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ABSTRACT 12 

The capacity of predators to match their tactic to their prey and to optimize their skills at 13 

implementing a given tactic are expected to drive the outcome of predator-prey interactions. 14 

Hence, successive interactions of predators with their prey may result in increased flexibility in 15 

tactic use or in individual foraging specialization. Yet, there are limited empirical assessments 16 

showing links between past experience, foraging specialization, and hunting success at the 17 

individual level, due to the challenges of monitoring direct interactions in the wild. Here, we 18 

used a virtual predator-prey system (the game Dead by Daylight) to investigate how individual 19 

predator foraging specialization and success developed across repeated interactions with their 20 

prey. We found that 68% of predators became either increasingly specialized by always moving 21 

at a fast pace, or flexible by transitioning between slow and fast speeds. The predators’ strategies 22 

were partially matched to their prey’s speed, suggesting that changes in hunting behaviour were 23 

driven by repeated encounters with their prey. Flexible and specialist foragers achieved similar 24 

success overall. Hence, our findings suggest that experience may promote behavioural 25 

diversification in predator-prey systems. 26 

Keywords: foraging behaviour, reciprocal behavioural plasticity, learning, antipredator 27 

behaviour, virtual ecology, Dead by Daylight 28 
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INTRODUCTION 30 

Predators express a diverse array of foraging tactics to capture their prey. In natural populations, 31 

differences among individuals in tactics such as ambushing and fast movement speeds are 32 

associated with differences in prey consumption (Toscano and Griffen 2014; Patrick and 33 

Weimerskirch 2014a; Toscano et al. 2016). Prey usually respond to predation cues by reducing 34 

their activity, or use rapid or unpredictable movements to successfully escape when they are 35 

chased (Walker et al. 2005; Jennifer L. Kelley and Magurran 2011; Herbert-Read et al. 2017). 36 

This results in reciprocal interactions where predators fine-tune their tactics to their prey, 37 

suggesting that they learn and become efficient hunters through repeated encounters (Estes et al. 38 

2003; Woo et al. 2008; Phillips et al. 2017). These behavioural adjustments with experience can 39 

shape the outcome of predator-prey interactions and may have larger implications for community 40 

and ecosystem dynamics (Wooster et al. 2023). 41 

As predators acquire experience, theory suggests that individuals should gradually specialize in a 42 

foraging tactic (e.g. always moving fast) if it allows them to maintain successful prey captures at 43 

each attempt (Tinker, Mangel, and Estes 2009; Dukas 2019). This should occur when predators 44 

learn to hunt in environments where resources are predictable (or stable) because they require 45 

less energy and time to search for, capture, and handle prey (Weimerskirch 2007; Woo et al. 46 

2008; Potier et al. 2015). Such conditions favor specialist hunters because there would be higher 47 

costs to switch tactics for the same type of prey. An alternative hypothesis is that learning could 48 

increase behavioural flexibility. For instance, predators can gain expertise and information on 49 

their prey through repeated hunting attempts, and may hunt optimally by learning to adjust their 50 

tactic to the type of prey that they encounter (Stephens 1993; Ishii and Shimada 2010; Jennifer L. 51 

Kelley and Magurran 2011). While there can be costs to attempt novel tactics by trial and error in 52 
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stable environments, predators that hunt in environments under fluctuating resources can reduce 53 

the consequences of uncertainty by learning to switch hunting tactics (Dall 2010; Mathot et al. 54 

2012). Nonetheless, complex feedback between ecological interactions and learning make it 55 

challenging to predict under which circumstances predators should specialize with experience 56 

(Stephens 1993; Ishii and Shimada 2010; Vila Pouca et al. 2021; Beyts et al. 2023). 57 

There is increasing evidence suggesting that the emergence of behavioural specialization and its 58 

fitness consequences are driven by resource fluctuations (Patrick and Weimerskirch 2014b; van 59 

den Bosch et al. 2019; Santoro, Hartley, and Lester 2019; Manlick, Maldonado, and Newsome 60 

2021). For example, Szopa-Comley and Ioannou (2022) showed that predatory blue acaras 61 

(Andinoacara pulcher) reduce their maximum approach speed when repeatedly exposed to prey 62 

that escape unpredictably, enabling them to be as successful as those exposed to predictable prey. 63 

Prey using fast escapes are also more difficult to hunt (Walker et al. 2005; Jennifer L. Kelley and 64 

Magurran 2011; Martin et al. 2022), and predators that encounter such prey more often should 65 

benefit from specializing in fast pursuits. Therefore, if predators hunting in different 66 

environments adjust their tactics to local prey fluctuations, then specialist and flexible hunters 67 

can both achieve similar hunting success and coexist (Phillips et al. 2017). Empiricists should 68 

thus investigate the link between foraging specialization and success across time and contexts. 69 

In this study, we investigate how repeated experience shapes predator foraging specialization and 70 

success using data from players in Dead by Daylight. In this videogame, four prey players forage 71 

for resources while avoiding predation by a fifth player. The predator population is composed of 72 

individuals that either move at slow speeds and ambush or hunt at high speeds (i.e. mean 73 

movement speed describes an ambush-cursorial continuum of hunting tactics) (Fraser Franco et 74 

al. 2022). We also observed that predators acquire expertise through extensive practice, which is 75 
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driven by the movement of the prey (Fraser Franco et al. 2024). Indeed, the prey can increase 76 

their chances of survival by moving faster in the virtual environment (Fraser Franco et al. 2022, 77 

2024). 78 

We define the level of individual foraging specialization as the intra-individual variance 79 

(i.e. IIV) in movement speed across matches. Low IIV describes individual foraging 80 

specialization (i.e. always using an ambush or cursorial tactic), whereas high IIV describes a 81 

flexible use of foraging tactics (i.e. predators switching between an ambush and cursorial tactic). 82 

Here, our objective is to assess how foraging specialization emerges throughout experience at the 83 

population and individual level. If all predators encounter similar groups of prey, we predict that 84 

individuals (and thus the population) should all specialize on moving at similar speeds. In 85 

contrast, if all predators encounter varying groups of prey, then they should converge towards 86 

flexible speeds. In both scenarios, differences among individuals in IIV across experience should 87 

be low (i.e. similar individual foraging specialization), whereas the population variance would 88 

either decrease (specialization) or increase (flexibility). Alternatively, differences among 89 

individuals in foraging specialization may emerge if they experience different interactions with 90 

their prey. In this case, we expect predators that encountered similar groups of prey across 91 

experience to specialize on similar speeds, while predators that encountered heterogeneous 92 

groups across matches should adopt flexible movement speeds, resulting in an increase in among 93 

individual differences in IIV with experience. If we detect such prey-dependent fine-tuning with 94 

experience, then all hunters along the flexible-specialist continuum should attain equal success. 95 
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MATERIALS AND METHODS 96 

Study system 97 

DBD is an asymmetric multiplayer survival game developed by Behaviour Interactive Inc. In this 98 

game, participants take on roles as either a predator or one of the prey, with each match 99 

consisting of one predator and four prey. A matchmaking system pairs groups of players with 100 

similar skill such that individuals should all have similar experience. The predator’s primary goal 101 

is to hunt and capture the prey, while the prey aim to locate and collect resources in the form of 102 

power generators. When all generators are activated, the prey can escape through one of two exit 103 

gates and win the match. A match concludes when the predator eliminates all remaining prey that 104 

have not escaped or when the final prey successfully exits the virtual environment. Players, 105 

whether predator or prey, select avatars with distinct abilities tailored to specific playstyles 106 

(e.g. stealthy vs evasive prey, or stalking vs patrolling predators). During the study period, the 107 

game featured 23 predator avatars. The virtual environments in the game vary in size and 108 

structural complexity, combining fixed and procedurally generated elements such as vegetation, 109 

buildings, and maze-like structures. Troughout the study period, there were 35 virtual game 110 

environments available for gameplay. 111 

Data collection 112 

The videogame company provided six months of gameplay data, encompassing all player 113 

activity from 2020-12-01 to 2021-06-01. We focused exclusively on matches played in “Online” 114 

mode, where players were strangers to one another. We excluded matches where players were 115 

inactive, as indicated by mean movement speeds that were zero or nearly zero. Additionally, 116 

matches where players were suspected of hacking or engaging in unintended gameplay behavior 117 
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were also removed based on our knowledge of the game mechanics. We then selected a cohort of 118 

players that played 300 matches or more, and monitored all their matches from the first to a 119 

maximum of 500 matches. 120 

Our dataset includes 253 unique predator players, collectively accounting for 100 412 matches. 121 

The number of matches played by predator players ranged from 301 to 500. Match durations 122 

varied between 3 and 70 minutes, with an average duration of 11 minutes. The following details 123 

were recorded for each match: the anonymous player ID, the chosen predator avatar, the game 124 

environment, the predator’s level of experience, their speed, the average speed of the prey group 125 

they encountered, and the average rank of those prey (used as a proxy for prey skill). The game’s 126 

ranking system, designed to match players of similar skill levels 127 

(https://deadbydaylight.fandom.com/wiki/Rank), was incorporated into our analysis to detect any 128 

relationship between predator experience and foraging success (see Fraser Franco et al. 2024). 129 

We analyzed the predator’s mean speed and the mean speed of the prey group encountered by 130 

the predator. The predator’s mean speed is measured as the mean distance traveled per second 131 

during a match (mean= 3.31 ± 0.49 m/s). We measured the preys’ speed as the mean travel speed 132 

of the four individual prey in a match (mean = 2.40 ± 0.32 m/s). We defined hunting success as 133 

the number of prey consumed during the match (min = 0, max = 4). Lastly, we categorized 134 

predators for each match based on their cumulated experience (see Fraser Franco et al. 2024). 135 

We labeled predators as novices for matches where they had cumulated less than 100 matches, 136 

intermediate for matches where they had cumulated between 100 and 299 matches, and advanced 137 

for matches where they had cumulated more than 299 matches (max 500). Since our goal was to 138 

monitor predator players throughout their experience and that they all played at least 300 139 

matches, they all appeared in each of the three experience categories. 140 

https://deadbydaylight.fandom.com/wiki/Rank
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Statistical analyses 141 

Foraging behaviour and predator-prey interactions across experience 142 

We tested whether foraging behaviour changed with experience, and compared the success of 143 

predators along the flexible-specialist hunter continuum, using a multivariate double-hierarchical 144 

generalized linear model (MDHGLM) (Lee and Nelder 2006; Cleasby, Nakagawa, and 145 

Schielzeth 2015; Mitchell et al. 2016). For each experience level, we fitted the model on three 146 

traits: the predator’s speed (𝑌1) and the prey’s speed (𝑌2) using a Gaussian error distribution, and 147 

the predator’s hunting success (𝑌3) using a beta-binomial error distribution. Fixed and random 148 

effect structure were trait-specific and the same for all experience levels. The predator and the 149 

prey speed included a mean and a dispersion part (eqn 1.1, 1.2 and 2.1, 2.2). For both traits, we 150 

controlled for the standardized prey rank on both the mean and the dispersion parts of the model. 151 

We included game environment, predator avatar, and individual predator identity random effects 152 

on the mean part of the model. The dispersion part included individual predator identity random 153 

effects exclusively. For hunting success, we modeled the mean part only (eqn 3) and controlled 154 

for the standardized prey rank and game duration, and included an individual identity random 155 

effect. 156 

The model simultaneously estimated five among-individual variance components with their 157 

covariances for each experience level, resulting in a 15x15 (co)variance matrix. For each 158 

experience level, the model estimated among individual variance in mean predator speed, mean 159 

prey speed, and mean hunting success. This allows us to test for individual differences in tactic 160 

use (i.e. along the slow-fast continuum), in the mean speed of the prey encountered, and in mean 161 

prey consumption. The model also estimated among individual variance in intra-individual 162 

variation (IIV) for both prey and predator speed. This allows us to test if predators do not 163 
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experience the same degree of prey heterogeneity and if they differ in individual specialization. 164 

Finally, the model estimated all pairwise covariances at the individual level among traits, among 165 

experience, and across traits and experience. The resulting 15x15 (co)variance matrix thus 166 

provides the structure of the predator-prey trait interactions as well as the relationship between 167 

specialization and success across experience at the individual-level. 168 

The model can be written as: 169 

𝑌1𝑗 = 𝑋1𝑗𝑏1𝑗 +𝑀1𝑗𝑒𝑛1𝑗 + 𝑁1𝑗𝑎𝑣1𝑗 + 𝑍1𝑗𝑖𝑑1𝑗 + 𝑒1𝑗 (eqn. 1.1) 

log (𝜎𝑒𝑌1𝑗
) = 𝑋𝑑1𝑗𝑏𝑑1𝑗 + 𝑍𝑑1𝑗𝑖𝑑𝑑1𝑗 (eqn. 1.2) 

𝑌2𝑗 = 𝑋2𝑗𝑏2𝑗 +𝑀2𝑗𝑒𝑛2𝑗 +𝑁2𝑗𝑎𝑣2𝑗 + 𝑍2𝑗𝑖𝑑2𝑗 + 𝑒2𝑗 (eqn. 2.1) 

log (𝜎𝑒𝑌2𝑗
) = 𝑋𝑑2𝑗𝑏𝑑2𝑗 + 𝑍𝑑2𝑗𝑖𝑑𝑑2𝑗 (eqn. 2.2) 

𝑌3𝑗 = 𝑋3𝑗𝑏3𝑗 + 𝑍3𝑗𝑖𝑑3𝑗 + 𝑒3𝑗 (eqn. 3) 

where 𝑗 is the index of the three experience levels (i.e. novice, intermediate, advanced). The 𝑑 170 

subscript indicates that a term is from the dispersion part of the model. The 𝑏 terms are vectors 171 

of fixed effects with their design matrices 𝑋 specific to each trait and experience level. The terms 172 

𝑒𝑛, 𝑎𝑣, and 𝑖𝑑 are the vectors of random environment, random avatar, and random individual 173 

identity effects associated with their design matrices 𝑀, 𝑁, and 𝑍 specific to each trait and 174 

experience level. For all experience levels of 𝑌1 and 𝑌2, we assumed that the game environment 175 

and avatar random effects followed a Gaussian distribution with estimated standard deviation 176 

(𝑒𝑛12𝑗 ∼ 𝑁 (0,  𝐼 𝜎𝑒𝑛12𝑗
2 ) and 𝑎𝑣12𝑗 ∼ 𝑁 (0,  𝐼 𝜎𝑎𝑣12𝑗

2 )). 𝐼 is the identity matrix, with 𝐼𝜎2 177 

indicating that the random effects are independently and identically distributed. In addition, we 178 
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assumed that the residuals follow a Gaussian distribution with observation-specific variance 179 

𝑒12𝑗 ∼ 𝑁 (0,  𝐷𝑖𝑎𝑔{𝜎𝑒12𝑗
2 }). The 15 individual identity random effects 𝑖𝑑𝑖𝑗 across all response 180 

variables and experience levels (five for each of the three experience levels) are indexed in 181 

vector 𝛼. The 𝛼 vector follows a multivariate Gaussian distribution 𝛼 ∼ 𝑀𝑉𝑁(0,  𝛴) where 𝛴 is 182 

a 15x15 (co)variance matrix of among individual variation across all response variables and 183 

experience levels, with 𝜎𝑖𝑑𝑖𝑗
2  on the diagonal and covariances off-diagonal. 184 

We performed our analyses under a Bayesian framework. We used weakly informative Gaussian 185 

priors for the prey rank (𝑁(0,  12): eqn. 1.1 to 2.2) and game duration (𝑁(0.5,  0.52): eqn. 3). 186 

Based on previous results showing that the mean predator speed revolves around 3 m/s (Fraser 187 

Franco et al. 2022), we applied a weakly informative Gaussian prior on the intercept for predator 188 

and prey speed (𝑁(3,  0.52): eqn. 1.1 and 2.1). Similarly, we used a weakly informative Gaussian 189 

prior on the intercept for the dispersion part (𝑁(0,  12): eqn 1.2 and 2.2). For hunting success, we 190 

applied a positive Gaussian prior on the precision parameter (𝑁(2,  12): eqn. 3) and a negative 191 

Gaussian prior (𝑁(−4,  12): eqn 3) on the intercept because hunting success should be close to 0 192 

at the lowest game duration. For every predicted variable, we applied a weakly informative half-193 

Gaussian prior (𝑁(0,  12)) on the random effects for the mean part and the dispersion part of the 194 

model. We used a regularizing 𝐿𝐾𝐽(2) prior on the correlation matrix. 195 

Model specifications 196 

We fitted the model in R (version 4.1.2) using Hamiltonian Monte Carlo (HMC) sampling with 197 

the package “brms” version 2.16.3 (Bürkner 2017), an R front-end for the STAN software (Team 198 

2023), and “cmdstanr” version 0.4.0 (Gabry and Češnovar 2021) as the back-end for estimation 199 

(cmdstan installation version 2.28.2). We ran te model on on Cedar (Operating system: CentOS 200 
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Linux 7), a computer cluster maintained by the Digital Research Alliance of Canada 201 

(https://docs.alliancecan.ca/wiki/Cedar). 202 

We parametrized the MDHGLM to run 2500 iterations with a thinning set to eight, with the first 203 

500 used as warm up iterations (yielding 1000 posterior samples for each parameter). We 204 

assessed the convergence of the chains using trace plots, R-hat diagnostics with a threshold of 205 

<1.01, and effective sample sizes (ESS) with a threshold of >100 (Vehtari et al. 2021). We also 206 

performed posterior predictive checks which showed an adequate fit of the models (for details, 207 

see https://github.com/quantitative-ecologist/experience-hunting-tactics). We report all the 208 

posterior parameter estimates using the median of the posterior distribution with the highest 209 

posterior density (HPD) intervals at 50%, 80%, and 95%. 210 

After inspection of the results, we found that key parameter values for our hypotheses were in 211 

the direction of our predictions, but they were largely driven by the very slow speed of one 212 

predator. Removing this individual reduced the estimates by a significant margin. To remain 213 

conservative, we thus present the results of the model without this individual in the main text, 214 

and provide the results of the model including it in the Appendix 2. 215 

RESULTS 216 

Changes in foraging behaviour, prey behaviour, and hunting success 217 

The mean speed of the predator population remained stable with experience (Figure 2 and 218 

Appendix 1: Table S1). Likewise, the variation in speed did not change with experience, 219 

indicating that foraging specialization remained stable at the population level (Figure 2 and 220 

Appendix 1: Table S1). At the individual level, predators differed slightly in their mean speed 221 

https://docs.alliancecan.ca/wiki/Cedar
https://github.com/quantitative-ecologist/experience-hunting-tactics
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across experience levels, indicating marginal differences in hunting tactics (Figure 2 and 222 

Appendix 1: Table S2). However, they displayed important differences in foraging specialization 223 

(Appendix 1: Table S2) which also increased slightly with experience as there was a 0.11 unit 224 

increase in among individual differences in IIV from novice to advanced (Figure 1). 12% of the 225 

population switched from a flexible to a specialized hunting tactic, and vice-versa, as predators 226 

gained experience (i.e. >0.2 change in standard deviation; Figure 2). In contrast, 44% displayed 227 

lower changes (i.e. >0.05 and <0.2 change in standard deviation) and 44% showed almost no 228 

change with experience (i.e. <0.05 change in standard deviation). 229 

 230 

Figure 1. Median posterior differences and HPD intervals comparing predator foraging 231 

behaviour at the population and individual level across experience stages. The behavioural 232 

parameter predicted by the MDHGLM being compared is on the y axis, and the difference in 233 

parameter values between two experience stages is on the x axis. The pairwise comparisons 234 

between experience stages are displayed across the three panels A, B, and C. We compare the 235 

mean speed of the predator population, the speed of the prey it encountered, and its hunting 236 

success across experience (population mean). We also compare the population’s foraging 237 
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specialization and variation in speed of the prey it encountered across experience (population 238 

variance). At the individual level, we compare among individual differences in speed, the speed 239 

of the prey encountered, and hunting success (individual variation mean). Lastly, we compare 240 

individual variation in IIV across experience, indicating whether individual differences in 241 

foraging specialization and in the variation of the groups of prey encountered changed with 242 

experience (individual variation IIV). 243 

As the predator population gained experience, there was strong evidence that the prey increased 244 

their speed, although slightly (Figure 1 and Appendix 1: Table S1). The population also 245 

encountered groups of prey using different speeds through time (Figure 1 and Appendix 1: Table 246 

S1). At the individual level, all predators encountered prey with similar average speeds 247 

throughout experience (Figure 1 and Appendix 1: Table S2). Yet, even if they experienced 248 

similar average prey speeds across all groups encountered, there were important differences 249 

among predators in how (dis)similar were the groups they encountered (Appendix 1: Table S2). 250 

Thus, some predators encountered similar groups (i.e. all groups using similar speeds) while 251 

others encountered distinct groups (i.e. some slower and some faster). These differences among 252 

individuals in IIV for prey encounters increased only marginally with experience (Figure 1). 253 

The predator population’s mean hunting success increased with experience (Figure 1 and 254 

Appendix 1: Table S1), with mean prey consumption revolving around two prey. There were 255 

also important differences among individuals in mean hunting success (Appendix 1: Table S2), 256 

but they remained stable across experience (Figure 1). 257 
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 258 

Figure 2. Individual behavioural distribution of the predators’ speed drawn from the MDHGLM 259 

estimates for individuals that had (A) the greatest increase in specialization and (B) the greatest 260 

increase in flexibility. The background (gray) distributions are for when individuals were novice 261 

hunters, and the foreground (blue) distributions with solid contour lines are for when they were 262 

advanced hunters. Both figure panels are ordered by ascending degree of increase in either 263 

specialization or flexibility. We built the figure by first subtracting the estimated standard 264 

deviation of all individuals as novices with their standard deviation as advanced hunters, and 265 

then selected those with the greatest difference using the 25% and 75% quantiles. Individuals on 266 

panel A have an increase in specialization equal or greater than 0.2 standard deviations, while 267 

those on panel B have an increase in flexibility equal to or greater than 0.2 standard deviations. 268 

Predator-prey interactions across experience 269 

Predators that were on average faster had lower IIV in speed (Figure 3A-B). Thus, faster 270 

predators specialized on fast movement, while slower predators were more flexible in their 271 

movement. As predators gained experience, these strategies were increasingly defined as the 272 
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correlation changed by 0.16 units, from -0.62 (-0.91, -0.41 95% 𝐶𝐼) for when predators were 273 

novices to -0.78 (-1.00, -0.53 95% 𝐶𝐼) as they reached the advanced stage (Figure 3C). Predators 274 

that were on average faster also tended to encounter groups of prey that were on average faster 275 

and more similar (Figure 3A-B). There was however no evidence that these correlations 276 

increased with experience (Figure 3C) 277 

There was no correlation (-0.01 (-0.17, 0.09 95% 𝐶𝐼)) between mean prey speed and IIV in 278 

predator speed when predators were novice (Figure 3A), but the correlation increased to -0.16 (-279 

0.33, -0.04 95% 𝐶𝐼) at the advanced stage (Figure 3B), such that advanced hunters that 280 

encountered faster prey tended to be more specialized (Figure 3C). The predators’ IIV in speed 281 

and IIV in prey speed were weakly positively correlated (Figure 3A-B). Hence, predators that 282 

encountered groups of prey with similar speeds tended to be more specialized in their tactic, 283 

while those that encountered groups of prey with varying speeds tended to be more flexible. We 284 

did not find evidence that this correlation increased with experience (Figure 3C). 285 
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 286 

Figure 3. Correlation matrices of the MDHGLM relating the mean and IIV in speed of the 287 

predators, the mean and IIV in speed of the prey they encountered, and mean hunting success. 288 

Larger dark blue circles indicate stronger positive correlations (positive values on the colour 289 

legend), while larger dark red circles indicate stronger negative correlations (negative values on 290 

the colour legend). A) Correlations when predators were novice hunters. B) Correlations when 291 

predators were advanced hunters. C) Posterior median differences and HPD intervals comparing 292 

the trait correlations predicted by the MDHGLM between the advanced and novice levels. The 293 

difference is displayed on the y axis and the correlated traits being compared are displayed on the 294 

x axis. Positive values indicate an increase in correlation strength from novice to the advanced 295 

stage, while negative values indicate stronger correlations when predators were novice. 296 
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Success along the foraging specialization continuum 297 

The predator’s mean speed and IIV were only weakly negatively correlated with hunting success 298 

across experience (Figure 3), suggesting that slower/flexible and faster/specialist predators were 299 

overall both equally successful. There was however a slight increase in the correlation between 300 

the predator’s IIV in speed and success (Figure 3C), suggesting that flexible foragers at the 301 

advanced stage were marginally less successful (Appendix 1: Figure S2). We also found strong 302 

evidence that individuals who encountered groups of prey with faster speeds were less successful 303 

(Figure 3A-B). Predators also had greater success across the study when encountering more 304 

variable groups of prey (Figure 3A-B). Both relationships remained structurally stable across 305 

experience (Figure 3C). 306 

DISCUSSION 307 

A general assumption of predator-prey studies is that predators maximize success by matching 308 

their tactic to their prey (Abrams 2000), yet, it has remained largely unknown whether this 309 

results from predators learning how to hunt their prey in part because of the challenges of 310 

investigating direct interactions in the wild. By capitalizing on a virtual predator-prey system 311 

where interactions were directly monitored, we found that while predators in Dead by Daylight 312 

did not show any increase in either behavioural specialization or flexibility with experience at the 313 

population level, individual predators developed their own behavioural trajectories over 314 

successive encounters with the prey. This was characterized by a continuum of hunting styles 315 

ranging from a slower and flexible strategy to a highly specialized fast-paced strategy, with some 316 

predators switching between the two across experience. The behavioural strategies of predators 317 

and prey tended to match across experience, suggesting that both were adjusting to each other. 318 
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Specialized cursorial hunters encountered similar groups of prey, while slower and flexible 319 

hunters encountered varying groups of prey. Overall, predators along the flexible-specialist 320 

continuum achieved similar success, although flexible hunters were slightly less successful as 321 

advanced hunters. 322 

The predator population maintained its speed and degree of specialization throughout the study 323 

period, and individuals differed only slightly in their average speeds. However, differences in 324 

specialization among individuals were important and increased slightly with experience. 325 

Predators hunting at higher speeds specialized in this tactic and tended to encounter groups of 326 

prey with similar speeds, while those hunting at slower speeds were flexible and tended to 327 

encounter varying groups of prey. On one hand, this pattern could arise if some predators 328 

adjusted their strategy to their prey, because fast-paced hunting is a specialized tactic suited for 329 

prey that use rapid evasive movements, while a slower and flexible tactic can be useful to 330 

minimize the consequences of uncertainty when prey escape unpredictably (Endler 1991; Bro-331 

Jørgensen 2013; Wilson et al. 2018; Szopa-Comley and Ioannou 2022). However, we observed 332 

that 44% of the predator population showed close to no change in specialization with experience. 333 

Since these individuals were already specialized as novices (Fraser Franco, personal 334 

observation), there would be no point in them changing their tactic with experience if they were 335 

already successful, or there could have been costs to switch their strategy if they encountered 336 

faster prey more often. This could explain why the behavioural interactions between the predator 337 

and the prey remained stable across the predator’s experience. Yet, because prey can also learn 338 

how to avoid predation (Jennifer L. Kelley and Magurran 2003; Turner, Turner, and Lappi 2006; 339 

McComb et al. 2011), we believe that the predator-prey phenotype matching more likely 340 

emerged from reciprocal adjustments in speed by predators and prey as they interacted (Kishida, 341 
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Mizuta, and Nishimura 2006; Kishida, Trussell, and Nishimura 2009; Edgell and Rochette 2009; 342 

McGhee, Pintor, and Bell 2013). Indeed, 56% of the predator population altered its behaviour 343 

with experience to different degrees, including 12% that even switched between flexibility and 344 

specialization. Hence, if the prey also learned through repeated interactions with the predators, it 345 

is possible that experience contributed in stabilizing the system as both were adjusting to each 346 

other, similar to Red Queen dynamics (Brockhurst et al. 2014). 347 

Classical theory predicts that individual foraging specialization should maximize prey 348 

consumption by optimizing foraging efficiency (Stephens and Krebs 1986), but other work 349 

suggests that flexibility and specialization could both be adaptive as resources fluctuate (Woo et 350 

al. 2008; Phillips et al. 2017). Our results support empirical findings indicating that flexible and 351 

specialist foragers obtained similar success (Weimerskirch 2007; Woo et al. 2008; Potier et al. 352 

2015; Phillips et al. 2017; Courbin et al. 2018), although flexible foragers were slightly less 353 

successful. Both strategies appeared to emerge in part from individuals learning how to hunt 354 

their prey, resulting in a general increase in success in the population. However, there were still 355 

considerable differences in success among individuals through time, suggesting that some 356 

predators were limited in their capacity to match their tactic to their prey or to increase their 357 

success through other means. 358 

Specialist foragers were faster and probably better equipped to hunt the faster and more difficult 359 

prey in DBD. However, if the prey responded to fast predators by also being faster, then hunting 360 

at high speeds resulted in challenging encounters for these predators too, thereby decreasing the 361 

benefits of using this tactic (Figure 3). Thus, specializing probably compensated for the difficulty 362 

of hunting prey at high speeds by helping predators to better predict the location and movement 363 

of their prey. On the other hand, flexible foragers encountered a larger range of prey moving at 364 
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slower speeds. Yet, because the prey increased their speed with experience, the benefits of being 365 

able to hunt multiple prey types for flexible hunters may have come at the cost of not being adept 366 

at capturing faster prey (Pintor et al. 2014). Such trade-offs may reflect limitations in learning all 367 

the skills required to successfully hunt all types of prey (Healy 1992; Bélisle and Cresswell 368 

1997; Dukas 2019), particularly if the skills required to hunt slower prey are nontransferable to 369 

faster prey. As the benefits of each hunting style changed under different scenarios, the 370 

combination of predatory styles in this virtual system reflects how resource fluctuations can 371 

maintain fitness equilibrium within populations, resulting in behavioural diversity in predator-372 

prey systems (Tinker, Bentall, and Estes 2008; Woo et al. 2008; Mougi and Kishida 2009). 373 

Conclusions 374 

We found support for our prediction that individual foraging specialization changed across 375 

experience and predator-prey interactions. Our results suggest that predators learned with 376 

experience, as their success increased and their speed remained matched to the speed of their 377 

prey. Even though individuals were not all equally successful, both specialized and flexible 378 

hunters achieved similar success overall. A potential caveat is that the more flexible hunters 379 

might have experimented with various tactics out of boredom, which could impede ecologically 380 

realistic interpretations of our data. However, the consistent association between this tactic and 381 

heterogeneous prey groups gives us confidence that it emerged from their interactions. One 382 

limitation of our study was that we couldn’t monitor all the matches of the prey, which prevented 383 

us from assessing their responses to the predator through their experience. Hence, future studies 384 

should aim at monitoring reciprocal behavioural dynamics through time, which may reveal 385 

important insights on the mechanisms driving predator-prey systems. 386 
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experience in a virtual predator-prey system: 
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Table S1. Posterior medians and 95% HPD intervals of the fixed effects estimated by the 

MDHGLM of predator speed, prey speed, and predator hunting success. 

Trait  Parameter Novice Intermediate Advanced 

predator speed intercept (mean)  3.29 ( 3.15,  3.41)  3.27 ( 3.10,  3.42)  3.27 ( 3.12,  3.43) 

  prey rank (mean) -0.02 (-0.02, -0.01) -0.02 (-0.03, -0.02) -0.03 (-0.03, -0.03) 

  intercept (sigma)  0.28 ( 0.27,  0.29)  0.30 ( 0.28,  0.31)  0.29 ( 0.27,  0.30) 

  prey rank (sigma)  0.99 ( 0.98,  1.00)  0.98 ( 0.97,  0.99)  0.99 ( 0.98,  1.00) 

prey speed intercept (mean)  2.34 ( 2.31,  2.36)  2.42 ( 2.39,  2.46)  2.42 ( 2.39,  2.46) 

  prey rank (mean) -0.11 (-0.12, -0.11) -0.11 (-0.12, -0.11) -0.11 (-0.12, -0.11) 

  intercept (sigma)  0.29 ( 0.29,  0.29)  0.27 ( 0.27,  0.28)  0.27 ( 0.27,  0.27) 

  prey rank (sigma)  1.07 ( 1.05,  1.08)  1.07 ( 1.06,  1.08)  1.07 ( 1.05,  1.08) 

hunting success intercept (mean)  0.49 ( 0.46,  0.52)  0.51 ( 0.48,  0.54)  0.54 ( 0.51,  0.57) 

  match duration (mean)  0.64 ( 0.64,  0.65)  0.64 ( 0.64,  0.65)  0.64 ( 0.64,  0.65) 

  prey rank (mean)  0.60 ( 0.60,  0.61)  0.65 ( 0.64,  0.65)  0.65 ( 0.65,  0.66) 

 a We exponentiated the dispersion parameters (i.e. sigma) which are estimated on a log scale. 

We back-transformed the hunting success values, estimated on a logit scale, back to a 

probability scale. 

b The intercept values on the mean part of the equation for all traits indicate mean behaviour 

and success at the population level. The intercept values on the dispersion (i.e. sigma) part of 

the equation for predator speed indicate behavioural specialization at the population level. 
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Table S2. Posterior medians and 95% HPD intervals of the random effect standard deviations 

estimated by the MDHGLM of predator speed, prey speed, and predator hunting success. 

Trait  Parameter Novice Intermediate Advanced 

predator speed avatar (mean) 0.31 (0.22, 0.41) 0.36 (0.25, 0.48) 0.36 (0.26, 0.49) 

environment (mean) 0.02 (0.02, 0.03) 0.03 (0.02, 0.03) 0.03 (0.02, 0.03) 

predator ID (mean) 0.16 (0.14, 0.17) 0.15 (0.14, 0.17) 0.17 (0.15, 0.18) 

predator ID (sigma) 1.48 (1.44, 1.54) 1.52 (1.47, 1.57) 1.59 (1.53, 1.65) 

prey speed avatar (mean) 0.05 (0.04, 0.07) 0.06 (0.04, 0.08) 0.06 (0.04, 0.08) 

environment (mean) 0.06 (0.04, 0.07) 0.05 (0.04, 0.07) 0.05 (0.04, 0.07) 

predator ID (mean) 0.09 (0.08, 0.10) 0.08 (0.07, 0.09) 0.10 (0.09, 0.11) 

predator ID (sigma) 1.06 (1.04, 1.07) 1.07 (1.06, 1.08) 1.10 (1.09, 1.11) 

hunting success predator ID (mean) 0.90 (0.83, 0.98) 0.90 (0.82, 0.97) 0.93 (0.85, 1.01) 

 a We exponentiated the dispersion parameters (i.e. sigma) which are estimated on a log scale. 

b The standard deviation values on the mean part of the equation indicate, for all traits, among 

individual differences in mean behaviour, prey encountered, and success. 

c The standard deviation values on the dispersion part of the equation (i.e. sigma) for predator 

speed indicate among individual differences in behavioural specialization. For prey speed, they 

indicate among individual differences in the variability of prey encounters. 
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Figure S1. Correlations between the predators’ mean hunting success (y axis) and intra 

individual variance in speed (x axis) to test for differences in success between individuals along 

the flexible-specialist hunter continuum. Each point represents the posterior median predicted 

value of an individual predator along with its 95% HPD interval. Individuals with lower IIV are 

specialist hunters, while individuals with higher IIV are flexible hunters. (A) Correlation when 

predators were novice (B) Correlation when predators were advanced 
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Table S1. Posterior medians and 95% HPD intervals of the fixed effects estimated by the 

MDHGLM of predator speed, prey speed, and predator hunting success. The coefficients are 

from the model that includes the outlier. 

Trait  Parameter Novice Intermediate Advanced 

predator speed intercept (mean)  3.28 ( 3.17,  3.42)  3.28 ( 3.11,  3.41)  3.26 ( 3.12,  3.41) 

  prey rank (mean) -0.02 (-0.02, -0.02) -0.02 (-0.03, -0.02) -0.03 (-0.03, -0.03) 

  intercept (sigma)  0.28 ( 0.27,  0.29)  0.30 ( 0.28,  0.32)  0.29 ( 0.27,  0.31) 

  prey rank (sigma)  0.99 ( 0.98,  1.00)  0.98 ( 0.97,  0.99)  1.00 ( 0.98,  1.01) 

prey speed intercept (mean)  2.34 ( 2.30,  2.37)  2.42 ( 2.39,  2.45)  2.42 ( 2.39,  2.45) 

  prey rank (mean) -0.11 (-0.12, -0.11) -0.11 (-0.12, -0.11) -0.11 (-0.12, -0.11) 

  intercept (sigma)  0.29 ( 0.29,  0.29)  0.27 ( 0.27,  0.28)  0.27 ( 0.27,  0.27) 

  prey rank (sigma)  1.07 ( 1.06,  1.08)  1.07 ( 1.06,  1.08)  1.07 ( 1.06,  1.08) 

hunting success intercept (mean)  0.49 ( 0.46,  0.52)  0.51 ( 0.48,  0.54)  0.54 ( 0.51,  0.57) 

  match duration (mean)  0.64 ( 0.64,  0.65)  0.64 ( 0.64,  0.65)  0.64 ( 0.64,  0.65) 

  prey rank (mean)  0.60 ( 0.60,  0.61)  0.65 ( 0.64,  0.65)  0.65 ( 0.65,  0.66) 

 a We exponentiated the dispersion parameters (i.e. sigma) which are estimated on a log scale. 

We back-transformed the hunting success values, estimated on a logit scale, back to a 

probability scale. 

b The intercept values on the mean part of the equation for all traits indicate mean behaviour 

and success at the population level. The intercept values on the dispersion (i.e. sigma) part of 

the equation for predator speed indicate behavioural specialization at the population level. 
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Table S2. Posterior medians and 95% HPD intervals of the random effect standard deviations 

estimated by the MDHGLM of predator speed, prey speed, and predator hunting success. The 

coefficients are from the model that includes the outlier. 

Trait  Parameter Novice Intermediate Advanced 

predator speed avatar (mean) 0.30 (0.22, 0.39) 0.36 (0.26, 0.49) 0.37 (0.27, 0.49) 

environment (mean) 0.02 (0.02, 0.03) 0.03 (0.02, 0.03) 0.03 (0.02, 0.03) 

predator ID (mean) 0.16 (0.15, 0.17) 0.15 (0.14, 0.17) 0.20 (0.18, 0.22) 

predator ID (sigma) 1.48 (1.43, 1.53) 1.52 (1.47, 1.58) 1.59 (1.53, 1.65) 

prey speed avatar (mean) 0.05 (0.04, 0.07) 0.06 (0.05, 0.08) 0.06 (0.04, 0.08) 

environment (mean) 0.06 (0.04, 0.07) 0.05 (0.04, 0.07) 0.05 (0.04, 0.07) 

predator ID (mean) 0.09 (0.08, 0.10) 0.08 (0.07, 0.09) 0.11 (0.10, 0.12) 

predator ID (sigma) 1.06 (1.04, 1.07) 1.08 (1.07, 1.09) 1.10 (1.09, 1.11) 

hunting success predator ID (mean) 0.89 (0.82, 0.98) 0.90 (0.83, 0.97) 0.93 (0.86, 1.02) 

 a We exponentiated the dispersion parameters (i.e. sigma) which are estimated on a log scale. 

b The standard deviation values on the mean part of the equation indicate, for all traits, among 

individual differences in mean behaviour, prey encountered, and success. 

c The standard deviation values on the dispersion part of the equation (i.e. sigma) for predator 

speed indicate among individual differences in behavioural specialization. For prey speed, they 

indicate among individual differences in the variability of prey encounters. 
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Figure S1. Posterior median differences and HPD intervals comparing the parameter values 

predicted by the MDHGLM among all predator experience levels. The parameter being 

compared is on the y axis, and the difference in parameter values between two experience levels 

is displayed on the x axis. The pairwise comparisons between experience levels are displayed 

across the three panels A, B, and C. The results are from the model that includes the outlier. 
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Figure S2. Posterior median differences and HPD intervals comparing the trait correlations 

predicted by the MDHGLM between the advanced and novice levels. The difference is displayed 

on the y axis and the correlated parameters are displayed on the x axis. Positive values indicate 

that the correlation was greater when predators where advanced, while negative values indicate 

that the correlation was greater when predators where novices. The results are from the 

MDHGLM that includes the outlier. 


