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Abstract 

Why have conspicuous characteristics evolved? Our augmented meta-meta-analysis of 41 

meta-analyses, encompassing 375 animal species and 7,428 individual effect sizes, shows 15 
that the conspicuousness of (putative) sexual signals is positively related to attractiveness and 

benefits to mates, as well as to the fitness, condition, and other traits (e.g. body size) of their 

bearers. These patterns are often consistent across taxa and seen in both sexes with a similar 

magnitude. Further, the strength of sexual selection on conspicuousness is positively 

associated with the relationship between conspicuousness and both benefits and individual 20 
condition, but not with other traits. Our study unifies several decades of knowledge on 

conspicuous traits, provides new insights about them, and lays a clear path for the future of 

this topic.  



Main text 

Extravagant body parts and elaborate behaviours that apparently are not used to deter 25 
predators (e.g. aposematic traits) or to fight (e.g. weapons) have intrigued biologists for more 

than a century precisely because natural selection can rarely explain their evolution (1). These 

odd traits should be particularly conspicuous to conspecifics (hereby conspicuous traits; but 

see Supplementary material), even though some of them might be unnoticeable to us (e.g. 

pheromones, electromagnetic fields). The usual explanation for the existence of these 30 
conspicuous traits is that more noticeable individuals can attract more or better mates, 

generating sexual selection for greater trait conspicuousness via mate choice (1–3). 
Consequently, conspicuous traits are often deemed “sexual ornaments” or “sexual signals”, 

especially if they are sexually dimorphic (4). Unsurprisingly, mate choice and sexual signals 

became popular topics within the sexual selection literature, culminating in the development 35 
of many theoretical models attempting to explain their evolution [reviewed in (5)]. Despite 

varying their expectations, these models usually predict that sexual signal conspicuousness 

increases the fitness of their bearers (e.g. by making them more attractive) and of their mates 

by signalling direct (in the same generation, with resources or good parenting) or indirect 

benefits (in subsequent generations, enhancing offspring fitness with greater viability - “good 40 
genes” - or attractiveness - “sexy genes”) (2, 5, 6). The theory also predicts that sexual signal 

conspicuousness is condition-dependent as it ensures signal honesty (6) and that sexual signal 

conspicuousness covaries with the expression of other traits that can also represent benefits to 

prospective mates (e.g. body size, social dominance, traits related to sperm competition). 

The veracity of the propositions above has been tested in the last 70 years by 45 
numerous empirical studies and, more recently, by various meta-analyses [reviewed in (4)]. 
However, our knowledge of conspicuous traits assumed to be sexual signals remains 

fragmented and far from satisfactory because studies (including meta-analytical ones) focus 

on one or few variables [e.g. parasite load (7); survival (8)], types of conspicuous traits [e.g. 

colourful plumage (9, 10); song traits (11, 12)], taxa [e.g. birds (8, 13–16)], and sex [e.g. 50 
males (17–19)]. The last one is particularly emblematic because most of the theory regarding 

sexual signals has been developed considering only males as their bearers, even though 

females possess conspicuous traits in many species (20) and males can express mate choice 

(21). Moreover, researchers often assume that conspicuous traits they investigate are 

attractive to prospective mates without evidence, potentially mixing sexual signals with other 55 
non-sexually selected traits and thus possibly drawing misleading conclusions on the 

evolution of conspicuous traits.  

To resolve these outstanding issues and to provide a unified knowledge of (putative) 

sexual signals, we compiled and analysed 7,428 effect sizes from 1,196 empirical studies 

(used as data sources by 41 meta-analyses; i.e. second-order meta-analysis augmented with 60 
additional data) that investigate the relationship between these conspicuous traits and 

attractiveness, benefits to mates, and their bearers’ fitness, individual condition, and other 

traits (Table S1; Fig. 1), comprising 375 animal species in total (Fig. 2). We also verified the 

role of two moderators in these relationships: sex (males vs. females) and trait type 

(behaviours, available only for males in our dataset, hereby flexible traits, vs. colour and 65 
morphology, hereby fixed traits). Furthermore, we test an implicit assumption commonly 

made by biologists that has never been systematically tested: that the strength of pre-

copulatory sexual selection (from mate choice) on the conspicuousness of a trait is linked to 

the strength of the relationship between the conspicuousness of that trait and the benefits it 

signals (22, 23), and by extension to the relationship between the conspicuousness of that 70 
trait and the fitness, condition, and other traits of its bearer. 



Is the conspicuousness of putative sexual signals associated with attractiveness to 

prospective mates? 

Empiricists commonly take different measurements from one or more conspicuous traits of 

individuals of a given species (Pollo et al. in prep.). They then verify the relationship between 75 
these measurements and success in mate choice trials or mating success in the field, which 

should roughly represent the strength of pre-copulatory sexual selection on conspicuous 

traits. Using this type of data, we found that putative sexual signal conspicuousness is, on 

average, (moderately) positively related to attractiveness to individuals of the opposite sex (r 

= 0.329, CI = 0.233 to 0.419; Table S2; Fig. 3). This result is consistent across species given 80 
the low heterogeneity at the level of species (I2

[species = species ID + phylogeny] = 2.3%) and therefore 

potentially generalisable, despite the high overall heterogeneity across effect sizes (I2
total = 

91.5%; Table S3). Moreover, we found that the association between attractiveness and 

conspicuousness of male flexible putative sexual signals is greater than that of female fixed 

putative sexual signals (Table S4). 85 

 

Is the conspicuousness of putative sexual signals associated with benefits to their bearers 

and to their mates? 

We found that putative sexual signal conspicuousness is, on average, (weakly) positively 

related to benefits to their bearers and to their mates (r = 0.165, CI = 0.133 to 0.197; Table 90 
S2; Fig. 3). However, we detected publication bias for these data, so the actual relationship 

might be even weaker as positive effect sizes were overrepresented (Fig. S1D-F, Table S6). 

This finding is potentially consistent across species (I2
[species = species ID + phylogeny] = 0.7%; Table 

S3). Furthermore, we found that males show, on average, a stronger relationship between 

putative sexual signal conspicuousness and benefits compared with females (Table S4). We 95 
note that these results come from an amalgamation of metrics (Fig. 1), so we discuss each of 

them in detail below. 

First, more conspicuous putative sexual signals are, on average, (moderately) 

associated with earlier arrival at breeding sites, earlier pairing, or earlier reproduction (hereby 

simply earlier timing; r = 0.213, CI = 0.171 to 0.254; Table S2; Fig. 3). Earlier timing can 100 
represent individual quality and attractiveness, and may lead to more reproductive 

opportunities and a better environment for the offspring (24). We also found that the 

relationship between timing and putative sexual signal conspicuousness is stronger in males 

than in females (Table S4). 

Second, putative sexual signal conspicuousness is, on average, (weakly) positively 105 
related to reproductive success (e.g. number of offspring; r = 0.157, CI = 0.121 to 0.193; 

Table S2; Fig. 3). Various mechanisms can produce a positive relationship between 

reproductive success and putative sexual signal conspicuousness. For instance, if individuals 

with traits that are more conspicuous are more attractive, these individuals should experience 

greater mating success and consequently increase their reproductive success if mating with 110 
multiple individuals is advantageous [i.e. when Bateman’s gradient is positive, generally 

assumed for males but rarely for females (25)]. Moreover, individuals with more conspicuous 

sexual signals might be more likely to select mates that can provide them with more benefits 

(21), increasing their own fitness. Individuals with more conspicuous sexual signals may also 

receive greater reproductive investment from their partners than their counterparts (26). On 115 
the other hand, a positive relationship between sexual signal conspicuousness and 

reproductive success can arise from a positive association between putative sexual signal 

conspicuousness and (female) fecundity [e.g. (27, 28)] or reproductive investment beyond 



just gametes (e.g. parental care, see below), which would make these conspicuous traits 

signals of direct benefits to mates. Although we cannot determine which of these mechanisms 120 
more frequently explains why individuals with more conspicuous putative sexual signals 

show greater reproductive success, future studies should address this gap. We also note that 

the conspicuousness of flexible putative sexual signals is more strongly associated with 

reproductive success than that of fixed putative sexual signals (for males and females alike; 

Table S4). 125 

Third, putative sexual signal conspicuousness is, on average, (weakly) positively 

related to offspring viability (e.g. proportion of eggs hatched) or quality (e.g. offspring size) 

(r = 0.164, CI = 0.123 to 0.205; Table S2; Fig. 3). More conspicuous sexual signals may 

indicate that their bearers possess “good genes” that can be passed to the offspring, possibly 

increasing offspring’s viability and quality (2). However, the same arguments made for 130 
reproductive success (e.g. greater reproductive effort from partners) also apply to offspring’s 

viability or quality because they result from genes and investment in the offspring from both 

parents. 

Fourth, putative sexual signal conspicuousness is, on average, (weakly) positively 

related to greater extra-pair paternity and lower cuckoldry (collectively simply paternity; r = 135 
0.149, CI = 0.092 to 0.204; Table S2; Fig. 3). While this relationship might occur because 

more ornamented males are more attractive (i.e. paternity may simply reflect male mating 

success or be a product of cryptic female choice favouring sperm from attractive males), it is 

also possible that more ornamented males obtain greater paternity when their conspicuous 

putative sexual signals signal sperm traits that increase success in sperm competition (29).  140 

Fifth, putative sexual signal conspicuousness is, on average, (weakly) positively 

related to parental care (r = 0.08, CI = 0.022 to 0.136; Table S2; Fig. 3). This is perhaps the 

clearest evidence that conspicuous traits can signal direct benefits to mates. Still, this 

relationship might be complex in systems with biparental care if sexual signals from both 

parents affect parental care performed. This scenario becomes even more complicated when 145 
parental care provided by an individual can be modulated by the parental care provided by 

their social partner (10). 

Sixth, putative sexual signal conspicuousness is, on average, (moderately) positively 

related to territory quality (r = 0.241, CI = 0.162 to 0.317; Table S2; Fig. 3). Given that 

territory quality represents resources that individuals use for their survival and reproduction, 150 
greater territory quality should enhance the fitness of the territory’s owner as well as of their 

mates. Unfortunately, our dataset had no information for females regarding this relationship, 

revealing a dire need to investigate species in which females defend territories [e.g. (30)]. 

 

Is the conspicuousness of putative sexual signals associated with the individual condition 155 
of their bearers? 

We found that putative sexual signal conspicuousness is, on average, (weakly) positively 

related to distinct measures of individual condition (r = 0.174, CI = 0.124 to 0.224; Table S2; 

Fig. 4). Yet, this result can be overestimated as we found evidence of publication bias for 

these data (Fig. S1G-I; Table S6). Once more, this result is potentially generalisable across 160 
taxa (I2

[species = species ID + phylogeny] = 6.1%; Table S3). Moreover, we found that males show, on 

average, a stronger relationship between fixed putative sexual signal conspicuousness and 

individual condition compared with females (Table S4). 



Individual condition can be measured in many ways (Fig. 1), so we also verified the 

relationship between each individual condition proxy and putative sexual signal 165 
conspicuousness separately. First, putative sexual signal conspicuousness is, on average, 

(moderately) positively associated with beneficial (external) conditions (e.g. better diet, lower 

reproductive effort, etc.; r = 0.263, CI = 0.215 to 0.31; Table S2; Fig. 4). Second, putative 

sexual signal conspicuousness is, on average, (weakly) positively associated with body 

condition [e.g. body mass controlled for structural body size (31); r = 0.198, CI = 0.161 to 170 
0.235; Table S2; Fig. 4]. Yet, conspicuousness of fixed putative sexual signals is, on average, 

more strongly associated with body condition in males than in females (Table S4). Third, 

putative sexual signal conspicuousness is, on average, (weakly) positively associated with 

immune or antioxidant capacity (r = 0.129, CI = 0.084 to 0.174; Table S2; Fig. 4). Fourth, 

putative sexual signal conspicuousness is, on average, (weakly) positively associated with 175 
parasite resistance (i.e. opposite of parasite load; r = 0.119, CI = 0.078 to 0.159; Table S2; 

Fig. 4). Fifth, putative sexual signal conspicuousness is, on average, (weakly) positively 

associated with survival (r = 0.113, CI = 0.053 to 0.172; Table S2; Fig. 4). However, the 

relationship between putative sexual signal conspicuousness and survival was greater for 

males than for females, with the latter being essentially zero (Table S2; Table S4; Fig. 4). 180 

Two hypotheses in the literature explain how condition-dependent sexual signals 

represent honesty: the costly signalling principle [first proposed by (32)] and the index 

hypothesis [e.g. (33)]. The former states that the expression and maintenance of sexual 

signals require resources that could be spent elsewhere (32), with higher-quality individuals 

being expected to deal more effectively with metabolic trade-offs and thus being able to be 185 
more ornamented (34, 35). On the other hand, the index hypothesis does not invoke resource 

trade-offs to explain sexual signals’ condition-dependency, but rather posits that these traits 

evolve as honest signals of condition by sharing pathways with basic physiological processes 

(36–38). These hypotheses are contentious as each has different underlying concepts, with 

multiple authors proposing distinct features and predictions [see (39)]. Our results support 190 
that (putative) sexual signal conspicuousness is, on average, condition-dependent, but we 

cannot elucidate which of these two hypotheses is more likely to explain this pattern.  



Is the conspicuousness of putative sexual signals associated with the expression of other 

traits of their bearers? 

We found that putative sexual signal conspicuousness is, on average, (moderately) positively 195 
related to body size (r = 0.23, CI = 0.144 to 0.312; Table S2; Fig. 4), an apparently 

generalisable finding across species (I2
[species = species ID + phylogeny] = 3.6%; Table S3). Body size 

can be under positive directional selection if larger individuals are more fecund (40) or 

experience greater success in intrasexual competition (2). Given that sexual signal 

conspicuousness is also predicted to be under positive directional sexual selection (41), a 200 
positive relationship between sexual signal conspicuousness and body size can occur. In such 

a scenario, trait conspicuousness would signal direct benefits to prospective mates. However, 

larger body size can be constrained or even disfavoured in some taxa [e.g. (42)], so this 

rationale is not universal. 

We found that putative sexual signal conspicuousness is, on average, (moderately) 205 
positively related to aggression and social dominance (e.g. greater number of aggressive 

behaviours performed to hetero- and conspecific intruders; r = 0.205, CI = 0.047 to 0.354; 

Table S2; Fig. 4). However, this result is not as generalisable across species as our other 

findings (I2
[species = species ID + phylogeny] = 14.6%; Table S3). Greater trait conspicuousness then 

may signal one’s status to others interested in battling for resources, ultimately deterring 210 
costly fights (43). Note that, a priori, if these resources are not mates, these signals have no 

connection to sexual selection, highlighting that conspicuous traits might not necessarily be 

sexual signals. Yet, conspicuous traits that signal to rivals can also be used for mate selection, 

even if this is not their primary function. After all, greater success in competition for 

resources should be related to greater access to resources, meaning possible benefits to mates 215 
(e.g. territory quality, more competitive offspring if heritable). 

We found that putative sexual signal conspicuousness is, on average, (weakly) 

positively related to the expression of traits that increase success in sperm competition (e.g. 

more or better sperm, larger testes; r = 0.107, CI = 0.029 to 0.185; Table S2; Fig. 4). This 

result appears to be generalisable across taxa, but not across studies (I2
[species = species ID + 220 

phylogeny] = 1.2%, I2
across-studies = 43%; Table S3). Highly ornamented males could be wasting 

resources by investing in traits related to sperm competition if, being more attractive, they 

can experience a lower risk of sperm competition by biassing cryptic female choice in their 

favour [e.g. (44)] or reducing the chances that females they mate with remate with another 

male [e.g. (45)]. However, traits that enhance sperm competition success are potentially under 225 
positive directional selection for all males [(46); but see (47)], and thus may be expected to 

covary with sexual signal conspicuousness. Alternatively, this pattern can occur if male 

ornamentation honestly signals their fertilisation ability to females (46). Interestingly, we also 

detected that flexible putative sexual signals were more strongly related to the expression of 

sperm competition-related traits than fixed putative sexual signals (Table S4). 230 

Lastly, we found that putative sexual signal conspicuousness is, on average, (weakly) 

positively related to age (r = 0.196, CI = 0.043 to 0.34; Table S2; Fig. 4), a result that may be 

generalisable across species (I2
[species = species ID + phylogeny] = 7.4%; Table S3). Sexual signal 

conspicuousness should increase with age [but see (48)] as older individuals are under greater 

terminal investment selection [i.e. to increase reproductive effort before dying (49, 50)]. 235 
Moreover, when sexual signal conspicuousness is positively related to age, trait 

conspicuousness essentially signals individual ability to survive for longer (51). We note, 

however, that our results regarding age might be conflated by mating experience (i.e. older 

individuals are more likely to have mated than their younger counterparts), although a meta-

analysis controlling for this showed a similar result (48). 240 



Is the strength of sexual selection on the conspicuousness of a trait associated with the 

relationship between the conspicuousness of the same trait and other variables? 

The relationships between conspicuous traits and multiple variables we explored in previous 

sections involved traits assumed to be preferred by mates (i.e. putative sexual signals). Still, 

these traits could actually be unattractive to mates or attractive in the opposite direction than 245 
the one predicted (e.g. mates prefer dull colours instead of vivid colours). To provide insights 

into sexual signals, we sought putative sexual signals in our dataset for which we had two 

pieces of information: how their conspicuousness was related to attractiveness to mates and 

how their conspicuousness was related to other variables within our framework (e.g. benefits, 

individual condition, etc.; Fig. 1). For each putative sexual signal of each species, we 250 
calculated an overall effect size for the former (hereby Zr-attractiveness) and an overall effect 

size for the latter (hereby Zr-benefits, Zr-condition, etc.). We then were able to perform meta-

regressions to verify how the strength of sexual selection on a putative sexual signal (i.e. Zr-

attractiveness) relates to the strength of the association between the conspicuousness of that 

putative sexual signal and either benefits (Zr-benefits), individual condition (Zr-condition), or 255 
other traits (Zr-size, Zr-dominance, Zr-sperm, Zr-age). 

We found that sexual selection on putative sexual signal conspicuousness is positively 

associated with the relationship between putative sexual signal conspicuousness and both the 

benefits they provide (Fig. 5A; Fig. S3A) and bearers’ individual condition (Fig. 5B; Fig. 

S3B; Table S7). However, we found no evidence that sexual selection on putative sexual 260 
signal conspicuousness is associated with the relationship between putative sexual signal 

conspicuousness and other traits (Fig. 5C-F; Fig. S3C-E; Table S7). Nonetheless, data for 

these analyses were scarce, so these results require extra caution as they might not be 

generalisable.  

Theory predicts that mate choosiness, and thus pre-copulatory sexual selection, 265 
increases with variation in mate quality (22, 23). Therefore, the positive relationship we 

found between Zr-attractiveness and Zr-benefits is expected, but what about other variables? 

It seems plausible that greater sexual selection on conspicuousness intensifies its condition-

dependence as an escalation of honest signalling (generating the positive relationship 

between Zr-attractiveness and Zr-condition we found). By contrast, the relationship between 270 
conspicuousness and other traits might be more variable because greater body size, social 

dominance, expression of traits related to sperm competition, and age may lead to benefits to 

their bearers only in certain situations. Perhaps the most valuable insight from these results is 

that even when Zr-attractiveness is zero or negative (representing mate preference for lower 

conspicuousness), other relationships between conspicuousness and distinct variables (e.g. 275 
Zr-benefits, Zr-condition) can be positive (and vice-versa). This means that researchers 

should not assume that positive relationships between putative sexual signal conspicuousness 

and different variables attest that they are, indeed, sexually selected. 

 

Future opportunities for research on putative sexual signals 280 

Given that the relationship between the conspicuousness of putative sexual signals and 

attractiveness to mates represents the core of the theory on mate choice, and that our dataset 

represents the information collected by most meta-analyses on putative sexual signals, it is 

astonishing that this relationship was available for only a quarter of the species (Fig. 2) and 

represented less than 8% of all effect sizes in our dataset. The scarcity of data on 285 
attractiveness suggests that biologists may inspect associations between conspicuous traits 

and their potential benefits or costs without attesting to the attractive function of these traits 



in the first place. However, we remind researchers that conspicuous traits can serve purposes 

other than mate attraction, such as to signal status to conspecifics regardless of sex (see 

previous sections), to deter (52) or confuse predators (53, 54), or to avoid sexual harassment 290 
(55). Therefore, it is imperative to first examine the primary function of conspicuous traits, as 

making assumptions about them can hamper our knowledge about their evolution. 

In addition to the dismal amount of information related to the attractiveness of 

conspicuous traits, our dataset contains other limitations inherited from the primary meta-

analyses that we used as sources, which largely represent deficits in the literature on sexual 295 
selection (4). More specifically, most meta-analyses that we collected data from focus on bird 

colouration [e.g. (8–10, 13–18, 56–65)], resulting in a dataset where other traits and animal 

groups (e.g. invertebrates) are underrepresented (Figs. S4 and S5). Notably, female 

behaviours as putative sexual signals were almost absent from our dataset despite being 

ubiquitous in nature [e.g. pheromones; (66)] and potentially subjected to sexual selection 300 
(67), possibly leading to similar patterns to the ones we found for other putative sexual 

signals [e.g. condition-dependence, (68)]. Although more data may have become available 

after the primary meta-analyses we used as data sources were published (i.e. data not 

included in our dataset), information on female behavioural sexual signals and other 

neglected topics likely remains scarce. Collecting data on overlooked traits and taxa should 305 
address these gaps and may even challenge our perceptions, such as of stereotypical sex roles 

(69–71). However, stronger incentives may be necessary to achieve this goal (4). 

While our study represents a solid advancement for the theory of sexual selection by 

testing many of its predictions, and most of our results appear consistent across taxa, we 

stress that conspicuous traits in nature are extremely diverse. This means that existing and 310 
future primary studies and meta-analyses on sexual signals remain valuable if they provide 

in-depth investigations on factors that are unique to certain conspicuous traits [e.g. type of 

pigment for colourful traits; (57)]. More importantly, the diversity we see in nature reinforces 

the urgency in acquiring data beyond certain conspicuous traits and taxonomic groups. 

Failing to do so risks leaving us with biassed and stagnant evidence, dimming the spark that 315 
Darwin ignited over 150 years ago.  
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Figures 

 

 

Figure 1. Framework for the relationship between putative sexual signals and different 1240 
variables (clockwise from the top): conspicuousness of putative sexual signals, attractiveness, 

benefits to bearers and to mates (timing, reproductive success, viability or offspring quality, 

paternity, parental care, territory quality), individual condition (external condition, body 

condition, immunological or antioxidant capacity, parasite resistance, survival), body size, 

aggression or social dominance, traits related to sperm competition, and age (see also Table 1245 
S1). Arrows represent that a variable potentially influences or signals another variable (see 

text for details). 

 



 

Figure 2. Phylogeny of the 375 animal species present in our dataset. Each ring around the 1250 
phylogenetic tree indicates the existence (colourful cells) or absence (blank cells) of data on 

the relationship between the conspicuousness of one or more putative sexual signals of a 

given species and a variable assessed in our study (red: attractiveness, orange: benefits to 

bearers and to mates, green: individual condition, aquamarine: body size, blue: aggression or 

social dominance, indigo: traits related to sperm competition, violet: age). Silhouettes 1255 
represent species whose nearby cells have black edges. 

 



 

Figure 3. Mean effect sizes for relationship between the conspicuousness of putative sexual 

signals and their bearers’ attractiveness (red zone) and benefits (to bearers and to their mates; 1260 
orange zone). Variance explained by fixed factors in these models (marginal R2) were, 

respectively, 2.3% and 4.1% (see Table S5). The vertical black dotted line highlights zero (no 

relationship). k, n, and sp. represent, respectively, the number of effect sizes, empirical 

studies, and species for each set. 

  1265 



 

Figure 4. Mean effect sizes for the relationship between the conspicuousness of putative 

sexual signals and their bearers’ condition, body size, aggressiveness or social dominance, 

traits related to sperm competition, or age. Variance explained by fixed factors in these 

models (marginal R2) were, respectively, 4.9%, 1.2%, 1.9%, 3.3%, and 0.5% (see Table S5). 1270 
k, n, and sp. represent, respectively, the number of effect sizes, empirical studies, and species 

for each set. 

 



 

Figure 5. Meta-regressions between two relationships: putative sexual signal conspicuousness 1275 
and attractiveness to mates (x-axis, i.e. Zr-attractiveness) and putative sexual signal 

conspicuousness and other variables from our framework (y-axis; A: benefits, B: individual 

condition, C: body size, D: aggression or social dominance, E: traits related to sperm 

competition, F: age). Solid lines represent slopes, hashed areas between dashed lines 

represent slopes’ 95% confidence interval, and dotted lines highlight zero. 1280 
  



Supplementary material 

Material and Methods 

General 

Our methodology was described in our pre-registration (72) and in a twin study that 1285 
essentially used the same dataset as we did in the present study (73). We report author 

contributions using MeRIT guidelines (74) and the CRediT statement (75). 

 

Deviations from the pre-registration 

We planned to use the modality of putative sexual signals (i.e. whether they were visual, 1290 
acoustic, or other types of signals) as a moderator in meta-analytical models but we preferred 

not to proceed with this decision because this variable overlapped with trait type (e.g. most 

fixed putative sexual signals were visual traits). We did not verify the effect of re-extracted 

vs. originally reported data as our related study using the same dataset showed that data 

replicability was high (73). PP adjusted variables within our framework from our pre-1295 
registration [compare Table S1 with Table 1 from (72), see also (73)]. 

 

Putative sexual signal conspicuousness and variables within our framework 

Our dataset contains information on the relationship between putative sexual signal 

conspicuousness and many variables (Table S1; Fig. 1). To clarify, putative sexual signals 1300 
refer to traits thought to be involved in mate attraction [by authors of empirical papers or of 

primary meta-analyses that we used as data sources, see next section; weapons or body size 

were not considered valid putative sexual signals; see also (76)]. On the other hand, 

conspicuousness refers to the expected direction of attractiveness to mates regarding the 

expression of putative sexual signals. For instance, more colourful traits are expected to be 1305 
more attractive, and thus greater values of certain colour metrics that reflect this (e.g. 

chroma) are deemed more conspicuous. However, despite using conspicuousness throughout 

the manuscript for all putative sexual signals, other terms could be more appropriate in many 

cases. For example, more symmetric traits are often expected to be more appealing to mates, 

so they were deemed more conspicuous, even though this term may be misleading here. 1310 
Conspicuousness for other putative sexual signals may be even more confusing as the 

expectations on the direction of their appeal is expected to differ across taxa or scenarios, e.g. 

sounds with higher frequency are expected to be more appealing for birds (11) but less 

appealing for amphibians (19). PP ascertained the expected direction of attractiveness (i.e. 

conspicuousness) based on information provided by authors of empirical and primary meta-1315 
analyses but we note that what is considered more appealing to mates according to these 

authors has often not been tested. In fact, PP was not able to infer the expected direction of 

attractiveness for certain traits when we directly extracted data from empirical studies. PP 

then made additional analyses (see below) in which effect sizes with ambiguous direction 

were removed or changed to their opposite value to ensure our results were robust (see Table 1320 
S2). 

Variables within our framework are explained throughout the manuscript as results are 

reported, while their direction and more examples are given in Table S1. Meta-analyses’ 

authors were often vague regarding the exact data they extracted, so interconnected proxies, 

such as reproductive success and viability measures, were difficult to separate. For instance, 1325 



whether “fledgling success” means number of fledglings (reproductive success) or proportion 

of offspring that fledged from all eggs laid (viability) was unclear in many cases, so PP 

deemed most of them as reproductive success given that this is a more diverse measure. 

 

Data collection 1330 

We used Fisher’s Zr as our effect size, transforming it to correlation coefficient (r) when 

reporting most of our results. Details on the calculation of effect sizes, including all equations 

used, are reported in (73).  
As previously stated, our data collection is fully reported in (73). Briefly, PP compiled 

individual effect sizes from 41 primary meta-analyses (7–19, 46, 48, 56–65, 77–92), which 1335 
contained relevant data for our study from 1,196 empirical sources. Then, all authors (re-

)extracted all data related to putative sexual signals from 243 empirical studies that these 

meta-analyses used as sources (93–338). This was done as part of a reproducibility and 

replicability project (73) but also provided the base to the present study (see below). After 

data re-extractions, PP replaced the individual effect sizes reported by meta-analyses with re-1340 
extracted effect sizes for these 243 empirical studies. Other effect sizes reported by meta-

analyses (from empirical studies whose data we did not re-extract) were maintained in the 

dataset. Despite these 243 empirical studies being cited as data sources by meta-analyses, 

many of the effect sizes re-extracted by us were not actually reported by primary meta-

analyses or, alternatively, were reported by primary meta-analyses with a different value from 1345 
the ones we obtained during re-extraction [see (73)]. Thus, to some extent, our dataset 

contains data that have not been used in previous meta-analyses. PP additionally removed 

identically reported effect sizes (both in description and in value) from other duplicated 

empirical studies (those that we did not extract data from). This process ensured that all 

individual effect sizes in our dataset were unique, in contrast to meta-meta-analyses that 1350 
analyse mean effect sizes from primary meta-analyses [e.g. (339–341)], which can 

encompass repeated data (as the same empirical studies can be used by multiple primary 

meta-analyses). PP further removed from the dataset data that were unfit to verify the 

relationship between putative sexual signal conspicuousness and distinct variables, such as 

measurements of parental care after manipulation of putative sexual signals [e.g. (231)]. After 1355 
these procedures, our dataset tallied 7,428 effect sizes, with 4,237 of them (57% of the 

dataset) being extracted by us and the remaining effect sizes being originally reported by 

primary meta-analyses (7–19, 46, 48, 56–65, 77–92). 

 

Analyses 1360 

PP constructed separate meta-analytical models to verify the relationship between putative 

sexual signal conspicuousness and each variable within our framework, resulting in seven 

sets of models (one set for each background colour in Figs. 3 and 4). PP used multilevel 

meta-analytical models because effect sizes were not independent of one another. Different 

effect sizes could share the same (empirical) study ID, species ID, and trait type ID (i.e. 1365 
flexible or fixed trait, nested within-species). Thus, in addition to effect size ID, PP used 

these variables as random factors in our models to control for non-independence. PP also 

included a correlation matrix related to phylogenetic relatedness for the species in our model 

as a random factor (342). From meta-analytical models with all these random factors, PP 

quantified I2
total [a measure of heterogeneity not attributed to sampling error; (343)] and how 1370 



much of it each random factor explained (partial I2; see Table S3). PP fitted meta-analytical 

models with the following fixed factors: none (only intercept, showing the average 

relationship), sub variable (only models involving benefits and individual condition, see 

Table S1), sex (male, female, or unknown) and trait type (fixed or flexible). We followed 

(344) to interpret the magnitude to mean effect sizes (as Zr, before converting them to r, 1375 
“weak” for values up to 0.2, “moderate” for values up to 0.5, and “high” for greater values). 

We also constructed additional versions of all models described above, in which we removed 

or inverted the value of data points whose direction was ambiguous (e.g. putative sexual 

signals without information on expected direction for mate attraction or data with direction 

not clearly reported in empirical studies). The results of these analyses were very similar to 1380 
the ones with data points as originally extracted (Table S2). 

We tested for signs of publication bias in meta-analytical models using three 

approaches (see Table S6, Figs. S1 and S2). First, we visually evaluated funnel asymmetry 

for each model using funnel plots, which show the residuals of meta-analytical models 

containing all moderators against effect sizes’ precision (i.e. inverse of standard error). 1385 
Second, we further assessed funnel asymmetry with an alternative approach to Egger’s 

regression: using the inverse of the effective sample size as a moderator in a multilevel meta-

analytical model (345). Third, in the same meta-analytical models of the second approach, we 

verified time-lag bias using publication year as a moderator (346). 

To verify whether the relationship between putative sexual signal conspicuousness 1390 
and attractiveness is associated with the relationship between putative sexual signal 

conspicuousness and other variables within our framework, we sought conspicuous traits in 

our dataset with both of these relationships. We used two approaches to collect and link these 

data. In the first approach (hereby across-studies, Fig. 5), we calculated a mean effect size for 

each putative sexual signal (across different empirical studies examining a given species) 1395 
regarding the relationship between its conspicuousness and attractiveness to mates (Zr-

attractiveness). We then linked these estimates to mean effect sizes regarding the relationship 

between the conspicuousness of that same putative sexual signal and another variable (Zr-

benefits, Zr-condition, etc.), also across different empirical studies examining a given species. 

This first approach assumes that the relationship between attractiveness and putative sexual 1400 
conspicuousness across time and populations is consistent, which is not necessarily true 

(347). To ameliorate this issue, our second approach (hereby within-studies; Fig. S3) only 

links these relationships (Zr-attractiveness with either Zr-benefits, Zr-condition, Zr-size, Zr-

dominance, Zr-sperm, or Zr-age) extracted from the same empirical study. This second 

approach is more reliable but yields fewer data points, such that the relationship between Zr-1405 
attractiveness and Zr-sperm could not be analysed with this second approach as a single data 

point was available. We only show the results of the first approach in the manuscript as both 

approaches generated similar qualitative results. 

Meta-regressions described above accounted for the variation of effect sizes serving 

as the response variables (i.e. Zr-benefits, Zr-condition, etc.), but disregarded the dispersal of 1410 
effect sizes serving as predictor variables (i.e. Zr-attractiveness). In other words, they are 

univariate models. To correct this, we conducted bivariate models, in which the dispersal of 

both response and predictor variables is considered. However, this approach yields much 

larger confidence intervals and estimates generated may not be reliable as we could not 

preclude divergent transitions when running these analyses. Thus, we preferred to show 1415 
results of only univariate models (with the across-studies approach) in the manuscript, but 

results for other approaches and models can be found in Table S7. 



All statistical analyses were conducted in the software R 4.4.0 (348). We fitted meta-

analytical models (except for bivariate models) using the rma.mv function from the package 

metafor (349). Bivariate models were fitted using the package brms (350), in which we ran 1420 
three chains, each with 10,000 iterations plus another 10,000 burn-in iterations. In these 

analyses, we adopted Stan's standard uninformative priors, and set the maximum tree depth to 

12 and the adaptive delta to 0.999. We calculated R2 (351) and I2 using, respectively, the 

r2_ml and i2_ml function from the package orchaRd (352). Phylogenetic trees were built 

using the packages ape (353) and rotl (354), which uses data from (355). We performed 1425 
pairwise comparisons (two-tailed z-tests) using the function glht from the package multcomp 

(356). 
  



 

Figure S1. 1430 

Assessments of publication bias: funnel plots of the residuals of meta-analytical models with 

all moderators used (1st column), relationship between effect size (Zr) and square root of 

inverse of effective sample size (2nd column), and relationship between effect size (Zr) and 

publication year (3rd column). Dashed lines represent 95% confidence intervals for expected 

values (1st column) or for regression estimates (2nd and 3rd columns). Panels refer to 1435 
attractiveness (A-C), benefits (D-F), or individual condition (G-I). 



  

Figure S2. 

Assessments of publication bias: funnel plots of the residuals of meta-analytical models with 

all moderators used (A, D, G, J), relationship between effect size (Zr) and square root of 1440 
inverse of effective sample size (B, E, H, K), and relationship between effect size (Zr) and 

publication year (C, F, I, L). Dashed lines represent 95% confidence intervals for expected 

values (A, D, G, J) or for regression estimates (B, C, E, F, H, I, K, L). Panels refer to body 

size (A-C), aggressiveness or social dominance (D-F), traits related to sperm competition (G-

I), or age (J-L).  1445 



 

Figure S3. 

Meta-regressions between two relationships (considering only information from the same 

study, i.e. within-study approach): putative sexual signal conspicuousness and attractiveness 

to mates (x-axis, i.e. Zr-attractiveness) and putative sexual signal conspicuousness and other 1450 
variables from our framework (y-axis; A: benefits, B: individual condition, C: body size, D: 

aggression of social dominance, E: age). Solid lines represent slopes, hashed areas between 

dashed lines represent slopes’ 95% confidence interval, and dotted lines highlight zero. 



 

Figure S4. 1455 

Proportion (x-axis) and number (inside bars) of species for which we had information on the 

relationship between putative sexual signal conspicuousness and several variables (y-axis) 

assessed in our study, for each sex (left panel) and trait type (right panel).  



 

Figure S5. 1460 

Proportion (x-axis) and number (inside bars) of effect sizes for which we had information on 

the relationship between putative sexual signal conspicuousness and several variables (y-axis) 

assessed in our study, for each sex (left panel) and trait type (right panel).  



Table S1. 

Variables within our framework, for which we verified the relationship with putative sexual 1465 
signal conspicuousness. N represents the number of primary meta-analyses in our dataset that 

explored these variables. Underlined examples are predicted to have a negative relationship 

with sexual signal conspicuousness, while others are predicted to have a positive relationship 

with sexual signal conspicuousness. 

 1470 
Variable Sub variable N Examples 

 Attractiveness - 15 
Copulation success, harem size, success in mate choice trials, 

divorce, pairing success or status 

Benefits to sexual 

signal bearers or to 

their mates 

Timing 9 

Latency to arrive at breeding site, latency to nest, latency to 

pair, latency to mate, latency to breed, latency to lay eggs, 

latency for eggs to hatch, latency for offspring to fledge 

Reproductive 

success 
12 

Clutch size, breeding success, number of fledglings, total 

offspring sired, number of recruits 

Offspring quality 

or viability 
9 

Antioxidants or hormones in yolk, offspring growth rate, 

offspring attractiveness, offspring reproductive success, 

proportion of eggs hatched, fledging success, offspring size 

Paternity 10 Within and extra-pair paternity, cuckoldry occurrence 

Parental care 7 Feeding rate, incubation frequency 

Territory 2 Territory quality or size 

Individual condition 

External 

condition 
7 

Increase in brood size or reproductive effort, decrease in brood 

size or reproductive effort, habitat quality, mother’s condition, 

date when reared, diet supplementation, dietary deprivation, 

nutritional stress 

Body  

condition 
11 

Carotenoid, protein, or lipid amount in plasma or in feathers, 

unspecified body condition, feather quality, subcutaneous fat 

score, residual mass, pectoral score  

Immune or 

antioxidant 

capacity 

10 
Antibody response, glucocorticoids, hematocrit, heterophil-to-

lymphocyte ratio, oxidative damage, white blood cells 

Parasite resistance 10 
Abundance of parasites, infection with a pathogen, pathogen 

richness, parasite removal 

Survival 9 Days alive, seen or re-captured after a given period 

Body size - 8 Body (or part of it) mass, length, width, depth, area, or volume 

Aggression 

or social dominance 
- 7 

Performed aggression, received aggression, dominance, fights 

initiated, social rank, nest defence, distance from intruder, 

territory tenure 

Traits related 

to sperm competition 
- 1 

Quantity of seminal fluid, sperm size, sperm viability, testes 

size 

Age - 8 Age, ontogenetic stage (e.g. adult vs. juveniles) 

 

  



Table S2.  

Estimated correlation coefficients from meta-analytical models. Three types of analyses are 

reported regarding how we dealt with data points with ambiguous direction: (1) “original” 1475 
refers to results reported in the manuscript, which used data points as originally extracted; (2) 

“opposite” instead uses the opposite value of these data points; (3) “removed” refers to 

analyses without these data points. 

 

Variable 
Sub 

variable 
Set Analysis Estimate 

Standard 

error 

95% CI 

lower 

bound 

95% CI 

upper 

bound 

Attractiveness - 

All 

Original 0.329 0.053 0.233 0.419 

Opposite 0.330 0.054 0.233 0.420 

Removed 0.333 0.054 0.235 0.423 

Female 

fixed 

Original 0.220 0.088 0.050 0.377 

Opposite 0.234 0.090 0.062 0.393 

Removed 0.226 0.089 0.054 0.385 

Male fixed 

Original 0.304 0.051 0.211 0.392 

Opposite 0.306 0.053 0.208 0.397 

Removed 0.309 0.053 0.212 0.400 

Male 

flexible 

Original 0.403 0.057 0.304 0.493 

Opposite 0.394 0.060 0.291 0.488 

Removed 0.402 0.059 0.299 0.495 

Benefits to sexual 

signal bearers or to 

their mates 

- 

All 

  

Original 0.165 0.017 0.133 0.197 

Opposite 0.158 0.017 0.125 0.191 

Removed 0.170 0.017 0.137 0.203 

Female 

fixed 

  

Original 0.124 0.025 0.077 0.171 

Opposite 0.126 0.029 0.070 0.181 

Removed 0.133 0.026 0.084 0.182 

Male fixed 

  

Original 0.161 0.022 0.118 0.204 

Opposite 0.155 0.027 0.103 0.206 

Removed 0.164 0.023 0.120 0.208 

Male 

flexible 

Original 0.202 0.029 0.146 0.257 

Opposite 0.194 0.033 0.131 0.256 

Removed 0.209 0.031 0.152 0.266 

Timing 

All 

Original 0.213 0.022 0.171 0.254 

Opposite 0.223 0.023 0.181 0.265 

Removed 0.219 0.023 0.176 0.262 

Female 

fixed 

Original 0.110 0.033 0.045 0.174 

Opposite 0.144 0.034 0.079 0.209 

Removed 0.126 0.035 0.059 0.193 

Male fixed 

Original 0.245 0.028 0.194 0.295 

Opposite 0.254 0.028 0.201 0.305 

Removed 0.242 0.028 0.190 0.294 

Male 

flexible 

Original 0.242 0.043 0.161 0.320 

Opposite 0.219 0.044 0.136 0.300 

Removed 0.247 0.044 0.165 0.326 

Reproductive 

success 

All 

Original 0.157 0.019 0.121 0.193 

Opposite 0.152 0.019 0.115 0.189 

Removed 0.166 0.020 0.128 0.203 

Original 0.132 0.025 0.084 0.180 



Female 

fixed 

Opposite 0.134 0.026 0.084 0.183 

Removed 0.140 0.026 0.089 0.190 

Male fixed 

Original 0.139 0.023 0.094 0.183 

Opposite 0.131 0.024 0.085 0.176 

Removed 0.142 0.024 0.097 0.188 

Male 

flexible 

Original 0.228 0.038 0.157 0.297 

Opposite 0.224 0.038 0.152 0.295 

Removed 0.245 0.039 0.172 0.315 

Offspring 

quality or 

viability 

All 

Original 0.164 0.022 0.123 0.205 

Opposite 0.149 0.022 0.106 0.190 

Removed 0.171 0.022 0.128 0.214 

Female 

fixed 

Original 0.122 0.036 0.053 0.190 

Opposite 0.107 0.036 0.037 0.177 

Removed 0.132 0.038 0.058 0.204 

Male fixed 

Original 0.170 0.026 0.119 0.219 

Opposite 0.155 0.027 0.103 0.206 

Removed 0.178 0.027 0.127 0.229 

Male 

flexible 

Original 0.172 0.041 0.093 0.250 

Opposite 0.157 0.042 0.075 0.236 

Removed 0.171 0.043 0.088 0.252 

Paternity 

All 

Original 0.149 0.029 0.092 0.204 

Opposite 0.143 0.030 0.085 0.199 

Removed 0.151 0.030 0.094 0.208 

Male fixed 

Original 0.136 0.032 0.074 0.198 

Opposite 0.133 0.033 0.070 0.196 

Removed 0.136 0.032 0.073 0.197 

Male 

flexible 

Original 0.140 0.060 0.022 0.253 

Opposite 0.119 0.062 -0.003 0.237 

Removed 0.140 0.061 0.022 0.254 

Parental care 

All 

Original 0.079 0.029 0.022 0.136 

Opposite 0.052 0.030 -0.006 0.110 

Removed 0.069 0.031 0.008 0.130 

Female 

fixed 

Original 0.077 0.044 -0.009 0.162 

Opposite 0.030 0.045 -0.057 0.117 

Removed 0.070 0.049 -0.025 0.164 

Male fixed 

Original 0.044 0.036 -0.026 0.113 

Opposite 0.020 0.036 -0.051 0.091 

Removed 0.027 0.037 -0.046 0.100 

Male 

flexible 

Original 0.214 0.092 0.037 0.378 

Opposite 0.248 0.092 0.071 0.409 

Removed 0.253 0.095 0.072 0.418 

Territory 

All 

Original 0.241 0.042 0.162 0.317 

Opposite 0.241 0.043 0.161 0.318 

Removed 0.236 0.043 0.156 0.314 

Male fixed 

Original 0.298 0.057 0.192 0.397 

Opposite 0.300 0.058 0.193 0.400 

Removed 0.285 0.058 0.176 0.387 

Male 

flexible 

Original 0.219 0.060 0.104 0.329 

Opposite 0.213 0.061 0.096 0.324 

Removed 0.229 0.061 0.113 0.338 



Individual 

condition 

- 

All 

Original 0.174 0.026 0.124 0.224 

Opposite 0.174 0.027 0.121 0.225 

Removed 0.177 0.026 0.128 0.226 

Female 

fixed 

Original 0.134 0.034 0.069 0.198 

Opposite 0.137 0.035 0.070 0.203 

Removed 0.137 0.034 0.072 0.201 

Male fixed 

Original 0.184 0.030 0.126 0.241 

Opposite 0.182 0.032 0.121 0.241 

Removed 0.187 0.030 0.129 0.244 

Male 

flexible 

Original 0.186 0.033 0.123 0.247 

Opposite 0.184 0.034 0.119 0.248 

Removed 0.186 0.033 0.124 0.248 

External 

condition 

All 

Original 0.263 0.026 0.215 0.310 

Opposite 0.265 0.029 0.211 0.318 

Removed 0.274 0.028 0.222 0.325 

Female 

fixed 

Original 0.228 0.062 0.110 0.339 

Opposite 0.222 0.062 0.104 0.334 

Removed 0.227 0.065 0.104 0.343 

Male fixed 

Original 0.269 0.041 0.194 0.341 

Opposite 0.278 0.041 0.203 0.350 

Removed 0.289 0.043 0.210 0.364 

Male 

flexible 

Original 0.290 0.038 0.219 0.357 

Opposite 0.293 0.039 0.222 0.360 

Removed 0.296 0.039 0.226 0.364 

Body 

condition 

All 

Original 0.198 0.020 0.161 0.235 

Opposite 0.199 0.024 0.153 0.244 

Removed 0.202 0.022 0.160 0.244 

Female 

fixed 

Original 0.163 0.030 0.105 0.220 

Opposite 0.171 0.030 0.113 0.228 

Removed 0.168 0.031 0.108 0.227 

Male fixed 

Original 0.225 0.024 0.180 0.269 

Opposite 0.220 0.024 0.175 0.265 

Removed 0.228 0.025 0.181 0.273 

Male 

flexible 

Original 0.148 0.048 0.054 0.238 

Opposite 0.147 0.049 0.053 0.239 

Removed 0.145 0.049 0.051 0.237 

Immune or 

antioxidant 

capacity 

All 

Original 0.129 0.023 0.084 0.174 

Opposite 0.126 0.028 0.073 0.179 

Removed 0.128 0.026 0.078 0.178 

Female 

fixed 

Original 0.141 0.045 0.054 0.227 

Opposite 0.142 0.045 0.054 0.228 

Removed 0.144 0.046 0.056 0.230 

Male fixed 

Original 0.138 0.028 0.084 0.191 

Opposite 0.135 0.028 0.081 0.189 

Removed 0.140 0.029 0.084 0.195 

Male 

flexible 

Original 0.072 0.052 -0.030 0.172 

Opposite 0.081 0.053 -0.022 0.182 

Removed 0.073 0.053 -0.030 0.175 

Parasite 

resistance 
All 

Original 0.119 0.021 0.078 0.159 

Opposite 0.123 0.025 0.074 0.171 



Removed 0.128 0.023 0.082 0.172 

Female 

fixed 

Original 0.097 0.042 0.015 0.178 

Opposite 0.108 0.042 0.025 0.189 

Removed 0.110 0.044 0.023 0.195 

Male fixed 

Original 0.134 0.025 0.086 0.181 

Opposite 0.136 0.025 0.088 0.183 

Removed 0.141 0.025 0.092 0.189 

Male 

flexible 

Original 0.115 0.043 0.030 0.197 

Opposite 0.100 0.044 0.015 0.184 

Removed 0.111 0.044 0.026 0.196 

Survival 

All 

Original 0.113 0.031 0.053 0.172 

Opposite 0.100 0.034 0.034 0.166 

Removed 0.108 0.033 0.044 0.172 

Female 

fixed 

Original 0.020 0.055 -0.088 0.127 

Opposite 0.003 0.055 -0.105 0.111 

Removed 0.013 0.057 -0.098 0.123 

Male fixed 

Original 0.130 0.038 0.057 0.202 

Opposite 0.125 0.038 0.051 0.197 

Removed 0.133 0.039 0.058 0.206 

Male 

flexible 

Original 0.183 0.065 0.057 0.302 

Opposite 0.147 0.066 0.019 0.271 

Removed 0.162 0.066 0.033 0.286 

Body size - 

All 

Original 0.230 0.045 0.144 0.312 

Opposite 0.228 0.051 0.132 0.319 

Removed 0.232 0.041 0.155 0.307 

Female 

fixed 

Original 0.295 0.080 0.147 0.431 

Opposite 0.297 0.084 0.140 0.440 

Removed 0.295 0.077 0.152 0.426 

Male fixed 

Original 0.267 0.078 0.119 0.403 

Opposite 0.269 0.083 0.113 0.413 

Removed 0.262 0.075 0.120 0.394 

Male 

flexible 

Original 0.215 0.065 0.092 0.333 

Opposite 0.212 0.069 0.079 0.337 

Removed 0.221 0.061 0.105 0.331 

Aggression or 

social dominance 
- 

All 

Original 0.205 0.082 0.047 0.354 

Opposite 0.202 0.087 0.034 0.358 

Removed 0.206 0.084 0.044 0.358 

Female 

fixed 

Original 0.138 0.147 -0.151 0.404 

Opposite 0.114 0.147 -0.174 0.383 

Removed 0.131 0.148 -0.159 0.401 

Male fixed 

Original 0.242 0.092 0.065 0.404 

Opposite 0.245 0.095 0.064 0.410 

Removed 0.245 0.093 0.066 0.409 

Male 

flexible 

Original 0.184 0.131 -0.072 0.416 

Opposite 0.188 0.130 -0.066 0.420 

Removed 0.189 0.130 -0.064 0.419 

Traits related to 

sperm competition 
- 

All 

Original 0.107 0.040 0.029 0.185 

Opposite 0.103 0.044 0.017 0.188 

Removed 0.108 0.040 0.031 0.184 

Male fixed 
Original 0.072 0.058 -0.043 0.184 

Opposite 0.068 0.059 -0.048 0.183 



Removed 0.072 0.058 -0.042 0.185 

Male 

flexible 

Original 0.175 0.066 0.046 0.297 

Opposite 0.170 0.067 0.041 0.294 

Removed 0.176 0.066 0.047 0.299 

Age - 

All 

Original 0.196 0.079 0.043 0.340 

Opposite 0.201 0.054 0.099 0.300 

Removed 0.197 0.085 0.032 0.350 

Female 

fixed 

Original 0.153 0.094 -0.030 0.326 

Opposite 0.174 0.075 0.028 0.313 

Removed 0.163 0.100 -0.032 0.346 

Male fixed 

Original 0.193 0.092 0.014 0.360 

Opposite 0.208 0.074 0.067 0.342 

Removed 0.203 0.098 0.013 0.380 

Male 

flexible 

Original 0.217 0.096 0.032 0.387 

Opposite 0.198 0.078 0.047 0.341 

Removed 0.206 0.102 0.009 0.388 

 1480 
  



Table S3. 

Heterogeneity (I2) observed in meta-analytical models on the relationship between the 

expression of putative sexual signals and different variables within our framework. 

 1485 

Variable I2
total 

I2
within-study 

(effect size ID) 

I2
across-study 

(study ID) 

I2
across-species 

(species ID) 
I2

phylogeny 
I2

within-species 

trait type 

Attractiveness 91.537 55.947 25.180 <00.001 2.252 8.158 

Benefits to sexual 

signal bearers or to 

their mates 

88.017 51.591 25.048 0.684 <0.001 10.694 

Individual condition 85.176 52.427 26.649 4.778 1.321 <0.001 

Body size 87.193 35.080 04.278 <0.001 3.599 44.236 

Aggression or 

social dominance 
78.527 19.885 43.136 9.353 5.237 0.916 

Traits related to sperm 

competition 
75.923 31.769 42.970 <0.001 1.183 0.000 

Age 93.585 44.460 28.500 <0.001 7.395 13.230 

 

  



Table S4. 

Pairwise comparisons (two-tailed test) among combinations of sex and trait type. Shaded 

cells highlight significant comparisons (p-value < 0.05). 1490 

 
Variable Sub variable Female fixed vs. 

male fixed 

Female fixed vs. 

male flexible 

Male fixed vs. 

male flexible 

    z-value p-value z-value p-value z-value p-value 

Attractiveness – -1.048 0.294 -2.070 0.038 -1.735 0.083 

Benefits to sexual 

signal bearers or 

to their mates 

– -2.068 0.039 -2.229 0.026 -1.227 0.220 

Timing -3.975 <0.001 -2.538 0.011 0.058 0.954 

Reproductive success -0.276 0.783 -2.214 0.027 -2.120 0.034 

Offspring quality or 

viability 

-1.321 0.186 -0.949 0.343 -0.058 0.953 

Paternity – – – – -0.050 0.960 

Parental care 0.664 0.507 -1.380 0.168 -1.774 0.076 

Territory – – – – -1.024 0.306 

Individual 

condition 

– -2.484 0.013 -1.662 0.097 -0.071 0.943 

External condition -0.718 0.472 -0.924 0.356 -0.403 0.687 

Body condition -2.060 0.039 0.283 0.777 1.540 0.124 

Immune or 

antioxidant capacity 

0.075 0.941 1.046 0.295 1.213 0.225 

Parasite resistance -0.851 0.395 -0.301 0.763 0.407 0.684 

Survival -1.981 0.048 -1.983 0.047 -0.750 0.453 

Body size – 0.936 0.349 1.241 0.215 0.812 0.417 

Aggression or 

social dominance 

– -0.710 0.478 -0.257 0.797 0.515 0.606 

Traits related to 

sperm competition 

– – – – – -2.076 0.038 

Age – -0.862 0.388 -0.701 0.484 -0.276 0.782 

 

  



Table S5.  

Marginal R2 (i.e. variation of data explained by fixed factors) and conditional R2 (i.e. 1495 
variation of data explained by random and fixed factors) of meta-analytical models on the 

relationship between putative sexual signal conspicuousness and different variables, with sub 

variable, sex, and trait type as fixed factors. 

 
Variable Marginal R2 Conditional R2 

Attractiveness 0.023 0.387 

Benefits to sexual signal bearers or to their mates 0.041 0.400 

Individual condition 0.049 0.395 

Body size 0.012 0.617 

Aggression or social dominance 0.019 0.742 

Traits related to sperm competition 0.033 0.571 

Age 0.005 0.537 
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Table S6.  

Results of meta-analytical models on the relationship between putative sexual signal 

conspicuousness and different variables, with the square root of the inverse of effective 

sample size (SIESS) and publication year of empirical sources as moderators. Positive 

estimates for SIESS indicate publication bias and negative estimates for publication year 1505 
indicate time-lag publication bias (shaded rows highlight these cases when statistically 

significant). 

 
Variable Term Estimate SE z-value p-value 95% CI 

Attractiveness 

Intercept 0.356 0.045 7.835  <0.001 0.267 to 0.442 

SIESS 0.056 0.028 1.948 0.051 -0.001 to 0.111 

Time-lag -0.054 0.028 -1.937 0.053 -0.109 to 0.000 

Benefits to sexual signal 

bearers or to their mates 

Intercept 0.170 0.016 10.85 <0.001 0.140 to 0.201 

SIESS 0.033 0.010 3.444 0.001 0.014 to 0.052 

Time-lag -0.052 0.012 -4.262 <0.001 -0.077 to -0.028 

Individual condition 

Intercept 0.187 0.027 6.910 <0.001 0.134 to 0.240 

SIESS 0.048 0.010 5.015 <0.001 0.029 to 0.066 

Time-lag 0.001 0.011 0.060 0.953 -0.021 to 0.023 

Body size 

Intercept 0.231 0.046 5.067 <0.001 0.142 to 0.321 

SIESS 0.016 0.018 0.894 0.372 -0.020 to 0.052 

Time-lag -0.029 0.024 -1.200 0.230 -0.076 to 0.018 

Aggression or social 

dominance 

Intercept 0.244 0.073 3.326 0.001 0.100 to 0.388 

SIESS 0.063 0.036 1.752 0.080 -0.007 to 0.134 

Time-lag -0.115 0.047 -2.465 0.014 -0.207 to -0.024 

Traits related to sperm 

competition 

Intercept 0.111 0.036 3.117 0.002 0.041 to 0.181 

SIESS -0.082 0.034 -2.416 0.016 -0.149 to -0.016 

Time-lag -0.059 0.040 -1.455 0.146 -0.138 to 0.020 

Age 

Intercept 0.211 0.070 3.017 0.003 0.074 to 0.349 

SIESS 0.012 0.023 0.542 0.588 -0.032 to 0.056 

Time-lag -0.038 0.030 -1.245 0.213 -0.098 to 0.022 
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Table S7.  

Association between the relationship between putative sexual signal conspicuousness and 

attractiveness (Zr-attractiveness) and the relationship between putative sexual signal 

conspicuousness and other variables (benefits: Zr-benefits, individual condition: Zr-

condition, body size: Zr-size, aggression or social dominance: Zr-dominance, traits related to 1515 
sperm competition: Zr-sperm, and age: Zr-age), depending on two approaches (across- and 

within-studies) and two distinct models (uni- and bivariate). N indicates the number of effect 

sizes used in each approach. Shaded rows highlight estimates whose 95% confidence interval 

does not overlap zero.’ 

 1520 
Variable Approach N Model Estimate 95% CI 

Benefits to sexual 

signal bearers or to 

their mates 

Across-studies 66 
Univariate 0.283 0.136 to 0.429 

Bivariate 0.739 0.359 to 0.985 

Within-studies 68 
Univariate 0.246 0.102 to 0.390 

Bivariate 0.636 0.272 to 0.941 

Individual condition 

Across-studies 64 
Univariate 0.218 0.053 to 0.383 

Bivariate 0.466 -0.078 to 0.922 

Within-studies 32 
Univariate 0.330 0.085 to 0.574 

Bivariate 0.505 -0.056 to 0.944 

Body size 

Across-studies 59 
Univariate 0.135 -0.077 to 0.347 

Bivariate 0.167 -0.309 to 0.639 

Within-studies 47 
Univariate 0.003 -0.225 to 0.231 

Bivariate -0.013 -0.663 to 0.667 

Aggression or 

social dominance 

Across-studies 24 
Univariate 0.275 -0.102 to 0.653 

Bivariate 0.197 -0.551 to 0.796 

Within-studies 15 
Univariate 0.199 -0.167 to 0.565 

Bivariate 0.057 -0.649 to 0.702 

Traits related to 

sperm competition 

Across-studies 13 
Univariate 0.494 -0.126 to 1.114 

Bivariate 0.286 -0.820 to 0.970 

Within-studies 1 
Univariate - - 

Bivariate - - 

Age 

Across-studies 39 
Univariate -0.076 -0.481 to 0.328 

Bivariate 0.001 -0.664 to 0.719 

Within-studies 30 
Univariate -0.086 -0.523 to 0.351 

Bivariate 0.118 -0.772 to 0.923 

 


