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Abstract 34 

New technological developments open novel possibilities for widely applicable methods of 35 

ecosystem analyses. We investigated a novel approach using smartphone-based 3D scanning 36 

for non-destructive, high-resolution monitoring of above-ground plant biomass. This method 37 

leverages Structure from Motion (SfM) techniques with widely accessible smartphone apps and 38 

subsequent computing to generate detailed ecological data. By implementing a streamlined 39 

pipeline for point cloud processing and voxel-based analysis, we enable frequent, cost-effective, 40 

and accessible monitoring of vegetation structure and plant community biomass. Conducted in 41 

long-term experimental grasslands, our study reveals a high correlation (R² up to 0.9) between 42 

traditional biomass harvesting and 3D volume estimates derived from smartphone-generated 43 

point clouds, validating the method's accuracy and reliability. Additionally, results indicate 44 

significant effects of plant species richness and fertilization on biomass production and volume 45 

estimates, underscoring the potential for high-resolution temporal and spatial analyses of 46 

vegetation dynamics. This method's innovation extends beyond traditional practices with 47 

implications for future integration of AI to automate species segmentation, ecological trait 48 

extraction, and predictive modeling. The simplicity and accessibility of the smartphone-based 49 

approach facilitate broader engagement in ecosystem monitoring, encouraging citizen science 50 

participation and enhancing data collection efforts. Future research will make it possible to 51 

refine the accuracy of point cloud processing, expand applications across diverse vegetation 52 

types, and explore new possibilities in ecological monitoring, modeling, and its application in 53 

ecosystem analyses and biodiversity research. 54 
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Introduction 57 

Biodiversity is declining dramatically due to the effects of global change, with unknown 58 

consequences for human life on Earth (Cardinale et al. 2012; Keesing & Ostfeld 2021; 59 

Habibullah et al. 2022). In recent years, more and more research has been carried out on this 60 

topic in order to better predict the consequences of global change and to understand its 61 

underlying processes. Flagships of such research are biodiversity experiments, such as Cedar 62 

Creek (Tilman et al. 1997) and the Jena Experiment (Weisser et al. 2017), globally distributed 63 

experimental studies in natural grasslands, such as Drought Network (Smith et al. 2024), or the 64 

Nutrient Network (Borer et al. 2014), and research infrastructures along natural diversity or 65 

land-use gradients like the Biodiversity Exploratories (Fischer et al. 2010) or TERENO in 66 

Germany (Zacharias et al. 2024) and eLTER in Europe (Mollenhauer et al. 2018; Ohnemus et 67 

al. 2024). 68 

A common variable studied in these research facilities is above-ground plant biomass, serving 69 

as a proxy for plant productivity, which is a fundamental component of ecosystem functioning. 70 

The most frequent method to determine above-ground biomass is to harvest the plants at ground 71 

level on a defined area, followed by drying and weighing (there are also alternative non-72 

destructive methods (López-Díaz, Roca-Fernández & González-Rodríguez 2011), which are, 73 

however, used comparatively rarely). 74 

Despite its simplicity and relatively low cost, the harvest method has notable limitations: 75 

repeated destructive biomass harvest can change plant growth and can therefore not be repeated 76 

in short time intervals on permanent plots. Estimating actual productivity, which entails 77 

measuring rates of biomass change rather than just the standing stock, however, requires long-78 

term series of biomass data over multiple seasons. Furthermore, destructive sampling offers 79 

only a coarse temporal and spatial resolution, limiting the ability to capture detailed variation 80 

in vegetation structure. 81 



In recent years, advanced and modern techniques have emerged, allowing for higher resolution 82 

temporal and spatial measurements through 3D scanning and computational analysis of 83 

resulting digital point clouds (Lausch et al. 2020; Kolhar & Jagtap 2023). Active sensing 84 

methods are often summarized as “LiDAR” (Light Detection And Ranging) and include among 85 

others airborne (ALS), mobile (MLS) and terrestrial laser scanning (TLS), which have become 86 

well established for high-precision 3D vegetation mapping, especially in forestry applications 87 

(Bienert et al. 2021; Demol et al. 2022; Richter & Maas 2022; Bienert et al. 2024). However, 88 

laser scanning has one decisive disadvantage: the required equipment and software are 89 

prohibitively expensive and often inaccessible to many researchers. Passive / optical sensing 90 

methods using cameras are of particularly interest in today’s on-site crop growth monitoring. 91 

Alternative optical methods include the light-field measurement approach (Schima et al. 2016; 92 

Hu et al. 2023), which, while innovative, currently lacks commercially available cameras 93 

suitable for this purpose. Another approach is stereoscopy, which derives structural vegetation 94 

properties, although it requires calibrated permanent installations and continuous power supply 95 

(Dandrifosse et al. 2020; Kobe et al. 2024). 96 

An additional promising method is Structure from Motion (SfM), which uses standard cameras 97 

to derive the structural properties of plant communities (Cooper et al. 2017; Kröhnert et al. 98 

2018; Enterkine et al. 2023). This technique holds significant potential for extracting structural 99 

features of plant communities at the plot level (Enterkine et al. 2023). There are already some 100 

approaches using this technique for ecosystem monitoring, but they usually involve expensive 101 

photo cameras and rather complex processing methods (Enterkine et al. 2023). Here we present 102 

a new approach that makes the SfM method easily accessible to everyone (i.e., inexpensive and 103 

simple to implement) by using a smartphone and freely available 3D scanning apps. Given that 104 

nearly everyone owns a smartphone, and that smartphone camera technology has seen rapid 105 

advancements in recent years, we see huge potential for ecosystem monitoring. Modern 106 

smartphones come with features such as multiple lenses, image stabilisation, autofocus, and 107 



cameras with at least 40 megapixels, capable of producing high-resolution images comparable 108 

to those taken with SLR cameras. The high quality of today's smartphone camera images 109 

enables photogrammetric image processing, e.g. using SfM (Micheletti, Chandler & Lane 2015; 110 

Vinci et al. 2017; Luetzenburg, Kroon & Bjørk 2021). In a recent study by Chiappini et al. 111 

(2024), the authors compared the accuracy of 3D urban olive tree models generated including 112 

SfM models generated from smartphone images against models from professional MLS. While 113 

smartphone-based methods underestimated larger trees, they demonstrated potential as cost-114 

effective alternatives for urban tree assessments, despite limitations in accuracy compared to 115 

high-end devices. 116 

Beyond the hardware, the software side has also evolved significantly. Freely available apps 117 

such as Scaniverse (Niantic Inc., San Francisco, CA, US) or Polycam (Polycam, San Francisco, 118 

CA, US) now enable users to perform 3D scans of above-ground vegetation. The process is 119 

straightforward: users simply open the app, scan the vegetation, and the app processes the 120 

captured images (which takes about 1-2 minutes) before generating a point cloud. This point 121 

cloud can then be used to estimate vegetation variables, such as growth height and biomass 122 

production. This approach allows for repeated, low-cost, and non-invasive data collection at 123 

daily, weekly, or monthly intervals, providing a more accurate and detailed monitoring of plant 124 

communities. This can be, for example,  125 

• temporal dynamics - regular or even automated sampling enables estimates of biomass 126 

production rates and growth strategies over time,  127 

• vegetation structure and spatial variation - 3D point clouds enable a detailed analysis of 128 

vegetation structure, including spatial heterogeneity, 129 

• phenological patterns - by capturing changes in colour, greening and flowering 130 

phenology can be quantified. 131 

Moreover, the ability to scan plants with smartphones opens up numerous possibilities for 132 

citizen science, i.e., people can collect data and provide important additional quantitative and 133 



qualitative information (Koedel et al. 2022; von Gönner et al. 2023). Other conceivable uses 134 

would be the investigation of protected or sensitive plant communities through time (Tirrell et 135 

al. 2023) where harvesting is not permitted or possible, or for teaching, in order to better explain 136 

structural interrelationships. 137 

In the present work we tested whether 3D scans with smartphones generally produce similar 138 

results to those of traditional biomass harvesting in a long-term grassland experiment. As part 139 

of this research, we aim to provide initial guidance on optimal ways to scan vegetation with a 140 

smartphone and, in particular, how to subsequently process the resulting point clouds to 141 

generate biomass-like data. 142 

 143 

Materials and methods 144 

Study site 145 

The study was conducted in experimental grasslands (DivResource experiment) established at 146 

the Feld Station of the Helmholtz Centre for Environmental Research (UFZ) in Bad Lauchstädt, 147 

Germany (51°23′38″ N, 11°52′45″ E, 118 m a.s.l.) in 2011 (Siebenkäs, Schumacher & Roscher 148 

2016). The site has an average annual temperature of 9.5°C and 492 mm of precipitation (1981-149 

2010). Eight perennial plant species (four herbs, four grasses), typical of Central European 150 

mown grasslands, were selected and divided into two independent species pools. Sown species 151 

richness levels are 1, 2 and 4 with paired fertilized and unfertilized experimental plots, 152 

respectively. Plots of 2 × 2 m area (later reduced to 1 × 1 m) and arranged in four experimental 153 

blocks were weeded three times per year to maintain the sown species combinations. The 154 

experiment was mown twice annually (early June, September) and the mown biomass was 155 

removed. Fertilization (NPK as pellets, 120:52:100 kg ha−1 yr−1) was applied distributed with 156 

two even doses (March, and June after first mowing) from 2012 to 2023. 157 

 158 

 159 



3D scans and biomass sampling 160 

On 4 September 2024, we scanned the vegetation in the monocultures and 4-species plots of 161 

one species pool, i.e, two monoculture plots of Lolium perenne L., Dactylis glomerata L., 162 

Prunella vulgaris L. and Knautia arvensis (L.) Coulter, respectively, and four plots containing 163 

all four species (Siebenkäs, Schumacher & Roscher 2016). To do this, we used a frame with a 164 

0.3 × 0.3 m inner surface (made of 0.25 m wide planks; Fig. 1a) to define a specific sub-area 165 

per plot (position was randomly chosen in the plot with a sufficient distance from the plot edge). 166 

We then used an iPhone 15 Pro and the app Scaniverse to scan the defined area. The Scaniverse 167 

app, which is available for free download from the Apple Store and Google Play Store, was 168 

preferred to alternatives such as Polycam due to its easy handling, fast scanning speed and high-169 

quality results.  170 

For scanning, Scaniverse offers two scan modes: ‘Splat’ and ‘Mesh’. It is very likely that the 171 

splat option uses a Gaussian splatting approach to generate 3D representations. With Gaussian 172 

splatting, only a small number of 3D points need to be generated from images, with each point 173 

having a coordinate in 3D space as well as colour and depth information. Using the Gaussian 174 

splats, imaginable as a kind of modifiable bubbles, the appearance of the scanned space can be 175 

reconstructed from these points by changing the splats depending on the point attributes. By 176 

default, no new real 3D information is generated that can be used for measurement purposes. 177 

Mesh-based 3D models are explicitly defined by geometric information, i.e., points, edges, and 178 

surfaces. A high-quality mesh that also performs well in visualization is therefore associated 179 

with a high-quality and dense 3D point cloud. Consequently, it stands to reason that the mesh 180 

function would generate a higher point density.  181 

For scanning, we thus first selected the ‘Mesh’ mode and ‘Small Object’ (recommended for 182 

objects at a size of “pets, toys and flowers” and likely to predefine the measurement volume), 183 

and then scanned the area by capturing the vegetation from all possible angles and distances 184 

until the app no longer indicated any red-marked areas in the scan. The scanning took one to 185 



two minutes, depending on the density of the vegetation. Each plot was scanned three times. 186 

After scanning, we used the ‘Detail’ processing mode to generate the point cloud. This mode is 187 

recommended to get the most detailed 3D information. During the ‘Detail’ processing stage, 188 

various status messages are displayed, i.e., ‘Aligning Images, Computing Depth, Texturing’, 189 

which point to the workflow of SfM. First, the image orientation parameters are determined 190 

within the sequence. This is followed by dense matching to compute depth information, i.e., 3D 191 

points, through depth triangulation. The calculated 3D points are subsequently textured by the 192 

image data. It is important to note that SfM does not inherently provide scale information. 193 

Scaniverse probably uses some kind of visual odometry to determine the image trajectory in a 194 

metrically scaled coordinate system. This information can be used in the SfM process during 195 

image orientation to obtain true-to-scale 3D points in subsequent dense matching. The model 196 

was then saved and exported in .ply format (Fig. 1b), that is widely used in the 3D community, 197 

using the ‘Share’ function. 198 

After scanning, the maximum height of the vegetation in the 0.3 × 0.3 m sub-plot was measured 199 

(vegetation height), and finally plants were harvested 3 cm above the ground (i.e., at height of 200 

the wooden frame; which is common for harvesting biomass in such grassland experiments). 201 

Biomass was weighed before (fresh biomass) and after (dry biomass) drying for 48h at 60°C.  202 

 203 

 204 

Fig. 1 Vegetation in the field with the wooden frame around (a), original point cloud from 205 

Scaniverse (b), clipped point cloud (c) used for voxel space calculation (d). Illustrated is a 206 

fertilized 4-species mixture plot (voxel size 5 mm).  207 



Point cloud and voxel space processing  208 

First, the 3D point clouds were processed using CloudCompare, a free software for visualizing 209 

and editing point clouds (CloudCompare (version 2.13.2) [GPL software], 2024, retrieved from 210 

http://www.cloudcompare.org/). Each point cloud was manually clipped to focus on the region 211 

of interest, specifically removing all 3D points associated with the structure of the wooden 212 

frame and all extraneous 3D points (Fig. 2). In addition, 3D points with height values below the 213 

height of the top board layer were excluded to focus only on 3D points on plant parts at least 214 

3 cm above soil surface consistent with the cutting height of biomass (Fig. 1c). Future versions 215 

of this process could be automated, possibly using e.g. the Python wrapper CloudComPy. 216 

 217 

 218 

Fig. 2 Workflow description: after point cloud acquisition via smartphone, point clouds were 219 

clipped, voxel space was processed, and finally, relationships between resulting voxel volumes 220 

and the harvested biomass were evaluated. 221 

 222 

Voxel data analyses 223 

To quantify spatial distributions and characteristics within 3D point clouds, we implemented a 224 

voxel-based analysis using Open3D (version 0.18.0) in Python (version 3.10, Fig. 2). Each point 225 

cloud was processed into a voxel grid representation at a resolution of 2.5, 5.0, 7.5 and 10.0 mm3 226 

per voxel (Fig. 1d). The voxel size is directly related to derived geometric quantities such as 227 

volume and height, which is why different voxel sizes were tested, and the derived statistical 228 

parameters were compared with conventional measurements to find the most suitable size 229 

(Enterkine et al. 2023). The voxel grid was generated, respectively, by dividing the spatial 230 



domain into cubic voxels of the defined size. The number of points contained within each voxel 231 

was then calculated and stored, facilitating density analysis across the scanned region. 232 

Voxel-based statistics were computed, including mean, median, and standard deviation of the 233 

point count per voxel to describe spatial distribution patterns. Estimates of total volume were 234 

derived based on the number of occupied voxels (of known volume - volume is the biomass-235 

like variable), while the maximum vertical height of occupied voxels along the z-axis within 236 

each voxel dataset was measured to indicate the height of the structure. For visualization, voxel 237 

data that met certain density thresholds were rendered using Python’s Matplotlib, with a color 238 

map representing voxel point densities. The approach enabled an efficient analysis of point 239 

cloud density and volumetric characteristics, providing insights into spatial heterogeneity 240 

within the scanned region. In terms of reliability, we averaged the heights and volumes 241 

determined per plot (from the three repeated scans) and voxel size for the statistical analyses. 242 

The original image data, the clipped image data, as well as the data processing scripts within a 243 

Jupyter Notebook, are published under an CC BY 4.0 license at Elias, Dietrich and Bumberger 244 

(2024) and can be reused accordingly. 245 

 246 

Statistical analyses 247 

First, we tested whether species richness and fertilisation history have the same effects on 248 

sampled biomass (fresh/dry) and on the determined volumes obtained from the 3D scans (with 249 

different voxel size). For this, we used linear mixed-effects models with biomass or volume 250 

(derived from voxel sizes 2.5, 5, 7.5 and 10 mm3) as response variable (in single models), 251 

species richness, fertilisation history and their interaction as fixed effects and block as random 252 

effect. We started with a null model with the random effect only, and then extended the model 253 

stepwise by adding the fixed effects (first species richness, then fertilization history and finally 254 

the interaction of species richness and fertilization history). Mixed-effects models were fitted 255 



with maximum likelihood (ML), and likelihood ratio tests were used to compare models and 256 

assess the significance of the fixed effects.  257 

In a second step, we tested whether biomass (fresh/dry) and determined volumes (derived from 258 

voxel sizes 2.5, 5, 7.5 and 10 mm3) as well as the measured height and the determined height 259 

obtained from the 3D scans show significant relationships. For this we used the same mixed 260 

effects-model structure as above. For biomass~volume analysis we used fresh or dry biomass 261 

as response variable and volume (voxel sizes 2.5, 5, 7.5 and 10 mm3, respectively) as fixed 262 

effect, and for height we used measured height as response variable and determined height from 263 

3D scans as fixed effect. By visually analysing the regression between measured and 264 

determined height, we recognised a potential outlier (one grass monoculture). For this reason, 265 

we conducted the height analysis once with and once without this plot. 266 

All analyses were performed with the statistical software R (version 3.6.1, R Development Core 267 

Team, http://www.R-project.org). For linear mixed-effects models, we used the lmer function 268 

in the R package lme4 (Bates et al. 2014). To calculate R2 of regressions, we used the 269 

r.squaredGLMM function of R package MuMIn (Barton & Barton 2015). 270 

 271 

Results 272 

Effects of plant species richness and fertilization history  273 

We found an overall positive effect of plant species richness on aboveground biomass, i.e., four-274 

species mixtures produced more biomass than monocultures (Table 1; Fig. 3a, b). Fertilization 275 

history also showed a tendency to increase biomass (Fig 4a, b), while this effect was only 276 

marginally significant for dry biomass (Table 1). The interaction between species richness and 277 

fertilization history did not have any influence (Table 1). We found similar effects of species 278 

richness and fertilization history on the determined volumes obtained from the 3D scans (Table 279 

1; Fig. 3c-f, 4c-f).   280 



Table 1 Results of mixed-effects model analyses testing the effects of plant species richness 281 

(SR), fertilization history (Fert.), and their interaction on biomass (fresh and dry) and volume 282 

measurements (voxel size: 2.5, 5, 7.5 and 10 mm3). Shown are degrees of freedom (DF), Chi2 283 

values (χ2) and P values.  284 

    Fresh biomass Dry biomass 
  DF χ2 P χ2 P 

Plant species richness (SR) 1 6.80 0.009 3.78 0.052 
Fertilization history (Fert.) 1 2.25 0.133 2.70 0.100 
SR x Fert. 1 0.68 0.410 0.24 0.627 

    Volume 2.5 Volume 5 
  DF χ2 P χ2 P 

Plant species richness (SR) 1 6.50 0.011 5.62 0.018 
Fertilization history (Fert.) 1 2.78 0.096 3.22 0.073 
SR x Fert. 1 0.13 0.715 0.22 0.640 

    Volume 7.5 Volume 10 
  DF χ2 P χ2 P 

Plant species richness (SR) 1 5.50 0.019 5.57 0.018 
Fertilization history (Fert.) 1 3.67 0.055 4.05 0.044 
SR x Fert. 1 0.22 0.642 0.23 0.628 

  285 



 286 

Fig. 3 Fresh and dry biomass (a, b), and volume values obtained from voxel analysis with voxel 287 

sizes of 2.5 (c), 5 (d), 7.5 (e) and 10 (f) of plant communities with one (red) or four (blue) plant 288 

species (None = 8 plots, Nfour = 4 plots). Bars show mean values (± 1 standard error); letters 289 

above bars indicate significant (P < 0.05) differences among treatments, letters in brackets 290 

indicate marginal significant (0.05 < P < 0.1) differences (Tukey’s HSD test). 291 



 292 

Fig. 4 Fresh and dry biomass (a, b), and volume values obtained from voxel analysis with voxel 293 

sizes of 2.5 (c), 5 (d), 7.5 (e) and 10 (f) of plant communities without (green) or with (red) 294 

fertilization history (six plots, respectively). Bars show mean values (± 1 standard error); letters 295 

above bars indicate significant (P < 0.05) differences among treatments, letters in brackets 296 

indicate marginal significant (0.05 < P < 0.1) differences (Tukey’s HSD test).  297 



Regressions between measured and determined variables 298 

We found highly significant positive linear relationships between biomass (fresh/dry) and 299 

volume (Table 2). The coefficient of determination R2 was higher for fresh biomass (R2
mean = 300 

0.85) than for dry biomass (R2
mean

 = 0.73; Table 2). R2 increased with larger voxel size, whereby 301 

this was more pronounced for dry biomass (R2 = 0.64-0.79) than for fresh biomass (R2 = 0.82-302 

0.86; Table 2). We also found a significant positive relationship between measured and 303 

determined height (Table 2). If we removed one outlier (grass monoculture) from the analysis, 304 

R2 was considerably higher (increase from R2 = 0.58 to R2 = 0.81; Table 2). 305 

 306 

Table 2 Results of mixed-effects model analyses testing for linear relationships between 307 

biomass (fresh or dry) and volume obtained from voxel analysis with voxel sizes of 2.5, 5, 7.5 308 

and 10 mm3, and between vegetation height measured in the field and height obtained from 309 

point cloud analysis. Shown are degrees of freedom (DF), Chi2 values (χ2), P values and 310 

coefficient of determination (R2).  311 

  DF χ2 P R2 

Fresh biomass         
  Biomass ~ Volume 2.5 1 19.80 <0.001 0.821 
  Biomass ~ Volume 5 1 21.81 <0.001 0.850 
  Biomass ~ Volume 7.5 1 22.01 <0.001 0.852 
  Biomass ~ Volume 10 1 22.64 <0.001 0.859 
Dry biomass         
  Biomass ~ Volume 2.5 1 11.65 <0.001 0.641 
  Biomass ~ Volume 5 1 15.41 <0.001 0.741 
  Biomass ~ Volume 7.5 1 16.68 <0.001 0.767 
  Biomass ~ Volume 10 1 17.64 <0.001 0.785 
Vegetation height         
  Measured height ~ determined height  1 9.89 0.002 0.583 
  Measured height ~ determined height 
  (without B8A88) 

1 17.31 <0.001 0.808 

 312 

Discussion 313 

Our study shows that traditional biomass harvesting and 3D scanning of vegetation with a 314 

smartphone produce similar results. Importantly, we found similar results of 3D-derived volume 315 

and dried biomass, which is commonly used as an estimate of plant productivity in ecological 316 

studies. High R2 values between 0.7 and 0.9 show a good comparability between volume and 317 

dry biomass. The same applies to vegetation height. We conclude from our results that 318 



smartphone 3D scanning can be a very useful approach to estimate biomass production and 319 

vegetation height in a cheap, fast and almost non-destructive way. The method has several 320 

advantages, in particular the simplicity of implementation, the widespread availability of 321 

measurement devices (i.e. smartphones) as well as the free apps and analysis software. 322 

From our experience, we can make the following recommendations regarding measurements in 323 

the field and the subsequent processing of the point clouds: 324 

• The frame is an important tool. Besides a well-defined area to scan, the frame also has the 325 

advantage that nothing has to be cut off around the vegetation for proper scanning - so the 326 

method is almost non-destructive. The frame should consist of wide boards so that the 327 

vegetation growing around the focus area can be compressed (at least 25 cm wide). 328 

• It is useful to scan the vegetation at least three times in a row because each scan produces 329 

slightly different volumes (data not shown). To reduce this variability, multiple scans are 330 

recommended.  331 

• The processing of the point clouds is simple and can be realised with freely available 332 

software. The corresponding script can be found under Elias, Dietrich and Bumberger 333 

(2024). This workflow, in its current form, can be used immediately as a standard protocol 334 

in research infrastructures, long-term experiments or in citizen science projects. The only 335 

step that is not (yet) automated is the clipping of the point cloud to the region of interest. 336 

• Our case study has shown that R2 increases with voxel size, indicating that larger voxel sizes 337 

lead to more realistic results. However, we found different effects of fertilisation history for 338 

voxel size 10 mm3 and fresh biomass. To increase certainty, we recommend using voxel 339 

sizes larger than 2.5 mm3 and smaller than 10 mm3, similar to previous findings (Enterkine 340 

et al. 2023).   341 



Outlook 342 

Apart from biomass and height data, which can be reliably estimated with this technique, we 343 

see great potential in developing this approach to derive further vegetation-related variables, 344 

for example: 345 

• segmentation of species in image data and semantic annotation including AI methods for 346 

deriving species to determine the biomass production of individual species or functional 347 

groups (e.g. grasses, herbs, legumes…) or to determine plant species richness 348 

• detailed analysis of individual species or specific structures, such as leaves, through 'virtual 349 

sampling,' which can yield insights into key ecological traits like leaf distribution and leaf 350 

functional traits (e.g., specific leaf area) 351 

• vertical distribution of different plant species or compartments (i.e. biomass allocation) in a 352 

plant community 353 

• assess the physiological state (e.g. drought response) of a plant community when dealing 354 

with global change drivers, e.g. by deriving the proportion of living and dead plant material 355 

This task will necessitate comprehensive research, including the modelling of the internal 356 

structure of point clouds, potentially leveraging artificial intelligence and utilizing high-357 

resolution 3D scans of individuals from various species, encompassing different growth forms 358 

and functional groups. Additionally, the data foundation must be expanded. One approach could 359 

involve conducting measurements across multiple time points in various long-term 360 

experiments, ideally within globally coordinated networks, to capture a diverse range of 361 

vegetation types.  362 

The direct next steps include further “ground-truthing” to estimate biomass from 3D point cloud 363 

data, and to test reproducibility and comparisons to traditional methods, as well as scaling 364 

opportunities to various more remotely-sensed imaging methods. Challenges are that the 365 

resolution of the 3D scans is not very high and strongly depends on the quality of the used 366 

smartphone (camera). Furthermore, the point clouds are quite noisy and require some, for now, 367 



manual clipping and outlier removal. Thus, it is necessary to further develop the methods used 368 

to automatically preprocess and analyse the point clouds. In addition, while it is currently 369 

possible to detect effects of experimental treatments using volume data (e.g., differences in 370 

species richness or fertilisation effect), further more comprehensive studies are needed to 371 

determine exact biomass data (if an exact biomass estimate is required for a project), i.e. to 372 

calibrate volume data (Enterkine et al. 2023). 373 

  374 

Conclusion 375 

Our pilot study demonstrates that scanning vegetation with a smartphone is a suitable 376 

alternative to conventional biomass harvesting. At the same time, new insights can be gained, 377 

for example by measuring biomass production over short time intervals or, in the future, non-378 

destructive measurement of vegetation structure or plant functional traits. Because of the 379 

growing necessity for more and higher-quality vegetation data, we see that harnessing these 380 

emerging technologies as an opportunity to meet the challenges of monitoring ecosystems, 381 

opening up new questions and novel data to old questions, as well as a way to increase inclusion 382 

and access to biodiversity science.  383 
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