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Abstract10

Sex and recombination generate genetic variation and facilitate adaptation by11

reducing selective interference, but they can also disrupt allelic combinations12

maintained by selection. We here review experimental evolution studies on the13

adaptive significance of sex and recombination in constant environments, empha-14

sizing insights gained from population genomic data. We discuss evidence showing15

how meiotic segregation (sex) and crossing-over (recombination) disrupt nega-16

tive disequilibrium between alleles within and between loci and as a consequence17

increase the fitness variance of populations and enhance selection efficacy. While18

sexual reproduction can facilitate adaptation when compared to asexual repro-19

duction, the advantages of high rates of sex and recombination under facultative20

sexual reproduction or facultative outcrossing and self-fertilization are less clear,21

especially when overdominance and epistasis cause segregation and recombina-22

tion loads. We further discuss the challenges of measuring interference between23

selected alleles, particularly under polygenic adaptation and segregation of mul-24

tiple modifiers of recombination, and propose directions for future research. Our25

discussion underscores the nuanced role of sex and recombination in adaptation,26

shaped by a balance between increased genetic variation and the disruption of27

beneficial allele combinations.28
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Introduction31

Sexual reproduction in eukaryotes is widely recognized for its role in generating genetic32

variation, which fuels adaptation to novel environments by combining and shuffling33

genotypes, despite its significant physiological and ecological costs (Weismann, 1891;34

Fisher, 1930; Burt, 2000). With sexual reproduction, genetic variation is generated35

during “sex” through the meiotic segregation of homologous chromosomes, as well as36

through “recombination” and the crossing over between non-sister chromatids (Gray37

and Cohen, 2016; Lenormand et al., 2016). Gene conversion also affects recombina-38

tion rates, but we will ignore it here (Korunes and Noor, 2017). In prokaryotes and39

viruses, genetic mixing is common, and may contribute to adaptation, although the40

underlying replication processes are not necessarily tied with reproduction (Bell, 1982;41

Maynard Smith, 1990; Redfield, 2001).42

Understanding the evolution of recombination has been the primary focus in efforts43

to explain the widespread occurrence of sexual reproduction (Otto and Lenormand,44

2002; Otto, 2021). Much of the reasoning emphasizes the ability of recombination to45

reduce selective interference by breaking negative linkage disequilibrium (LD), that46

is, by breaking the associations between deleterious and beneficial alleles at different47

loci (Felsenstein, 1965; Eshel et al., 1970). The disruption of negative LD increases48

the variance in fitness within a population, thereby enhancing the efficiency of natu-49

ral selection and the evolutionary responses of traits related to fitness (Fisher, 1930;50

Muller, 1932, 1964; Hill and Robertson, 1966; Otto, 2021). The evolution of sex through51

segregation is likewise important to understand adaptation and the prevalence of sex-52

uals, as segregation can increase the fitness variance of a population, and selection53

efficiency, through the disruption of within-locus negative associations in heterozygotes54

(Kirkpatrick and Jenkins, 1989; Roze and Michod, 2010; Roze, 2014).55

When explaining the evolution of sex and recombination, comparisons are often56

made between sexually and asexually reproducing populations, which are relevant for57

the emergence of sex and recombination when adaptation occurs from a limited supply58

of new mutations, or to answer whether sexual populations can resist the invasion of59

asexual mutants (Maynard Smith, 1990; Redfield, 2001). These comparative arguments60

imply differential group selection between sexual and asexual lineages, which is not61

necessarily the case when individuals with variable sex and recombination rates must62

compete for similar resources in the same habitat and have the opportunity to mate63

with each other (Burt, 2000). For instance, genetic modifiers that increase sex or64

recombination rates might facilitate adaptation to a novel environment in the long-65

term, due to an increase in fitness variance of the population, while not always being66

favored on the short-term by individual selection due to the disruption of beneficial67

allele combinations (Feldman and Liberman, 1986; Lewontin and Hubby, 1966; Eshel68

et al., 1970; Barton, 1995; Roze, 2014).69

Evolution experiments have been a favorite approach to test for the adaptive70

consequences of sex and recombination (Charlesworth and Barton, 1996; Otto and71

Lenormand, 2002; Otto and Barton, 2001; Rice, 2002). Our goal here is to highlight72

a few of these evolution experiments, particularly those that have placed population73

genetic observations at the center of the debate [see also Desai (2013); Sharp and Otto74

(2016); Cvijovic et al. (2018)]. Time-series analysis of the genomic diversity found in75
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experimental populations is now possible, and several studies have attempted to mea-76

sure the genetic basis of adaptation under different rates of sex and recombination.77

In addition, observations from natural populations indicate that recombination rates78

vary along along chromosomes, generating recombination rate “landscapes”, which79

themselves are heritable due to genetic differences between individuals in the distri-80

bution of crossover position and number (Brazier and Glémin, 2022; Venu et al., 2024;81

Johnston, 2024). How selection on genetic modifiers of crossover position and num-82

ber relates to adaptation, particularly when there are many selected loci across the83

genome (polygenic adaptation), is an open problem.84

We review illustrative evolution experiments conducted in constant environments,85

although the evolution of sex and recombination in fluctuating environments is a sig-86

nificant topic in its own right (Becks and Agrawal, 2010; Morran et al., 2011; Gray87

and Goddard, 2012a; Kerstes et al., 2012; Masri et al., 2013; Haafke et al., 2016;88

Lynch et al., 2018). We begin by briefly summarizing the main theoretical predictions89

for the evolution of sex and recombination and then discuss four related questions90

in the context of experimental evolution: Does sexual reproduction facilitate adapta-91

tion compared to asexual reproduction? How does adaptation depend on the realized92

frequency of sex and recombination? Can selection explain the evolution of sex and93

recombination? What is the evidence for selective interference in population genomic94

data? We finish by suggesting directions for future experimental research.95

Theoretical background96

Sex and recombination alter genotype frequencies when there is a departure from97

Hardy-Weiberg and linkage equilibrium within loci and between loci (Felsenstein, 1965;98

Eshel et al., 1970; Otto, 2003). Such disequilibrium are expected to be common in99

finite populations, as new mutations arise in phase with the genetic background in100

which they occur (Fisher, 1930; Muller, 1932), and in a heterozygous state in diploid101

organisms (Kirkpatrick and Jenkins, 1989). Disequilibrium can also occur due to selec-102

tion on particular allele combinations, or because finite populations cannot contain103

all possible alleles at the many loci across the genome (Hill and Robertson, 1966;104

Eshel et al., 1970; Roze and Michod, 2010; Otto, 2021). Factors such as population105

subdivision, inbreeding, or self-fertilization can generate an excess of homozygosity106

by bringing together related genotypes, increasing effective segregation but decreas-107

ing effective recombination (Nordborg and Donnelly, 1997; Martin et al., 2006; Roze,108

2009; Roze and Lenormand, 2005; Teterina et al., 2023).109

Selection can lead to within and between loci disequilibrium, particularly when110

the fitness effects of alleles are not independent, that is, when there is dominance and111

epistasis for fitness (Felsenstein, 1965; Eshel et al., 1970; Otto, 2003). With negative112

epistasis for example — as when deleterious alleles at different loci act synergisti-113

cally and beneficial alleles act antagonistically — selection leads to negative linkage114

disequilibrium (LD) and to an excess of genotypes in the population containing dele-115

terious and beneficial alleles. By breaking negative LD, recombination increases the116

frequency of genotypes with multiple deleterious alleles and of genotypes with multiple117

beneficial alleles, thereby increasing the genetic variance in fitness and the efficiency118
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of selection (Felsenstein, 1965; Eshel et al., 1970). In the short-term, however, break-119

ing (positive or negative) LD generated by epistasis can reduce offspring fitness. A120

balance between these short-term and long-term effects of epistasis will then dic-121

tate the evolution of recombination (Barton, 1995). Similarly, when beneficial alleles122

are partially-dominant, or deleterious alleles partially-recessive, selection will favor123

negative disequilibrium and an excess of heterozygosity in the population because124

heterozygotes are fitter on average than their parent homozygotes. Sex, by produc-125

ing homozygotes through segregation will reduce excess of heterozygosity and thus126

increase the fitness variance of the population but, like recombination, at the expense127

of a fitness loss in offspring generations (Otto, 2003).128

Besides dominance and epistasis, negative disequilibrium in a population, within129

and between loci, can also arise from the interaction of genetic drift and selection,130

in what is known as the Hill-Robertson effect (Hill and Robertson, 1966; Felsen-131

stein, 1974; Barton and Otto, 2005; Roze and Barton, 2006). In any finite population,132

stochastic fluctuations in genotype frequencies generate both positive and negative133

disequilibrium. However, selection eliminates positive disequilibrium as the fitter geno-134

types, which combine beneficial alleles, sweep to fixation, while the worst genotypes,135

combining deleterious alleles, are purged from the population. Negative disequilib-136

rium will therefore persist for longer due to selective interference among beneficial and137

deleterious alleles. Genetic modifiers increasing sex and recombination rates can then138

be selectively favored as they reduce this interference and allow beneficial alleles to139

spread more rapidly (Barton and Otto, 2005; Roze and Barton, 2006).140

In asexual populations, clones carrying different beneficial mutations also interfere141

with each other, limiting adaptation (Fisher, 1930; Muller, 1932). Asexual populations142

may further face the so called Muller’s ratchet as clones with less deleterious alleles143

cannot be recreated without genetic mixing (Muller, 1964). Analogous processes to144

those occurring in sexuals are expected to generate an excess of heterozygotes in finite145

diploid asexual populations (Kirkpatrick and Jenkins, 1989; Roze and Michod, 2010).146

Sexual reproduction facilitates adaptation147

Most experimental evolution studies about the adaptive significance of sex and recom-148

bination compared sexual with asexual populations, usually using microorganisms such149

as the budding yeast Saccharomyces cerevisiae and the green alga Chlamydomonas150

reinhardtii. [In Table 1 we highlight the evolution experiments here discussed, see151

also Otto and Lenormand (2002); Rice (2002); Sharp and Otto (2016); Cvijovic et al.152

(2018); Desai (2013).] A few of these studies accounted for the possibility that the153

environment inducing sexual reproduction, typically starvation or population density,154

influenced adaptation. This was achieved by ensuring that the asexuals underwent the155

same environmental manipulation as sexuals without triggering sexual reproduction,156

by maintaining a single mating type (Lachapelle and Bell, 2012) or through genetic157

engineering of meiosis preventing segregation and recombination (Goddard et al., 2005;158

Gray and Goddard, 2012b).159

Many of these experiments have conclusively shown that sexual reproduction gen-160

erally increases the fitness variance of populations and accelerates adaptation to new161
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environments, when compared to asexual reproduction. The advantage of sexual repro-162

duction over asexual reproduction is particularly evident in harsh, novel environments,163

but less so in benign conditions to which populations already adapted to. For instance,164

in benign environments, one study found more extensive adaptation in sexual than in165

asexual populations (Zeyl and Bell, 1997), another observed no differences (Gray and166

Goddard, 2012b), and a third one reported a reduction of mean population fitness167

with sexual reproduction (Renaut et al., 2006). These mixed results can be attributed168

to weaker selection in benign or to the segregation of predominantly deleterious alle-169

les once adaptation has been achieved (Hartfield et al., 2010); these explanations not170

being mutually exclusive, as shown by a study where an increase in mutation rates171

reduced adaptation in asexual populations under stressful conditions but not in more172

permissive environments (Gray and Goddard, 2012b).173

In several studies comparing sexual with asexual reproduction, experimental pop-174

ulations were maintained under predominant haploidy, with diploidy being expressed175

only during a few sexual cycles (Colegrave, 2002; Kaltz and Bell, 2002; Lachapelle and176

Bell, 2012; McDonald et al., 2016; Kosheleva and Desai, 2018). In these conditions,177

the adaptive significance of sexual reproduction is due to recombination, as the effects178

of sex in the maintenance of heterozygosity should be minimal in the near absence179

of diploid selection. In the study of Kosheleva and Desai (2018), sexual reproduction180

facilitated adaptation in diploid yeast populations, although the effects of segrega-181

tion and recombination in this case remained difficult to disentangle. Segregation is182

expected to confer an advantage to sexuals over asexuals by reducing deleterious loads183

(Haag and Roze, 2007) or by generating more homozygotes with beneficial alleles.184

Asexual populations on the other hand will be hindered because they maintain het-185

erozygosity (Kirkpatrick and Jenkins, 1989). In general, comparing ploidy treatments186

is complicated by the fact that diploid populations usually have higher mean fitness187

and lower fitness variance than haploid populations due to the masking of recessive188

deleterious mutations. In Kosheleva and Desai (2018) in particular, there was a rel-189

atively smaller advantage of sex under diploidy than haploidy, which could also be190

explained by overdominance (Lewontin and Hubby, 1966; Sellis et al., 2016).191

In the context of asexual reproduction and the evolution of horizontal gene transfer,192

it is worth mentioning experiments with the RNA bacteriophage Φ6, where mul-193

tiple virions can infect the same cell (Malmberg, 1977; Poon and Chao, 2004), or194

with Escherichia coli, where F-plasmid conjugation between cells is possible (Cooper,195

2007). These experiments showed that adaptation is facilitated when there is oppor-196

tunity for genetic mixing between virions or cells. Interestingly, in Cooper (2007),197

a beneficial mutation spread significantly faster in conjugating E. coli populations198

compared to non-conjugating populations, suggesting that selective interference can199

explain impaired adaptation under asexuality (Desai, 2013; Cvijovic et al., 2018).200

More comprehensive results about selective interference were found with popula-201

tion genomic data from yeast experiments (Kao and Sherlock, 2008; Lang et al., 2013;202

McDonald et al., 2016). In these experiments, adaptation in asexuals involved the203

spread of clones, each carrying beneficial mutations together with neutral and delete-204

rious mutations. In contrast, sexual populations tended to display independent allele205
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frequency changes at many loci across the genome, suggesting that selective interfer-206

ence is reduced when compared to asexual populations (McDonald et al., 2016). As207

expected from theory, deleterious mutations often hitchhike with beneficial ones in208

asexual populations while recombination in sexual populations facilitates their inde-209

pendent evolution. Yet, how many loci can be independently selected is an unresolved210

problem. One yeast experiment with facultative sexuals found that selection occurred211

at fewer than ten loci across replicate populations (Burke et al., 2014), a much smaller212

number when compared with experiments in exclusive sexuals, such as Drosophila213

simulans (Barghi et al., 2020), and raising questions about how variable sex and recom-214

bination rates determine the extent of selective interference and the polygenicity of215

adaptation (see next section).216

It is expected that sex and recombination are favored when many selected alleles217

interfere with each other (Weissman and Barton, 2012; Weissman and Hallatschek,218

2014). Consistent with this idea, conjugating E. coli and sexual yeast experimental219

populations show stronger adaptive responses in treatments with higher mutation rates220

compared to their asexual counterparts (Cooper, 2007; Gray and Goddard, 2012b;221

Peabody V et al., 2017). Moreover, small population size bottlenecks, by reducing222

overall genetic diversity, reduce the advantage of sexual reproduction vs asexual repro-223

duction in the green alga C. reinhardtii (Colegrave, 2002). Smaller population sizes224

can, however, also enhance selective interference (Otto and Barton, 2001; Iles et al.,225

2003; Barton and Otto, 2005; Roze and Barton, 2006; Roze, 2021), as supported by226

the benefit of genetic mixing in the RNA bacteriophage Φ6 undergoing bottlenecks227

(Poon and Chao, 2004).228

Adaptation and variable sex and recombination rates229

The experiments outlined so far provide insights into the prevalence of sexual repro-230

duction over asexual reproduction. However, their relevance in understanding how231

different rates of sex and recombination influence adaptation is limited (see intro-232

duction). Furthermore, rates of sex and recombination are generally low in microbial233

experimental evolution. For example, budding yeast populations in the laboratory typ-234

ically undergo one round of sexual reproduction every 25 to 120 (mitotic) generations235

(Goddard et al., 2005; Gray and Goddard, 2012b; McDonald et al., 2016; Kosheleva236

and Desai, 2018). With six crossovers per chromosome per meiosis (Mancera et al.,237

2008), much less than one crossover per chromosome per generation are expected on238

average.239

It has been suggested that “a little sex goes a long way” (Hurst and Peck, 1996).240

This is usually meant as: even rare segregation or crossing-over events generate novel241

allele combinations that can be selected if adaptation depends on a small number of242

loci (Kirkpatrick and Jenkins, 1989; Green and Noakes, 1995). As mentioned above,243

several theoretical models suggest, however, that selective interference is stronger, and244

the long-term advantage of sex and recombination greater, when adaptation is highly245

polygenic and many of the selected alleles are tightly linked (Weissman and Barton,246

2012; Weissman and Hallatschek, 2014; Hermisson and Pennings, 2005).247
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Adaptation from standing genetic variation is typically polygenic (Hermisson and248

Pennings, 2005; Barghi et al., 2020; Barrett and Schluter, 2008). In evolution exper-249

iments, adaptation from standing genetic variation is usually studied by crossing250

different wild isolates or isogenic inbred lines to create genetically diverse (mul-251

tiparental) hybrid populations (Kaltz and Bell, 2002; Lachapelle and Bell, 2012;252

Lachapelle and Colegrave, 2017; Kosheleva and Desai, 2018; Teotónio et al., 2017;253

Macdonald and Long, 2007). Results from these experiments have not been conclusive.254

In yeast populations derived from two parental isolates, sexual reproduction enhances255

adaptation compared to asexual reproduction, but the level of adaptation is similar256

whether sexual cycles occur every 40 or 120 generations (Kosheleva and Desai, 2018).257

In green algae populations derived from 16 parental isolates, but not in those derived258

from two parental isolates, frequent rounds of (environment-imposed) obligate sexual259

reproduction delay extinction in a gradually deteriorating environment compared to260

facultative sexual reproduction (Lachapelle and Bell, 2012). In another experiment261

with green algae, populations derived from 12 to 15 isolates, and evolved for more262

than 150 generations, showed that increasing the number of sexual cycles from one263

to two improved adaptation, but further increasing to three cycles had no additional264

effect (Kaltz and Bell, 2002). Hence, neither higher levels of standing genetic varia-265

tion always lead to higher adaptation nor does frequent sexual reproduction always266

facilitate adaptation.267

The question of whether natural populations harbor enough selected alleles to268

generate the interference explaining obligate sexual reproduction or high sex and269

recombination rates remains unresolved (Otto, 2021). The number of independently270

selected alleles should depend on demographic history and factors such as population271

size and frequency of bottlenecks, population subdivision or predominant reproduc-272

tion mode (Ellegren and Galtier, 2016). As a result, the choice of the organism can273

influence experimental outcomes. The specific methods used to derive experimen-274

tal populations (e.g., through funnel or round-robin designs) will also impact the275

observations that are made. For example, populations derived from crosses between276

distant isolates might generate standing genetic variation, but if these isolates differ277

in their initial adaptation to the experimental environment, outbreeding depression278

might occur, and positive disequilibrium be common, with sex and recombination in279

these cases limiting adaptation. Some of these issues can be alleviated with domes-280

tication by maintaining populations in the laboratory environments until they near281

a selection-recombination equilibrium before starting with the treatments of interest282

(Simões et al., 2010; Teotónio et al., 2017).283

Lack of clear evidence for enhanced adaptation under frequent sexual reproduction284

may result from a balance between higher fitness variance and reduced mean fitness285

that is difficult to detect. Populations with standing genetic variation are expected to286

be prone to recombination loads due to the disruption of beneficial epistatic interac-287

tions at multiple loci that were favored by prior selection (Hansen, 2006; Neher and288

Shraiman, 2009). Populations with standing genetic variation should also be prone289

to segregation loads due to the disruption of heterozygotes with beneficial pseudo-290

overdominant or truly overdominant alleles (Lewontin and Hubby, 1966; Lewontin291

et al., 1974; Bierne et al., 2000).292
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Several experiments support the existence of segregation and recombination loads.293

For example, recombinant lines of Drosophila spp. derived from wild populations294

exhibit reduced fitness compared to lines with recombination-suppressing chromoso-295

mal inversions or male-derived chromosomes (as males are achiasmatic), reviewed in296

Charlesworth and Barton (1996). Recombination loads may also explain the fitness297

loss observed following a round of sexual reproduction in haploid populations of the298

green alga C. reinhardtii with standing genetic variation derived from wild progenitors299

(Colegrave et al., 2002; Kaltz and Bell, 2002; Renaut et al., 2006). In the nematode300

Caenorhabditis elegans, a modifier of crossover position that increases recombination301

rates in chromosomal centers, which should contain epistatic loci (Chelo and Teotónio,302

2013; Noble et al., 2017; Cutter et al., 2009), reduces the mean fitness of a domesti-303

cated population with standing genetic variation (Parée et al., 2025). Reduced mean304

fitness is also observed in sexually vs asexually produced offspring in field-derived pop-305

ulations of the monogonont rotifer Brachionus calyciflorus (Becks and Agrawal, 2011,306

2012). In this latter case, however, and because of diploidy, reduced fitness may be307

attributed to either a recombination or a segregation load. In general, segregation and308

recombination loads can cause an immediate fitness loss in offspring generations that309

may be offset by enhanced selection over time (Charlesworth and Barton, 1996; Cole-310

grave et al., 2002; Kaltz and Bell, 2002); it may be that there is a limit beyond which311

sex and recombination no longer have an effect on adaptation or even become limiting312

(Lewontin and Hubby, 1966; Neher and Shraiman, 2009; Lobkovsky et al., 2016), but313

conclusive experimental evidence is needed.314

Facultative sex and facultative outcrossing under selection315

Increased rates of sexual reproduction can be selected against despite their potential316

role in facilitating adaptation. In some evolution experiments, sexual reproduction may317

evolve because of (inadvertent) selection on traits unrelated to meiotic segregation318

and crossing over. This is the case of experiments using facultative sexuals, such as319

monogont rotifers, which show phenotype differentiation between sexual and asexual320

individuals in egg resistance to harsh environments or between individuals in sexual321

or ploidy identity (Becks and Agrawal, 2012). In these organisms, observed changes322

in the rates of sexual reproduction may often result from phenotypic plasticity (Sasso323

et al., 2018; Seudre et al., 2020; Hartfield, 2016). In addition, phenotypic plasticity324

can vary with individual fitness, as in the white clover Trifolium repens where stress-325

sensitive individuals tend to allocate growth resources to sexual reproduction traits326

(Griffiths and Bonser, 2013). Plasticity to engage in sexual reproduction can itself327

evolve. In the green alga C. reinhardtii, for instance, increased rates of spontaneous328

sexual reproduction evolve when sexual offspring are artificially selected or when there329

is a single mating type in the population (Bell, 2005).330

In the rotifer B. calyciflorus, an increase in the rate of sexual reproduction was331

observed during adaptation (Becks and Agrawal, 2012). This increase was associated332

with higher fitness variance and a decline in the mean fitness of sexual offspring when333

compared to asexual offspring. Because females in this species are diploid, changes in334

offspring fitness suggest disruption of negative linkage disequilibrium (Barton, 1995)335

but also the segregation of homozygotes with deleterious recessive alleles (Roze and336
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Michod, 2010; Roze, 2014). In the experiments of Becks and Agrawal (2012), however,337

the increase of sexual reproduction was transient. Once adaptation occurred, a reversal338

to lower levels of sexual reproduction was observed; these results being explained339

because of weak selection in already-adapted populations (see above) or because of340

transgenerational environmental effects on the frequency of sexual reproduction. In341

the sister species to B. calyciflorus, transgenerational effects reduce the tendency for342

sexual reproduction in lineages undergoing more sexual rounds (Seudre et al., 2020).343

Interestingly, frequent sexual reproduction is observed in B. calyciflorus populations344

when in more complex environments and where a higher number of selected loci could345

underlie adaptation (Luijckx et al., 2017).346

Evidence for the evolution of traits associated with sexual reproduction also comes347

from experiments on the evolution of facultative outcrossing and self-fertilization.348

Outcrossing rates can change through a plastic response, such as increased outcross-349

ing rates following a heat stress in the fava bean Vicia faba (Bishop et al., 2017), or350

they can change through selection for reproductive assurance, such as the evolution of351

self-fertilization in the absence of pollinators in the yellow monkeyflower Mimulus gut-352

tatus (Bodbyl Roels and Kelly, 2011; Tusuubira and Kelly, 2024) or the evolution of353

hermaphroditism in male-female populations of the nematode C. elegans (Theologidis354

et al., 2014).355

By increasing homozygosity, self-fertilization increases the fitness variance of a356

population and facilitates the selective purging of deleterious recessive alleles. How-357

ever, increased homozygosity also decreases effective recombination (Nordborg and358

Donnelly, 1997), increasing selection interference and possibly reducing mean popula-359

tion fitness in the presence of overdominant loci (Nordborg et al., 1996; Bierne et al.,360

2000). In line with these population genetic mechanisms, the evolution of outcrossing361

with adaptation in experiments with C. elegans may be driven by both the masking362

of recessive deleterious alleles and to the expression of overdominant alleles in het-363

erozygotes (Teotonio et al., 2012; Chelo and Teotónio, 2013; Chelo et al., 2019). Also364

in line with these population genetic mechanisms, in the hermaphroditic freshwater365

snail Physa acuta, self-fertilizing populations show fast adaptation during a limited366

number of generations while outcrossing populations maintain a consistent response367

during experimental evolution (Noël et al., 2017).368

Further evidence that the evolution of outcrossing impacts adaptation comes from369

several experiments with C. elegans. In C. elegans, hermaphrodites either self-fertilize370

or outcross by mating with males but not with each other (Stewart and Phillips,371

2002). In experiments depending on de novo mutation for evolution, outcrossing rates372

can transiently increase upon exposure to a mutagen (Cutter, 2005; Manoel et al.,373

2007; Morran et al., 2009). However, this increase remains modest even under envi-374

ronmental conditions where obligate male-female populations show more extensive375

adaptation (Morran et al., 2009), suggesting that the evolution of outcrossing rates is376

limited because beneficial genotypes are unlikely to remain associated for long with the377

hermaphrodite lineages that tend to outcross more often (Lande and Porcher, 2015).378

Increased outcrossing rates have also been observed in C. elegans carrying nuclear379

and mitochondrial mutations impairing mitochondrial functions (Wernick et al., 2019;380
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Bever et al., 2022). These observations are relevant to the “mitochondrial sex hypothe-381

sis” (Havird et al., 2015), which posits that in recombining populations, high mutation382

rates in mitochondria are maintained by selection of compensatory nuclear mutations.383

However, deleterious mitochondrial mutations and their compensatory nuclear muta-384

tions are beneficial epistatic combinations that can be disrupted by outcrossing and385

the shuffling of mitochondrial and nuclear genomes (Nguyen et al., 2023).386

Selection for recombination and polygenic adaptation387

Early experiments on the evolution of recombination typically measured the response388

to artificial selection in Drosophila spp. populations carrying large chromosomal inver-389

sions suppressing recombination (Charlesworth and Barton, 1996; Rice, 2002). These390

studies showed that recombination increases selection responses by increasing the fit-391

ness variance of the population. However, inversions suppress recombination over large392

portions of the chromosomes and are possibly not representative of the modifiers of393

recombination segregating in natural populations, such as those modifying crossover394

position or number (Johnston, 2024).395

Theoretical models indicate that modifiers of crossover position or number hitch-396

hike with the allele combinations they create in their genomic neighborhood and less so397

with more distant genotypes (Otto and Feldman, 1997; Roze, 2021). To illustrate the398

evolution of recombination in a polygenic adaptation context, we run computer sim-399

ulations with varying distances between many selected loci along a chromosome and400

a modifier of crossover position that uniformly changes recombination rates between401

them (Figure 1). These simulations indicate that the distance to selected alleles deter-402

mines the strength of indirect selection on the modifier (Figure 1A,C,D), a result that403

was already known (Roze, 2021). Further, when the modifier changes recombination404

rates between selected alleles non-uniformly, the direction of indirect selection will then405

depend on whether the modifier is located near them (Figure 1B,C,E). However, while406

selection for the modifier depends on its position, its effects on recombination among407

all selected alleles across the chromosomes is the same independently of its position408

and should not impact (genome-wide) polygenic adaptation. A modifier of crossover409

positions that results in a more uniform recombination across selected alleles should410

maximize genetic mixing and shuffling and thus reduce selective interference (Veller411

et al., 2019).412

For indirect selection to result in the evolution of recombination, selected loci413

need to be in close proximity to recombination modifiers. This is plausible in many414

experiments where increased recombination rates evolved as a correlated response to415

artificial selection (Korol and Iliadi, 1994; Aggarwal et al., 2015), as recombination416

rates often increase across large portions of the genome, and selected traits, such as417

stress resistance, are often highly polygenic (Lynch and Walsh, 1998). Additionally,418

the segregation of multiple recombination modifiers in the experimental populations419

increases the likelihood that modifiers are located near the selected alleles. The strong420

selection pressures usually applied in these experiments [e.g., only 30 individuals out of421

300 contributing to the next generation in Korol and Iliadi (1994)] may further allow422

the modifiers to be indirectly selected with more distant selected loci (Roze, 2021).423
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Fig. 1 Indirect selection on modifiers of crossover position. The figure shows simulations of
indirect selection on a modifier of crossover position and number along a chromosome. The ancestral
population of 103 diploid individuals was generated with burn-in of 103 generations with one selected
mutation (s ∼ Exp(0.005)) introduced per generation at each of 104 loci across the chromosome.
After burn-in, a neutral recombination modifier was introduced in 500 randomly sampled genomes.
We modeled the evolution of recombination under four different scenarios (A,B). The black line
represents the chromosome, the purple and green circle represent the deleterious and beneficial alleles,
the blue circle the modifier. A. In scenarios a and b, individuals homozygous for the modifier allele
(M) have a 3-fold chromosomal map length (RM ) increase relative to the ancestral map length
(Rm; assuming the modifier alleles are co-dominant). B In scenarios c and d, one of the modifier
alleles increases the map length in a first interval, i, and reduces it in an adjacent interval, j, by a
factor 3. C. The modifier allele frequency during 500 generations. Thin lines show the trajectories
for 40 simulation runs per scenario, thick lines show the average of 500 simulations runs. D. Indirect
selection coefficient (binomial generalized linear model: modifier.freq ∼ generation) as a function of
the genetic distance of the modifier to selected loci, for scenarios a,b, and in two additional scenarios
(dots = mean; error-bars = 95% CI). Indirect selection decreases log-linearly with the genetic distance
between the modifier and selected loci. E. Indirect selection coefficients for scenarios c,d are positive
when the modifier is located in interval i, where it increases recombination, and negative when it is
located in interval j, where it decreases recombination.

The evolution of recombination rates in response to artificial selection has been424

quantified in many different species (Otto and Barton, 2001; Otto and Lenormand,425

2002; Rodell et al., 2004; Aggarwal et al., 2015), including domesticated species (Ross-426

Ibarra, 2004; Bursell et al., 2024). Increased recombination rates tend to evolve when427

the trait is selected in a different direction (Korol and Iliadi, 1994; Rodell et al.,428

2004; Aggarwal et al., 2015), indicating that pleiotropy (where the responding allele429

affects both the selected trait and recombination rates), or spurious initial associa-430

tions between the modifier and selected loci, are unlikely to explain the evolution of431

recombination. Rather, these experiments suggest that modifiers are indirectly selected432

because they enable more efficient selection on the targeted trait. In experiments433

where artificial stabilizing selection was applied, reduced recombination rates evolved434

(Rodell et al., 2004), a result explained by recombination among the fitter genotypes435

at optimal trait value generating less fit genotypes (Charlesworth et al., 1993; Whit-436

lock et al., 1995). Other experiments in D. melanogaster have shown the evolution437

of recombination rates at particular genomic locations (Kohl and Singh, 2018; Win-438

bush and Singh, 2021, 2022). However, in these latter experiments, the environmental439

conditions imposed, such as temperature, may affect proper crossover formation and440

directly affect individual fitness, explaining selection of the modifiers independently441

of their recombination effects on selected alleles (Grushko et al., 1991; Samuk et al.,442

2020).443

Recently, the evolution of recombination was investigated by following the evo-444

lution of a known modifier of crossover position in C. elegans (Parée et al., 2025).445

Mutant populations for the rec-1 gene redistribute crossovers to chromosome centers446

while not changing crossover number (Parée et al., 2024). Chromosome centers contain447

less genetic diversity and less fitness variance than flanking regions, and as a conse-448

quence, rec-1 mutant populations showed impaired adaptation (Parée et al., 2025).449

However, the rec-1 mutant allele was favored by selection because it increases recom-450

bination rates in its genomic neighborhood. Consistent with the Hill-Robertson effect451
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mentioned in the introduction, stronger selection on the recombination modifier rec-1452

was observed at smaller population sizes.453

Detecting selective interference454

The extent of selective interference in a population will determine the benefits of455

recombination on adaptation (Otto, 2021). Yet, detecting selective interference from456

the genomic diversity data that is now typically collected from evolution experiments457

is challenging. It requires identifying selected loci and estimating negative linkage dis-458

equilibrium between them, which is not trivial when adaptation is polygenic and there459

is an astronomical number of genotypes to measure (Macdonald and Long, 2007; Long460

et al., 2015; Schlötterer et al., 2015). Most studies use presumably neutral markers,461

such as single-nucleotide variants, that themselves must be in linkage with selected462

alleles to be informative. Only rare studies have shown disruption of negative link-463

age disequilibrium between a small number of selected alleles, e.g., McDonald et al.464

(2016). Instead, average genome-wide estimates of marker allele frequency dynamics465

have been used.466

One way to estimate linkage between selected loci is by measuring the correlation467

between marker allele frequencies at each replicate population undergoing experimen-468

tal evolution (McDonald et al., 2016; Parée et al., 2025; Burke et al., 2014; Barghi469

et al., 2019). For instance, in the C. elegans rec-1 experiments mentioned above, adap-470

tation was associated with higher correlations of allele frequency change in genomic471

regions with reduced recombination rates (Parée et al., 2025). The temporal covari-472

ance of allele frequency change is another metric that can be used to detect linked473

selection (Buffalo and Coop, 2019). In this case, it is assumed that changes in the allele474

frequencies of the (neutral) markers depend on the genetic backgrounds with selected475

alleles. If so, then the change in allele frequency of a given marker in a period should476

be less correlated with its frequency change at subsequent periods as recombination477

swaps markers among genetic backgrounds (Buffalo and Coop, 2019). Although this478

method has faced some criticism (Lynch and Ho, 2020), the expected reduction in479

temporal covariance between distant time intervals was observed in experiments with480

D. melanogaster and the marine copepod Acartia tonsa (Buffalo and Coop, 2020;481

Brennan et al., 2022). In the D. melanogaster study, there was an excess of negative482

temporal covariance, further indicating that marker alleles reversed their frequency483

trajectories, and reflecting the disruption of negative linkage disequilibrium or the484

presence of epistasis (Buffalo and Coop, 2020).485

It has also been argued that selective interference can be measured as the non-486

parallel genomic diversity responses among replicate populations during experimental487

evolution (Kosheleva and Desai, 2018). Recombination should increase parallelism by488

allowing the same alleles to be independently selected across replicates. Kosheleva and489

Desai (2018) calculated the standard deviation of marker allele frequencies between490

replicates across generations as the inverse of parallelism (divergence), finding that491

it is lower in sexual than asexual yeast populations. Yet, recombination can dimin-492

ish parallelism when calculated as the correlation of marker allele frequency change493

among replicates [referred to as the “convergence correlation” in Buffalo and Coop494

(2020)]. In this case, parallelism might be high in the first few generations but it should495
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quickly decay because ancestral lineages recombine and the fitness of specific genetic496

backgrounds will then determine marker frequency trajectories.497

Fig. 2 Parallelism of genomic diversity responses among replicates of experimental evo-
lution. Similarly to Figure 1, standing genetic variation of the ancestral population was generated
was modeled R=50 cM and an average of one mutation per genome per generation, now for a total of
105 loci. Both neutral alleles (s = 0) and selected alleles [s ∼ Exp(0.005)] were modeled with varying
numbers indicated above the panels (proportion of pneutr and psel in the chromosome, respectively).
With a higher the number of selected alleles, the stronger interference between them. Adaptation
was simulated during 500 generations with several map lengths (R; in cM). A. Adaptation is faster
and more extensive for larger values of R and lower number of selected alleles. B. Parallelism among
replicates was calculated as the Pearson correlation (rs) of selection coefficients among ten simula-
tion runs and from the same ancestral population. Increasing R increases this correlation only when
it is small and/or the number of selected alleles is high.

We adapted the simulation model of Figure 1 to better understand this dual effect498

of recombination on the parallelism of replicate responses during experimental evo-499

lution (Figure 2). We simulated adaptation from standing genetic variation under500

different recombination rates and different numbers of selected alleles. Results show501

that the relation between recombination and parallelism among replicate simulations502

is non-monotonic. Parallelism increases with recombination only under conditions of503

low recombination rates and a high number of selected alleles. Conversely, with weaker504

selective interference, increased recombination rates decrease parallelism despite facil-505

itating adaptation. While higher parallelism with recombination may indicate strong506

selective interference, low parallelism does not necessarily indicate its absence.507

Future research directions508

Evolution experiments have established that sexual reproduction facilitates adaptation509

by breaking negative disequilibrium between selected alleles, and this may in part510

explain the prevalence of sexual reproduction over asexual reproduction. However,511

evidence supporting a role for high rates of sex and recombination in adaptation512

remains limited. While adaptation is undoubtedly highly polygenic, it is still unclear513

whether a sufficient number of alleles can be independently selected to provide an514

advantage to high sex and recombination rates. This uncertainty is compounded by515

the opposing effects of segregation and recombination on the maintenance of beneficial516

epistatic or overdominant alleles (Peters et al., 2003; Sellis et al., 2016; Johnson et al.,517

2023). Variable recombination rates across the genome might help maintain beneficial518

alleles in low-recombining genomic regions, such as when populations adapt to local519

environmental conditions (Kenig et al., 2015; Altenberg et al., 2017; Wolf and Ellegren,520

2017; Venu et al., 2024). In this scenario, however, it remains an open question whether521

recombination evolves when modifiers of dispersal, or modifiers affecting dominance522

and epistasis, also segregate within populations (Proulx and Teotónio, 2022).523

While the consequences of high rates of sex and recombination for adaptation may524

depend on the number of selected alleles (Weissman and Barton, 2012; Weissman and525

Hallatschek, 2014), several theoretical models suggest that modifiers of traits asso-526

ciated with sexual reproduction are likely to evolve (Otto, 2003; Roze and Michod,527
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2010; Roze, 2014). Under random mating, segregation effects should favor sexual repro-528

duction when deleterious alleles are dominant (Roze and Michod, 2010; Glemin and529

Ronfort, 2013). Recessive deleterious alleles, which appear to be common in natu-530

ral populations, further tend to create segregation loads that disfavor higher rates of531

sexual reproduction under random mating. High rates of sexual reproduction can be532

favored when excess homozygosity occurs, as this allows heterozygotes to mask dele-533

terious recessives or expose overdominant alleles to selection (Otto, 2003; Dolgin and534

Otto, 2003; Bierne et al., 2000; Chelo and Teotónio, 2013; Chelo et al., 2019). Pop-535

ulation subdivision, inbreeding among relatives, or self-fertilization – which generally536

increase homozygosity – may play an important role in explaining the evolution of537

sexual reproduction (Teterina et al., 2023; Roze and Lenormand, 2005; Roze, 2009).538

Overall, many of these ideas have yet to be tested with experimental evolution.539

The direct fitness effects of modifying crossover position and number, such as com-540

promising DNA repair or the segregation of homologous chromosomes during meiosis,541

could play a significant role in the evolution of sex and recombination (Kleckner et al.,542

2004; Hunt, 2006; Otto and Payseur, 2019; Fernandes et al., 2018; Morgan et al., 2021).543

There is strong experimental evidence, however, that indirect selection can also drive544

the evolution of modifiers crossover position and number (Aggarwal et al., 2015; Parée545

et al., 2025). These modifiers are expected to be favored when they generate beneficial546

genotypes in their local genomic neighborhood, rather than by enhancing genome-547

wide selection efficacy and facilitating polygenic adaptation (Otto and Feldman, 1997;548

Roze, 2021). Any factor that increases linkage disequilibrium prolongs the association549

between a recombination modifier and the genotypes it produces. This in turn alters550

the strength of indirect selection and may even shift its direction by expanding the551

genomic region associated with the modifier (Stetsenko and Roze, 2022). As shown552

with evolution experiments in C. elegans, polygenic adaptation may often be weakly553

related with selection of modifiers of crossover position across the genome (Parée et al.,554

2025).555

When recombination itself is polygenic, driven by the segregation of multiple556

crossover modifiers (Johnston, 2024), selection conflicts may arise between them if they557

have opposing effects on recombination among selected alleles. Our understanding of558

how recombination evolves with multiple modifiers across the genome remains is still559

at a very early stage. Selection on multiple modifiers across the genome might average560

out, aligning or diverging from the effects of a given modifier on genome-wide recom-561

bination rates. It is further unclear whether indirect selection is substantial when the562

recombination effects of a modifier are highly localized to its genomic neighborhood,563

e.g., (Ubeda et al., 2019). If the evolution of recombination is primarily governed by564

modifiers of local recombination rates, rather than genome-wide, indirect selection565

may help with the maintenance of adaptation to local environmental conditions (Wolf566

and Ellegren, 2017; Venu et al., 2024).567

In conclusion, advancing our understanding about the evolution of sex and recom-568

bination, as well as their adaptive significance, will require identifying the genomic569

location of sex and recombination rate modifiers together with the selected loci. Addi-570

tionally, it is worth considering whether our current understanding is biased by the571

predominant focus on microbial and metazoan experimental evolution, highlighting the572
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need for greater attention to underrepresented organisms such as plants and multicel-573

lular fungi. These efforts will certainly pave the way for developing new experimental574

models manipulating modifier associations with selected alleles in genomic, life-history,575

or ecological contexts that are more representative of natural populations than those576

studied to date.577

Simulation methods. The individual-based simulations of diploid populations578

were implemented using SLiM 4.0.1 (Haller and Messer, 2023), using the default579

Wright-Fisher models for mutation, selection, and reproduction. Ancestral populations580

with standing genetic variation were obtained by 1000 generations of reproduction581

with recombination (map length values specified in the legend of the figures) with an582

average of one mutation per genome (mutation rate of u = 1/L, where L is the number583

of loci). Unless otherwise indicated in the figure legend, all mutations have a selection584

coefficient sampled from an exponential distribution with an expected mean of 0.005.585

Simulations start from an ancestral population and differ in their map length or the586

presence and position of a modifier of recombination rates. For each ancestral popula-587

tion generated, 10 simulations per parameter set were performed for 500 generations.588

The mutation rate during these 500 generations was set to 0. Simulation scripts, results589

and modeling details are available in our GitHub repository and in Dryad.590
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