; see also Borycz et al. 2023). 
Meta-research studies have confirmed that several transparency indicators, including, but not limited to, 
data- and code-sharing, are on the rise in ecology (Evans 2016; Culina et al. 2020; Roche et al. 2022a; 
Maitner et al. 2024) and other fields (Heumüller et al. 2020; Cao et al. 2023; Colavizza et al. 2024; Sharma 
et al. 2024). Our current survey detected similar trends in ecological journals without a code-sharing 
policy, with code-sharing tripling from 2015-2016 (2.5%) to 2018-2019 (7.0%). Our results also support 
the observations from previous meta-research studies on authors being more likely to share data than 
code in ecology (Culina et al. 2020) and other fields (Bellomo et al. 2024; Sharma et al. 2024). Researchers 
may perceive greater risks and fewer benefits associated with sharing code compared to data, including 
unfamiliarity with best sharing practices, insecurity about code quality, fear of misuse or unsolicited 
appropriation of ideas, and excess preparation costs (Cadwallader & Hrynaszkiewicz, 2022; Gomes et al., 
2022), coupled with a lack of incentives for code-sharing. This discrepancy might also be in part due to 
journal policies often having a stronger emphasis on data- than code-sharing (Page et al. 2022; Ivimey-
Cook et al. 2025) and is likely less evident in sub-disciplines that rely heavily on computational methods, 
such as computational biology and software engineering (Heumüller et al. 2020; Cadwallader et al. 2022). 

 

BOX 1. How can journals increase code availability? Here is a list of suggestions for journals sorted by 

the ease of implementation. For more information, journals should consider contacting the journal 

liaison officer of the Society for Open, Reliable and Transparent Ecology and Evolutionary Biology 

(SORTEE; https://www.sortee.org/). 

 

 Introduce a code-sharing policy: this can range from simply mandating a code availability 

statement (Hamilton et al. 2023; Sharma et al. 2024) to encouraging or, in the best case, 

mandating code-sharing, ideally coupled with policy enforcement (Ivimey-Cook et al. 2025). 

Policies should be clearly written, explicit and easy to find, and ideally shared among journals 

within and/or among publishers (Christian et al. 2020). 

 

 Implement a reproducibility checklist: this should integrate a minimal list of code-sharing best 

practices such as the use of persistent identifiers like DOIs which ensure long-term accessibility 

and proper attribution (Gewin 2016; Trisovic et al. 2022) or ensuring all software and their 

versioning is provided. Journals should also offer clear guidelines (and support) for authors on 

how to share code, report software and adhere to reproducibility standards. 

 

 Review and verify code: ask authors to share their code upon first submission to allow reviewers 

to have access and review the code. Encourage reviewers to use code (and data) during their 

reviews (Ivimey-Cook et al. 2025). Consider officially integrating code review as part of the 

editorial process by adding data and code editors to ensure code functionality and adherence to 

standards (Krafczyk et al 2021).  

 

https://www.sortee.org/
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Importantly, our results suggest that journals likely have a central role in increasing code-sharing rates: 
code-sharing was higher among nonmolecular articles published in journals with a code-sharing policy 
(27%) than those published in journals without a code-sharing policy (4.8%). A recent survey of meta-
analyses in ecology and evolutionary biology detected similar patterns (21.2% and 9.1%, respectively, 
Kambouris et al. 2024). Previous studies also suggested a link between the introduction of code-sharing 
policies and a subsequent increase in code availability. For example, code-sharing has increased from 53% 
in 2019 and 61% in 2020 to 87% in 2022 after the introduction of a mandatory code-sharing policy by PLOS 
Computational Biology (Cadwallader et al. 2022). Similarly, the percentage of initial submissions providing 
a link to data and/or code increased from 16.9% in 2021 to 42.6% in 2023 after Ecology Letters changed 
their sharing policy from simply providing a statement to mandating (and enforcing) providing a link to 
data and code (Ivimey-Cook et al. 2025; for other examples, in ecology and beyond see Evans 2016; 
Hamilton et al. 2023; Ellis et al. 2024; Bellomo et al. 2024; Sperandii et al. 2024). Regardless of whether 
journals have a code-sharing policy, we also detected trends of an increase in code availability over time. 
This is likely caused by other factors such as changes in norms, better training, and better support in code-
writing and sharing.  

While having a policy helps to increase code-sharing, it is certainly not enough without enforcing 
compliance (Culina et al. 2020). Our previous survey of 14 ecological journals with a code-sharing policy 
study indicated that the strictness of the policy did not affect code availability because the percentage of 
articles sharing code was similar between journals with encouraged (mean and range: 29.7% [14-50%], 
three journals), mandatory (23.0% [22-38%], five journals), and encouraged/mandatory (24.3% [7-53%], 
six journals) policies (Culina et al. 2020). A recent survey in biomedical research found more promising 
rates, with up to 50% of articles published in eight journals with a code-sharing policy, making code 
availability and the likelihood of code-sharing being double in journals with mandatory policies compared 
to encouraged policies (Sharma et al. 2024). Overall, despite low compliance, which has been linked to 
factors such as difficult-to-find or unclear written sharing policies (Christian et al. 2020), these examples 
suggest that even under low policy enforcement, policy interventions can shift research practices towards 
greater openness. Indeed, implementing a code-sharing policy is a positive step forward, even when 
resources for enforcing such a policy and reviewing code (e.g., by adopting data and code editors) are not 
yet available. 

We found that features boosting long-term reproducibility, such as using free software and reporting its 
version, were similar between journals with and without a code-sharing policy, suggesting that, although 
code-sharing policies seem to increase code availability, they might not increase software reporting 
without being more explicit about best practices. We found that versions of the statistical software and 
packages were often missing, and approximately a tenth of the articles did not even state the software 
used. Reporting software and package versions is important for several reasons. First, they can help to 
understand and solve technical issues related to software dependencies, which are among the most 
frequently encountered factors hindering computational reproducibility (Laurinavichyute et al. 2022; 
Kellner et al. 2024; Samuel and Mietchen 2024). Different versions of software and/or packages can lead 
to inconsistencies in results and even to code rot, which occurs when the code relies on specific versions 
of software or packages that are no longer available or have undergone significant changes (e.g., 
deprecated functions), rendering the code incompatible with current operating systems (Boettiger 2015; 
Laurinavichyute et al. 2022). Second, software reporting standards are key for computational 
reproducibility (i.e., obtaining the same results using the same input data and code) but also for analytical 
reproducibility (i.e., obtaining the same results writing fresh code using the provided written 
methodological descriptions when data but not code are available; Kambouris et al. 2024), and thus 
should be prioritized by authors and journals alike (Box 1). Finally, about one-fifth of the articles 
exclusively used non-free (i.e., proprietary) software. Reproducibility is hindered when the code relies on 
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proprietary software that requires a license or subscriptions. Proprietary software restricts access to its 
source code and is inaccessible to researchers who cannot afford it, ultimately limiting independent 
verification and building upon original research (Ostermann and Granell 2016; Benureau and Rougier 
2018; Konkol et al. 2019; Laurinavichyute et al. 2022). Ideally, the code used for a study should be peer 
reviewed to ensure its completeness, reusability, and reproducibility prior to manuscript acceptance 
(Ivimey-Cook et al. 2023). Before code review becomes the norm, authors, reviewers, and editors should 
ensure that the minimum requirements for reproducibility are met, which can be facilitated by the use of 
checklists and policies explicitly linked to best practices. In addition, we advocate for proper software and 
package citation to give credit to software developers and incentivise software and package development 
(e.g., using the R package ‘grateful’; Rodriguez-Sanchez and Jackson 2024). 

Our study has several limitations. Although we matched journals in time and from a seemingly 

representative list of ecological journals, journals with a code-sharing policy were more likely to have a 

data-sharing policy too (Ivimey-Cook et al. 2025), which may increase code-sharing simply by increasing 

the visibility of sharing in general. However, it is fair to assume that some of the 12 journals without a 

code-sharing policy studied here did not have a data-sharing policy between 2015 and 2019, which may 

partially account for the lower code-sharing as a by-product. In addition, journals with and without a code-

sharing policy may have differed in other transparency indicators or predictors of computational 

reproducibility, such as the existence of reporting checklists, differences in prestige, or the type of 

research published. Despite these potential limitations, our study adds to the mounting evidence that 

journal policies are an important stepping stone to increasing code availability. Finally, a potentially 

important factor for increasing data and code sharing that was not explored in our study is the funding 

source, with evidence suggesting that research funded by competitive grants tends to have higher code- 

and data-sharing rates, presumably because these funding bodies often have mandates or strong 

recommendations for sharing as part of their grant conditions (Tan et al. 2024). Thus, we not only call on 

journals to introduce code-sharing policies but also on funders to make a stronger push for mandating 

data- and code-sharing, regardless of whether they currently have the mechanisms necessary to enforce 

those policies. 

 

Conclusions 
In sum, our study adds to the mounting evidence that code-sharing policies increase code availability, 

which ultimately increases the reproducibility potential of scientific findings. Specifically, our study 

suggests that based on code and data availability, the computational reproducibility potential is about 

eight times lower in ecological journals without a code-sharing policy (2.5%) compared to those with one 

(21%). Importantly, however, these should be considered ceiling values because we also found that 

software reporting needs improvement to allow reproducibility, and previous studies have found that 

open code (Obels et al. 2020; Laurinavichyute et al. 2022; Henderson et al. 2024) and data are often 

incomplete and difficult to use due to poor documentation (Roche et al. 2015; Roche et al. 2022b). The 

perceived costs and benefits of sharing code and data have been studied, dissected, and discussed in 

detail elsewhere (Soeharjono and Roche 2021; Gomes et al. 2022; Borycz et al. 2023; Nguyen et al. 2023; 

Koivisto and Mäntylä 2024). Low sharing and reporting are key factors that increase research waste in 

ecology (Purgar et al. 2022) and other fields (Chalmers and Glasziou 2009), and as such, more efforts are 

needed to reduce research waste (see more suggestions in Grainger et al. 2020; Buxton et al. 2021; Purgar 

et al. 2024). Here, we call on all journals and funders to introduce data- and code-sharing policies, even if 

they currently do not have the resources or mechanisms necessary to enforce them. 
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Figure S1. PRISMA diagram detailing the screening procedure and final number of articles included. 


