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Abstract 16 

Software code (e.g., analytical code) is increasingly recognised as an important research output, as it 17 
improves transparency, collaboration, and research credibility. Many scientific journals have introduced 18 
code-sharing policies; however, surveys show alarmingly low compliance with these policies. In this study, 19 
we expand on a recent survey of ecological journals with code-sharing policies by investigating sharing 20 
practices in a comparable set of ecological journals without code-sharing policies. Our aims were to 21 
estimate code- and data-sharing rates, assess key reproducibility-boosting features like the reporting of 22 
software versioning, and compare reproducibility potential between journals with and without a code-23 
sharing policy. We reviewed a random sample of 314 articles published between 2015-2019 across 12 24 
ecological journals without a code-sharing policy. Only 15 articles (4.8%) provided analytical code, with 25 
the percentage nearly tripling over time (2015-2016: 2.5%, 2018-2019: 7.0%). Data-sharing was higher 26 
than code-sharing (2015-2016: 31.0%, 2018-2019: 43.3%), yet only 8 articles (2.5%) shared both code and 27 
data. Compared with a comparative sample of 346 articles from 14 ecological journals with a code-sharing 28 
policy, journals without code-sharing policies showed 5.6 times lower code-sharing, 2.1 times lower data-29 
sharing, and 8.1 times lower reproducibility potential. Despite these differences, key reproducibility-30 
boosting features between the two types of journals were similar. About 90% of all articles reported the 31 
analytical software used; however, for journals with and without a code-sharing policy, software version 32 
was often missing (49.8% and 36.1% of articles, respectively), and only proprietary (i.e., non-free) software 33 
was used in 16.7% and 23.5%  of articles, respectively. Our study suggests that journals with code-sharing 34 
policies have greater reproducibility potential than those without. Code-sharing policies are likely a 35 
necessary but insufficient key step toward increasing reproducibility. Journals should prioritize adopting 36 
explicit, easy-to-find and strict code-sharing policies to facilitate researcher compliance as well as 37 
implement mechanisms such as checklists to ensure compliance. 38 
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Introduction 40 

Sharing software code is essential for robust, reproducible and impactful science (Peng 2011; Borregaard 41 
and Hart 2016; Lewis et al. 2018; Cole et al. 2024). Software code is used for processing and analysing 42 
data, creating figures, and even producing fully executable articles (Mislan et al. 2016; Lasser 2020), and 43 
its complexity is increasing (Touchon and McCoy 2016; Feng et al. 2020). Code helps with understanding 44 
and critically evaluating data analysis, and importantly, can be used and extended by others, allowing 45 
faster scientific progress (Cadwallader et al. 2022). The computational reproducibility of scientific findings 46 
(i.e., using the same code on the same data to reproduce the same results; Benureau and Rougier 2018), 47 
a seemingly simple, but in practice difficult-to-achieve feature in modern science (e.g., Campbell et al. 48 
2023; Kambouris et al. 2024), greatly improves when analytical code is available (Laurinavichyute et al. 49 
2022). 50 

Code availability has been slowly increasing in ecology (Maitner et al. 2024; Sperandii et al. 2024) and 51 
other fields (Cao et al. 2023; but see Serghiou et al. 2022), likely as a consequence of several changes. 52 
First, software and software code are becoming recognised as essential research output (DORA: 53 
https://sfdora.org/read/; ReSA: https://www.researchsoft.org/; Jay et al. 2021). Second, training and 54 
guidelines on reproducible code and software management are more available to researchers (Donoho et 55 
al. 2008; McKiernan 2017; Kohrs et al. 2023). Third, funders and journals have been slowly but steadily 56 
introducing code-sharing policies. For example, the percentage of journals with code-sharing policies 57 
increased rapidly for a subset of 96 ecological journals, from 15% in 2015 (Mislan et al., 2016) to 75% in 58 
2020 (Culina et al. 2020). Recently, a larger survey of 275 journals in ecology and evolution found that 59 
72% mandate or encourage code-sharing as of 2024 (Ivimey-Cook et al. In prep.). While the evidence that 60 
the mere existence of journal code-sharing policies likely increases code availability is accumulating 61 
(Cadwallader et al. 2022; Fišar et al. 2024; Ivimey-Cook et al. In prep.), policy compliance remains 62 
alarmingly low. For example, only 27% of articles published between 2015 and 2019 in the subset of 96 63 
ecological journals with code-sharing policies shared their code (Culina et al. 2020), showing that policies 64 
are only partially efficient if they are not enforced. In addition, policies that do not specify and require 65 
best-sharing practices likely lead to low code reusability, and ultimately low reproducibility of scientific 66 
findings. 67 

Code-sharing itself does not necessarily translate into code that is easy to understand, adapt and reuse. 68 
Multiple technical challenges to code reuse range from dependencies on the original researcher's 69 
computational environment such as the operating system and libraries used, to inadequate 70 
documentation on how to install, run, and use the code (Boettiger et al. 2015). Code can also easily rot 71 
after software updates are released, leading to changes in the functionality, compatibility and, ultimately, 72 
the reproducibility of the results (Hinsen 2019). Although container technology such as Docker, which 73 
packages the software and its dependencies into a standardized environment, has been suggested as a 74 
solution to improving portability and reproducibility (Boettiger et al. 2015; Grüning et al. 2018; Essawy et 75 
al. 2020; Trisovic et al. 2022), its adoption remains low. At the minimum, the software and packages used 76 
for the analyses should be stated and appropriately referenced, and the version(s) used clearly stated in 77 
the manuscript and/or as part of stand-alone documentation (e.g., README, or inline comments; 78 
Benureau and Rougier 2018; Jenkins et al. 2023; Ivimey-Cook et al. 2023). In addition, code should ideally 79 
be written using free (i.e., non-proprietary) and open-source software (also known as FOSS; Ostermann 80 
and Granell 2016) such as the free and open-source R programming language (R Core Team 2023) that is 81 
widely used in ecology (Lai et al. 2019; Culina et al. 2020; Kambouris et al. 2024). Further, code should be 82 
shared in a permanent repository (e.g., Zenodo) and assigned with an open and permissive licence and a 83 
persistent identifier such as a DOI (Krafczyk et al. 2021; Kim et al. 2022; Jenkins et al. 2023). This is 84 
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particularly important given the far-from-ideal rates of link persistence found for scientific code in fields 85 
such as astrophysics (Allen et al. 2018).  86 

In this work, we study whether implementing code-sharing policies leads to higher rates of code-sharing. 87 
In addition, we explore the reporting of features associated with higher long-term reproducibility in 88 
journals with and without code-sharing policies. We assess the code-sharing and reporting features of 314 89 
articles published in 12 ecological journals without code-sharing policies and compare them with those 90 
from a comparable sample of 346 articles published in 14 ecological journals with code-sharing policies. 91 
We predict that ecological journals without code-sharing policies will have lower rates of sharing 92 
compared to journals with code-sharing policies. However, we do not have a clear expectation on whether 93 
the reporting of features associated with higher long-term reproducibility such as the software used, its 94 
versioning and accessibility (free or not), and the location where code is shared will differ between both 95 
sets of journals. This is because many code-sharing policies are not explicit (Ivimey-Cook et al. In prep.), 96 
and thus they might not explicitly prompt the authors to follow best practices, whereas authors who share 97 
their code in the absence of code-sharing policies might be primed to follow best practices. Finally, we 98 
anticipate that code availability and the reporting of features associated with higher long-term 99 
reproducibility will both increase over time, regardless of the existence of code-sharing policies, given 100 
recent changes in scientific attitudes and norms, and the rise of open science (Cao et al. 2023).  101 

Methods 102 

Our study design closely matches that of Culina et al. (2020) who surveyed 14 ecological journals that had 103 
a code-sharing policy from at least 2015 to 2019. In a follow-up study here, we aimed to identify 14 104 
comparable ecological journals without a code-sharing policy for the same period (i.e., 2015-2019). For 105 
that, we used the set of 96 ecological journals originally assessed by Mislan et al. (2016) and subsequently 106 
reassessed by Culina et al. (2020), and identified 12 journals without a code-sharing policy as of 2020. This 107 
was done by carefully reading the author guidelines and open research policies of these journals compiled 108 
by Culina et al. (2020). While initially, we identified 24 potentially eligible journals (i.e., without a code-109 
sharing policy), we later removed from the list two review journals (‘Trends in Ecology and Evolution’, and 110 
‘Annual Review of Ecology, Evolution, and Systematics’), nine journals that mentioned code as part of 111 
their data-sharing policy (‘Aquatic Microbial Ecology’, ‘Behavioral Ecology and Sociobiology’, ‘Ecology and 112 
Evolution’, ‘Global Change Biology’, ‘Journal of Soil and Water Conservation’, ‘Marine Ecology Progress 113 
Series’, ‘Microbial Ecology’, ‘Oryx’, and ‘Paleobiology’), and one journal that had been discontinued 114 
(‘Journal of the North American Benthological Society’). We judged the remaining 12 journals eligible (i.e., 115 
no code-sharing policy by March 2020; see Table S1 in Culina et al. 2020), as they did not mention 116 
programming code or other terms that could be interpreted as such (e.g., script, research artefacts) in 117 
their author guidelines: ‘Basic and Applied Ecology’, ‘Behavioral Ecology’, ‘Ecosystems’, ‘Freshwater 118 
Science’, ‘Frontiers in Ecology and the Environment’, ‘International Journal of Sustainable Development 119 
and World Ecology’, ‘Journal of Plant Ecology’, ‘Landscape Ecology’, ‘Oecologia’, ‘Oikos’, ‘Polar Research’, 120 
and ‘Wildlife Research’. Note that since the initial screening in March 2020, some of these journals might 121 
have adopted code-sharing policies; however, this would not affect our study as here we focused on 122 
articles published between 2015 and 2019. 123 

We performed a search in Web of Science Core Collection (databases covered: Science Citation Index 124 
Expanded (SCI-EXPANDED) since 1945, Social Sciences Citation Index (SSCI) since 1956, Arts & Humanities 125 
Citation Index (AHCI) since 1975, Emerging Sources Citation Index (ESCI) since 2017) in February 2022, and 126 
extracted all the records published in those 12 journals during the same two distinct temporal periods as 127 
Culina et al. (2020): (i) from the 1st of June of 2015 to the 9th of December 2016 (N = 2499 records), and 128 
(ii) from the 1st of January 2018 to the 21st of May 2019 (N = 2275 records). We then took a random sample 129 
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of 200 articles from each of these two periods (N = 400 in total) using the function ‘sample()’ in R v.4.3.1 130 
(R Core Team, 2023). We screened their titles and abstracts for eligibility using the software Rayyan 131 
(Ouzzani et al. 2016). To meet our inclusion criteria, an article had to conduct a statistical analysis, develop 132 
and run a mathematical model, or conduct simulations. Following Culina et al. (2020), we excluded 133 
reviews, opinions, commentaries and purely bioinformatics studies. In addition, we excluded two articles 134 
from the 2018-2019 subset that performed landscape analyses because we lacked the expertise to 135 
understand the analyses and software used. Each article was screened by two reviewers (AB, AST) and 136 
conflicts among them (~5%) were resolved collectively. In total, 314 nonmolecular articles passed the title-137 
and-abstract screening and their full-text was read in detail for data extraction. The screening process is 138 
presented in the PRISMA diagram (Figure S1; O’Dea et al. 2021).  139 

Data extraction for each article was conducted by two reviewers (AB and either AST, AC, or MP) to increase 140 
the reproducibility and reliability of the data extraction process. Any conflicts were resolved by involving 141 
a third reviewer and are marked and explained in the provided data (see ‘data and code availability 142 
statement’). For each article, we recorded (i) bibliographic information (title, authors, journal, publication 143 
year), (ii) the type of analyses conducted since our interest was only on articles performing statistical 144 
analyses and/or simulations, (iii) whether code and data (if used) had been shared (levels: yes, no, 145 
partially), (iv) for instances of shared code, we recorded where it was shared (levels: repository, 146 
supplementary material, website), and the name of the repository (if any used), and (iv) several additional 147 
key reproducibility-boosting features (i.e., software and additional package(s)/extension(s) (hereafter 148 
referred to as “package(s)”) used, number of software and package(s) for which version was provided, 149 
and whether the software used was free (i.e., non-proprietary; levels: yes, no, partially)).  150 

To test whether reproducibility potential is higher in journals with vs without code-sharing policies, we 151 
revisited, updated, and extended the dataset used for the analyses presented by Culina et al. (2020). 152 
Specifically, for the 346 nonmolecular articles included in Culina et al. (2020), we extracted the package(s) 153 
used and the number of software and package(s) for which version was provided. We also checked already 154 
collected variables of interest from Culina et al (2020) for any inconsistencies. 155 

Post-hoc decisions we took when processing our data were: (1) whenever packages or extensions were 156 
not reported, we assigned the number of packages as 0, even if the software used may not actually have 157 
any packages or extensions. We did this because it was not possible for us to find out information about 158 
the existence of packages or extensions for all the software reported; (2) for articles that shared some or 159 
all of their data only within figures (e.g., in a scatterplot), we assigned them as not sharing their data; (3) 160 
we searched for software and package versions not only within the text but also in the reference list of 161 
the corresponding article; (4) in some rare cases when the article did not report the software used but we 162 
could infer it from the packages or extensions reported, we assigned the software as “Not Stated”. 163 

Results 164 

Code- and data-sharing  165 

We investigated a total of 314 nonmolecular articles that performed statistical analyses or simulations 166 
and were published between 2015 and 2019 (2015-2016: 157 articles, 2018-2019: 157 articles) in 12 167 
ecological journals without a code-sharing policy as of March 2020. In these 12 journals, the statistical 168 
analysis or simulation code underlying the research findings was shared in only 15 of 314 articles (4.8%). 169 
Those 15 articles were accompanied by either seemingly all (10 articles, 3.2%) or some (5 articles, 1.6%) 170 
of the code. The overall percentage of code shared increased by about threefold over the two periods 171 
(2.5% versus 7.0%, in 2015–2016 and 2018–2019, respectively; Figure 1a). At the journal level, the 172 
percentage of articles where code was shared ranged between 0% and 8.7% (median = 1.2%, mean = 173 
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3.1%; Table 1), indicating that not sharing code is a general phenomenon across ecological journals 174 
without a code-sharing policy. Of those 15 articles that shared code, 12 (80%) provided it as part of the 175 
article’s supplementary material, 1 (6.7%) at a website, and only 2 (13.3%) in a repository (i.e., Dryad).  176 

Table 1. Code- and data-sharing for 314 nonmolecular articles that conducted statistical analysis or 177 
simulations published between 2015 and 2019 in 12 ecological journals without a code-sharing policy. 178 

Journal 
Total number of 
articles sampled 
[using data] 

Number of articles 
providing code (%) 

Number of articles 
providing data (%) 

Basic and Applied Ecology 12 [12] 0 (0.0%) 2 (16.7%) 

Behavioral Ecology 44 [44] 3 (6.8%) 25 (56.8%) 

Ecosystems 23 [23] 2 (8.7%) 10 (43.5%) 

Freshwater Science 16 [16] 0 (0.0%) 1 (6.2%) 

Frontiers in Ecology and the 
Environment 

4 [4] 0 (0.0%) 2 (50.0%) 

International Journal of Sustainable 
Development and World Ecology 

6 [6] 0 (0.0%) 1 (16.7%) 

Journal of Plant Ecology 20 [20] 0 (0.0%) 4 (20.0%) 

Landscape Ecology 44 [44] 1 (2.3%) 21 (47.7%) 

Oecologia 79 [79] 5 (6.3%) 19 (24.1%) 

Oikos 42 [40] 3 (7.1%) 25 (62.5%) 

Polar Research 7 [7] 0 (0.0%) 4 (57.1%) 

Wildlife Research 17 [17] 1 (5.9%) 2 (11.8%) 

 179 

In the 12 journals without a code-sharing policy, data were shared in 116 of 312 nonmolecular articles 180 
that used data (37.2%). These articles were accompanied by either seemingly all (75 articles, 24.0%) or 181 
some (41 articles, 13.1%) of the data and the overall percentage of data shared increased by about 40% 182 
over the 5-year period studied (31.0% versus 43.3%, in 2015–2016 and 2018–2019, respectively; Figure 183 
1b). Furthermore, at the journal level, the percentage of articles where data were shared ranged between 184 
6.2% and 62.5% (median = 33.8%, mean = 34.4%; Table 1), suggesting large differences in data-sharing 185 
across the 12 ecological journals without a code-sharing policy. 186 

Altogether, only 8 (2.5%) articles had seemingly shared both all data (if any used) and all code, meaning 187 
that the potential for computational reproducibility in the 12 ecological journals without any code-sharing 188 
policy surveyed in our study could be as low, and likely lower than 2.5%. This percentage is 8.2 times 189 
smaller than the corresponding percentage found in journals with a code-sharing policy (20.8%; Culina et 190 
al. 2020). 191 

Features boosting long-term reproducibility in journals with and without a code-sharing policy 192 

Our survey showed that 11.8% of articles (N = 37) published in journals without a code-sharing policy did 193 
not state the analytical software used (Figure 2a), a value that is only slightly larger than the 10.1% (N = 194 
35) found for articles published in journals with a code-sharing policy (Culina et al. 2020; Figure 2b). For 195 
those stating the statistical software used, 36.1% (N = 100) of articles published in journals without a code-196 
sharing policy did not report the version of all software used (Figure 2c), whereas that percentage was 197 
49.8% (N = 155) for articles published in journals with a code-sharing policy (Figure 2d). The mean number 198 
of analytical software used was 1.27 (median = 1.00, range = 1 to 6) in journals without a code-sharing 199 
policy and 1.81 (median = 1.00, range = 1 to 14) in journals with a code-sharing policy. The reporting of 200 
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software versioning remained slightly higher for journals without a code-sharing policy than those with 201 
when expressed as the average percentage of software with version per article (without policy: median = 202 
100%, mean = 67.5%, range: 0 to 100%; with policy: median = 100%, mean = 59.6%, range: 0 to 100%). 203 

 204 

 205 

Figure 1. Code- and data-sharing are uncommon in 12 ecological journals without a code-sharing policy. 206 
Percentage of nonmolecular articles surveyed that provided code (a) or data (b) for each of the periods 207 
studied (2015–2016: 157 articles, 2018–2019: 157 articles).  208 

 209 

For articles stating to have used additional packages, 67.6% (N = 96) of articles published in journals 210 
without a code-sharing policy did not provide the version of all packages used (Figure 2e), whereas that 211 
percentage was 80.5% (N = 165) for articles published in journals with a code-sharing policy (Figure 2f). 212 
The mean number of packages used was 2.30 (median = 2.00, range = 1 to 10) in journals without a code-213 
sharing policy and 2.41 (median = 2.00, range = 1 to 14) in journals with a code-sharing policy. The 214 
reporting of package versioning remained slightly higher for journals without a code-sharing policy than 215 
those with when expressed as the average percentage of software with version per article (without policy: 216 
median = 33.3%, mean = 45.1%, range: 0 to 100%; with policy: median = 0%, mean = 30.8%, range: 0 to 217 
100%). 218 

For articles stating the statistical software used, 23.5% (N = 65) of articles published in journals without a 219 
code-sharing policy used exclusively non-free (i.e., proprietary) software (Figure 2g) compared to 16.7% 220 
(N = 52) of articles published in journals with a code-sharing policy (Figure 2h). 221 
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 222 

Figure 2. Features boosting long-term reproducibility in journals with (b, d, f, h; dotted fill) and without a 223 
code-sharing policy (a, c, e, g; non-dotted fill). The red dashed line corresponds to the mean for the 224 
category coloured in black (i.e., No software reported, Software versions reported, Package versions 225 
reported, and Free software, respectively). 226 
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Discussion  227 

Our results show that code-sharing is almost non-existent (5%) for nonmolecular articles published in 228 
ecological journals without a code-sharing policy, a figure that is about six times lower than a comparative 229 
sample from journals with a code-sharing policy. Data availability faired better, with about one-third of 230 
articles published in ecological journals without a code-sharing policy sharing data, which corresponds to 231 
about half the rate observed in journals with a code-sharing policy. These low sharing rates lead to an 232 
extremely low reproducibility potential (less than 3%) of results published in journals without a code-233 
sharing policy. Importantly, this is likely an overestimate since we also found that key reproducibility 234 
features (e.g., software name or versioning) are mostly lacking. Overall, our results confirm previous 235 
surveys in ecology and other fields: code-sharing is low, and simply implementing a code-sharing policy 236 
likely increases code-sharing, but not to the desired level. Below we place our results within and across 237 
fields, and discuss code-sharing and the importance of explicit policies. We also provide suggestions for 238 
journals on how to improve code-sharing and the (long-term) reproducibility of scientific findings (Box 1). 239 

Open science practices are on the rise. When asked, most scientists agreed with the general open science 240 
norms and values decades ago (Anderson et al. 2007), but only recently we are starting to see more 241 
evidence of scientists not only agreeing but adhering to such norms and values. For example, a recent 242 
survey in the social sciences found that the percentage of scientists who self-reported to have used open 243 
science practices increased from 49% in 2010 to 87% in 2020 (Ferguson et al. 2023; see also Borycz et al. 244 
2023). Meta-research studies have confirmed that several transparency indicators, including, but not 245 
limited to, data- and code-sharing are on the rise in ecology (Evans 2016; Culina et al. 2020; Roche et al. 246 
2022a) and other fields (Heumüller et al. 2020; Cao et al. 2023; Colavizza et al. 2024; Sharma et al. 2024). 247 
Our current survey detected similar trends in ecological journals without a code-sharing policy, with code-248 
sharing tripling from 2015-2016 (2.5%) to 2018-2019 (7.0%). Our results also support the observations 249 
from previous meta-research studies on authors being more likely to share data than code in ecology 250 
(Culina et al. 2020) and other fields (Bellomo et al. 2024; Sharma et al. 2024). Researchers may perceive 251 
greater risks and fewer benefits associated with sharing code compared to data, including unfamiliarity 252 
with best sharing practices, insecurity about code quality, fears of misuse or unsolicited appropriation of 253 
ideas, and excess preparation costs (Cadwallader & Hrynaszkiewicz, 2022; Gomes et al., 2022), coupled 254 
with the lack of incentives for code sharing. This discrepancy might also be in part due to journal policies 255 
often having a stronger emphasis on data- than code-sharing (Page et al. 2022; Ivimey-Cook et al. In prep.) 256 
and is likely less evident in (sub)disciplines that heavily rely on computational methods, such as 257 
computational biology and software engineering (Heumüller et al. 2020; Cadwallader  et al. 2022). 258 

Importantly, our results suggest that journals likely have a central role in increasing code-sharing rates: 259 
code-sharing was higher among nonmolecular articles published in journals with a code-sharing policy 260 
(27%) compared to those published in journals without a code-sharing policy (4.8%). A recent survey of 261 
meta-analyses in ecology and evolutionary biology detected similar patterns (21.2% and 9.1%, 262 
respectively, Kambouris et al. 2024). Though indirectly, previous studies have also suggested a link 263 
between the introduction of code-sharing policies and a subsequent increase in code availability. For 264 
example, code-sharing jumped from 53% in 2019 and 61% in 2020 to 87% in 2022 after the introduction 265 
of a mandatory code-sharing policy by PLOS Computational Biology (Cadwallader  et al. 2022). Similarly, 266 
the percentage of initial submissions providing a link to data and/or code increased from 16.9% in 2021 267 
to 42.6% in 2023 after Ecology Letters changed their sharing policy from simply providing a statement to 268 
mandating (and enforcing) providing a link to data and code (Ivimey-Cook et al. In prep.; for other 269 
examples, in ecology and beyond see Evans 2016; Hamilton et al. 2023; Ellis et al. 2024; Bellomo et al. 270 
2024; Sperandii et al. 2024). Regardless of whether journals have a code-sharing policy or not, we also 271 
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detected trends of increase in code availability over time. This is likely caused by other factors, such as 272 
changes in norms, better training, and better support in code-writing and sharing.  273 

While having a policy helps in increasing code-sharing, it is certainly not enough without enforcing 274 
compliance (Culina et al. 2020). Our previous survey of 14 ecological journals with a code-sharing policy 275 
study indicated that the strictness of the policy did not affect code availability since the percentage of 276 
articles sharing code was similar between journals with encouraged (mean and range: 29.7% [14-50%], 3 277 
journals), mandatory (23.0% [22-38%], 5 journals), and encouraged/mandatory (24.3% [7-53%], 6 278 
journals) policies (Culina et al. 2020). A recent survey in biomedical research found more promising rates, 279 
with up to 50% of articles published in 8 journals with a code-sharing policy making code availably and the 280 
likelihood of code-sharing being double in journals with mandatory compared to encouraged policies 281 
(Sharma et al. 2024). Overall, despite low compliance, which has been linked to factors such as difficult-282 
to-find or unclearly written sharing policies (Christian et al. 2020), these examples suggest that even under 283 
low policy enforcement, policy interventions can shift research practices towards greater openness. 284 
Indeed, implementing a code-sharing policy is a positive step forward even when the resources for 285 
enforcing such a policy and reviewing code (e.g., by adopting data and code editors) are not yet available. 286 

We found that features boosting long-term reproducibility, such as using free software and reporting its 287 
version, were similar between journals with and without a code-sharing policy, which suggests that 288 
although code-sharing policies seem to increase code availability, they might not increase software 289 
reporting without being more explicit about best practices. We found that versions of the statistical 290 
software and packages were often missing, and about a tenth of the articles did not even state the 291 
software used. Reporting software and package versions is important for several reasons. First, they can 292 
help in understanding and solving technical issues related to software dependencies, which are one of the 293 
most often encountered factors hindering computational reproducibility (Laurinavichyute et al. 2022; 294 
Kellner et al. 2024; Samuel and Mietchen 2024). Different versions of software and/or packages can lead 295 
to inconsistencies in results and even to code rot, which occurs when code relies on specific versions of 296 
software or packages that are no longer available or have undergone significant changes (e.g., deprecated 297 
functions), rendering the code incompatible with current operating systems (Boettiger 2015; 298 
Laurinavichyute et al. 2022). Second, software reporting standards are key for computational 299 
reproducibility (i.e., obtaining the same results using the same input data and code) but also for analytical 300 
reproducibility (i.e., obtaining the same results writing fresh code using the provided written 301 
methodological descriptions when data but not code are available; Kambouris et al. 2024), and thus, 302 
should be prioritized by authors and journals alike (Box 1).  Last, about one-fifth of articles used exclusively 303 
non-free (i.e., proprietary) software. Reproducibility is hindered when code relies on proprietary software 304 
that requires licenses or subscriptions. Proprietary software restricts access to its source code and is 305 
inaccessible to researchers who cannot afford it, ultimately limiting independent verification and building 306 
upon the original research (Ostermann and Granell 2016; Benureau and Rougier 2018; Konkol et al. 2019; 307 
Laurinavichyute et al. 2022). Ideally, the code used for a study should be peer-reviewed to ensure its 308 
completeness, reusability and reproducibility prior to manuscript acceptance (Ivimey-Cook et al. 2023). 309 
Before code review becomes a norm, authors, reviewers and editors should ensure that the minimum 310 
requirements needed for reproducibility are met, which can be facilitated by the use of checklists and by 311 
policies explicitly linking to best practices. 312 

 313 

 314 
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BOX 1. How can journals increase code availability? Here is a list of suggestions for journals sorted by 

the ease of implementation. For more information, journals should consider contacting the journal 

liaison officer of the Society for Open, Reliable and Transparent Ecology and Evolutionary Biology 

(SORTEE; https://www.sortee.org/). 

 

 Introduce a code-sharing policy: this can range from simply mandating a code availability 

statement (Hamilton et al. 2023; Sharma et al. 2024) to encouraging or, in the best case, 

mandating code-sharing, ideally coupled with policy enforcement (Ivimey-Cook et al. In prep.). 

Policies should be clearly written, explicit and easy to find, and ideally shared among journals 

within and/or among publishers (Christian et al. 2020). 

 

 Implement a reproducibility checklist: this should integrate a minimal list of code-sharing best 

practices such as the use of persistent identifiers like DOIs which ensure long-term accessibility 

and proper attribution (Gewin 2016; Trisovic et al. 2022) or ensuring all software and their 

versioning is provided. Journals should also offer clear guidelines (and support) for authors on 

how to share code, report software and adhere to reproducibility standards. 

 

 Review and verify code: ask authors to share their code upon first submission to allow reviewers 

to have access and review the code. Encourage reviewers to use code (and data) during their 

reviews (Ivimey-Cook et al. In prep.). Consider officially integrating code review as part of the 

editorial process by adding data and code editors to ensure code functionality and adherence to 

standards (Krafczyk et al 2021).  

 

 315 

 316 

Our study design has several limitations. Despite that we matched journals in time and from a seemingly 317 

representative list of ecological journals, journals with a code-sharing policy are more likely to have a data-318 

sharing policy too (Ivimey-Cook et al. In prep.), which may increase code-sharing simply by increasing the 319 

visibility of sharing in general. However, it is fair to assume that some of the 12 journals without a code-320 

sharing policy studied here did not have a data-sharing policy between 2015 and 2019, which may partially 321 

account for lower code-sharing as a by-product. In addition, the journals with and without a code-sharing 322 

policy may have differed in other transparency indicators or predictors of computational reproducibility 323 

such as the existence of reporting checklists, differences in prestige or the type of research published. 324 

Despite those potential limitations, our study adds to the mounting evidence that journal policies are an 325 

important stepping stone to increasing code availability. Finally, a potentially important factor for 326 

increasing data and code sharing not explored in our study is the funding source, with evidence suggesting 327 

that research funded by competitive grants tends to have higher code- and data-sharing rates, presumably 328 

due to those funding bodies often having mandates or strong recommendations for sharing as part of 329 

their grant conditions (Tan et al. 2024). Thus, here we not only call on journals to introduce code-sharing 330 

policies but also on funders to make a stronger push for mandating data- and code-sharing regardless of 331 

whether they currently have or not the mechanisms necessary to enforce those policies. 332 

 333 

https://www.sortee.org/
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Conclusions 334 

In sum, our study adds to the mounting evidence showing that code-sharing policies increase code 335 

availability, which ultimately increases the reproducibility potential of scientific findings. Specifically, our 336 

study suggests that based on code and data availability, computational reproducibility potential is about 337 

8 times lower in ecological journals without a code-sharing policy (2.5%) compared to those with one 338 

(21%). Importantly, however, those should be considered ceiling values since we also found that software 339 

reporting needs improvement to allow reproducibility, and previous studies have found that open code 340 

(Obels et al. 2020; Laurinavichyute et al. 2022; Henderson et al. 2024) and data are often incomplete and 341 

difficult to use due to poor documentation (Roche et al. 2015; Roche et al. 2022b). The perceived costs 342 

and benefits of sharing code and data have been studied, dissected and discussed in detail elsewhere 343 

(Soeharjono and Roche 2021; Gomes et al. 2022; Borycz et al. 2023; Nguyen et al. 2023). Low sharing and 344 

reporting are key factors increasing research waste in ecology (Purgar et al. 2022) and other fields 345 

(Chalmers and Glasziou 2009), and as such, more efforts are needed to reduce research waste (see more 346 

suggestions in Grainger et al. 2020; Buxton et al. 2021; Purgar et al. 2024). Here, we particularly call on all 347 

journals and funders to introduce data- and code-sharing policies, even if they do not currently have the 348 

resources or mechanisms necessary to enforce them. 349 
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