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Abstract14

Interannual variability of seed production, known as masting, has far-reaching ecological impacts15

including effects on forest regeneration and the population dynamics of seed consumers. It is16

important to understand the mechanisms driving masting to predict how plant populations17

and ecosystem dynamics may change into the future, and for short-term forecasting of seed18

production to aid management. We used long-term observations of individual flowering effort19

in snow tussocks (Chionochloa pallens) and seed production in European beech (Fagus sylvatica)20

to test how endogenous resource levels and weather variation interact in driving masting. In21

both species, there was an interaction between the weather cue and plant resources. If resource22

reserves were high, even weak temperature cues triggered relatively high reproductive effort, and23

depleted resources suppressed reproduction even in the presence of strong cues. Thus, resource24

dynamics played dual roles of both suppressant and prompter of reproduction, allowing plants to25

fine-tune the length of intervals between large-seeding years regardless of variable cue frequency.26

The strong interaction between resource reserves and weather cues has immediate application27

in mast forecasting models increasingly important for global afforestation efforts. Moreover, the28

important role of resource reserves in the plant response to weather cues will dictate the masting29

responses to climate change.30

keywords: | flowering | mast seeding | seed production | reproduction | resource budgets |31

32

Declaration of interests33

No competing interests to declare.34

Introduction35

Synchronous and highly variable reproduction among years by a population of perennial plants,36

called mast seeding or masting, characterizes the reproduction of numerous plant species (Qiu37

et al., 2023; Journé et al., 2023). Resulting boom and bust dynamics have widespread con-38

sequences for food webs, nutrient cycling, plant and fungi community dynamics, and nature39

management (Ostfeld & Keesing, 2000; Clark et al., 2019; Pearse et al., 2021; Michaud et al.,40

2024). It is therefore important to understand the mechanisms driving masting patterns to help41

predict how plant populations and ecosystem dynamics may change into the future (Hacket-Pain42

& Bogdziewicz, 2021), as well as for short-term forecasting of seed production to aid man-43

agement decisions (Elliott & Kemp, 2016; Journé et al., 2023). Both these goals are urgent:44

accumulating evidence indicates that masting patterns can be altered by climate change with45

severe consequences for seed supply (Hacket-Pain & Bogdziewicz, 2021), but the response46

hinges on the proximate mechanisms involved (Shibata et al., 2020; LaMontagne et al., 2021;47

Yukich-Clendon et al., 2023). At the same time, ambitious afforestation plans widely planned48
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across countries (Steffen et al., 2015; Richardson et al., 2023) increase seed demand and require49

mast forecasting tools to aid efficient seed collection (Pearse et al., 2021; Fargione et al., 2021).50

Yet, while major evolutionary drivers of masting are relatively well-explored (Bogdziewicz et al.,51

2024), the proximate drivers of mast seeding, imperative for climate change biology and fore-52

casting, are less well crystallized. Multiple drivers play a role, including weather cues, internal53

resource dynamics, and underlying environmental variation (Norton & Kelly, 1988; Crone &54

Rapp, 2014; Pearse et al., 2016; Pesendorfer et al., 2021). It remains unclear how these various55

mechanisms apply across species and how they interact (Bogdziewicz et al., 2024).56

Two major mechanisms can increase masting variation above the baseline generated by57

weather variation (resource matching); weather cues and internal resource budgets (Pearse et al.,58

2016; Bogdziewicz et al., 2024). Selection for high interannual variation in seed production can59

make plants hypersensitive to weather variation (Kelly et al., 2013; Bogdziewicz et al., 2020b).60

The relationship between seeding and weather is often exponential, with heavy reproduction61

resulting from high values of the weather cue (Kelly et al., 2013; Fernández-Martínez et al.,62

2017; Schermer et al., 2020; Smith et al., 2021). Moreover, seed production requires substantial63

nutrient investment, which led to the formulation of resource budget models (Satake & Iwasa,64

2000; Crone et al., 2009). Briefly, these models assume a resource threshold for reproduction so65

that reproduction is only initiated when sufficient internal resources accumulate. Resources are66

depleted by seed production, and the time required to replenish depleted resources amplifies the67

interannual variation in seed production (Crone & Rapp, 2014; Han & Kabeya, 2017). Finally,68

resource status and cues may be integrated if flowering induction by the weather cue is dependent69

on the resource state of the plant (Smaill et al., 2011; Monks et al., 2016).70

These various drivers of masting have been recently unified by the formulation of the general71

model of masting, suggesting that each mechanism is potentially involved but with varying72

importance across species (Bogdziewicz et al., 2024). For example, the model predicts that73

in extreme cases, masting can be driven almost solely by weather cues, but whether that is74

indeed the case needs to be tested (Bogdziewicz et al., 2024). Clarifying these different drivers75

is imperative for a more accurate prediction of masting both in the long and short term. For76

example, where cues are dominant, the increased cueing frequency associated with climate77

warming will lead to more frequent reproduction, but if resource levels are also important78

then the mast years may also be smaller in magnitude (i.e. dampened interannual variation)79

(Bogdziewicz, 2022).80

A major example of a weather cue hypothesized to generate masting without the need to81

invoke resource dynamics is the ΔT differential-temperature cue, i.e. the temperature difference82

between the two previous summers (see Glossary) (Kelly et al., 2013). TheΔT model gave a good83

fit to observational seeding data, but was criticized as potentially just a proxy that captures the84

interaction between resource state and environmental drivers (Pearse et al., 2014; Monks et al.,85

2016). Specifically, the low temperature in T2 (two years before seedfall) may veto reproduction86

in T1 (lack of cue), resulting in resource accumulation. Subsequent hot T1 summer (strong87
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cue) combines with accrued resources and triggers large flowering in year T0. Indeed, a model88

including an interaction between T1 and T2 (T1 x T2) provided a better fit to the data than theΔT89

in four Chionochloa species, supporting that hypothesis (Monks et al., 2016). Nonetheless, the90

issue is far from settled. Several studies compared the ΔT fit to reproductive data with models91

that included ΔT decomposed to various combinations of T1, T2, and lagged reproductive effort,92

with some finding support for ΔT (Holland & James, 2014; Kon & Saito, 2015; LaMontagne93

et al., 2021), but others failing to find support (Moreira et al., 2015; Monks et al., 2016).94

However, the majority of studies were inconclusive. Only one replaced T2 with an estimate of95

resource state (Monks et al., 2016). Yet, as that study replaced the T2 cue with resource state,96

the T2 cue was no longer included (Monks et al., 2016). Several studies used lagged (previous97

year) seed production as a resource depletion proxy (Pearse et al., 2014; Holland & James,98

2014; Bisi et al., 2016). Yet, that is an imperfect proxy as it only includes the preceding year’s99

resource investment in seed production, foregoing information on reproductive investment in100

years before that. Moreover, most of these studies were conducted at the population level which101

includes noise created by imperfect synchronization of seed production between individuals102

(Koenig et al., 2003; Abe et al., 2016). Testing whether reproduction depends on the resource103

state requires supplementing (not replacing) the T2 cue with an estimate of each individual104

plant’s resource state.105

Glossary
• Weather cue - weather conditions, such as warm summer, that trigger reproduction,

typically by promoting heavy flowering.

• T0, T1, T2 cues - weather cues occurring in the same year as seedfall (T0), or lagged
by one year (T1) or two years (T2) before seedfall. In the current study, the T1 and T2
cues are summer temperatures (January - February for snow tussocks, and June-July
for European beech).

• ΔT cue - a weather cue based on a difference (Δ) in weather (temperature T) from
one growing season to the next, here temperature difference between the two previous
summers (ΔT = T1 - T2).

• Resource reserves - here, reconstructed stored resources from individual-level
seed/flower production data, following the Rees et al. (2002) method. In short, re-
source reserves are estimated as negative of residuals of the linear relationship between
cumulative reproductive effort and cumulative time.

Using resource reserves together with the T2 weather cue is important to test whether the106

T1+T2 model involves mechanisms unrelated to the resource state. Molecular mechanisms107

behind weather cues likely include gene regulatory networks that integrate various signals, such108

as temperature and photoperiod, allowing flowering to occur only when specific cues are received109
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(Satake & Kelly, 2021). For example, in European beech (Fagus sylvatica), high temperatures110

after the summer solstice (when the day length peaks) trigger flowering (Journé et al., 2024).111

Crucially, both T1 and T2 summer temperature effects on seed production are seen only after112

the summer solstice, suggesting environmental signal integration, not resource-related effects in113

summer T2 (Journé et al., 2024). In another example, drought and subsequent cold temperatures114

initiate a molecular regulation that triggers flowering in Shorea, and drought does not feed into115

the model via its effect on resource accumulation (Yeoh et al., 2017; Chen et al., 2018). Finally,116

despite the ΔT being initially criticized for the lack of a known underlying mechanism, later117

studies introduced an epigenetic summer memory model (Samarth et al., 2020). The T2 summer118

temperature initiates the activation of the floral integrator genes such as FT and SOC1. Then,119

elevated summer T1 temperature is required to activate these genes sufficiently to allow the plant120

to fully commit to the reproductive transition (Samarth et al., 2020, 2021).121

Resource availability may also regulate the flowering gene expressions modulated by en-122

vironmental signals. For example in Fagus crenata the interannual variation in flowering is123

associated with off-and-on cycles of expression in major flowering genes, with the expression of124

genes depending on nitrogen supply (Miyazaki et al., 2014). Thus, our current understanding of125

mechanisms triggering reproduction requires the T1xT2 (or ΔT) model to be supplemented with126

the plant’s resource reserves to incorporate the full suite of possible drivers. Such comprehensive127

testing has not been done so far.128

Here, we used 35-year-long flowering observations in 81 alpine snow tussock plants (Chinochloa129

pallens) and 16-year-long seed production observations in 32 European beech (Fagus sylvatica)130

trees to test the drivers of masting in these species. In C. pallens, the ΔT model fitted better than131

the T1+T2 model (Kelly et al., 2013), but with data from a different site T1xT2 was later found132

to fit even better (Monks et al., 2016). Transplant experiments showed that high T1 temperatures133

indeed trigger reproduction through activation of molecular flowering pathways (Samarth et al.,134

2022). The role of low temperatures in T2 summer is unclear, as it may represent either a veto135

that allows resource accumulation (Monks et al., 2016), or molecular priming that modulates136

the plant response to summer T1 temperatures (Kelly et al., 2013; Samarth et al., 2020). In137

F. sylvatica, the ΔT consistently scored lower compared to the T1 + T2 and T1 x T2 mod-138

els, although very few studies are available (Bogdziewicz et al., 2017b; Vacchiano et al., 2017;139

Szymkowiak et al., 2024). The effects of summer T2 temperatures on seeding in European beech140

were long believed to represent resource priming (Piovesan & Adams, 2005; Drobyshev et al.,141

2014; Vacchiano et al., 2017), but the fact that correlations between seeding and temperature142

appear only after the summer solstice questions that interpretation (Journé et al., 2024).143

We constructed models to specifically test these various mechanisms (summarized in Table144

1). By reconstructing the resource reserves of individuals, we tested whether the T2 effects are145

just a proxy for plant resource state or not. By including the ΔT in the models together with146

estimated resource reserves, we test whether ΔT is indeed largely independent from the resource147

reserves of the plant, as previously hypothesized (Kelly et al., 2013; Bogdziewicz et al., 2024).148
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Table 1: Summary of predictors we tested and associated hypothetical mechanisms. T1 and
T2 are temperature cues (mean summer temperatures one and two years before reproduction,
respectively); ΔT is a differential-temperature cue (T1 - T2), and R is individual plant resource
reserves (estimated from individual-level annual flower and seed production records, see Glos-
sary).

Predictor Hypothetical mechanism
T1 High temperatures promote heavy flowering through enhancing flower-

ing genes expression
T2 Environmental signal: low temperatures promote heavy flowering

through activation of the floral integrator genes that are later activated
by T1 cues. Alternatively, surrogate for past seed production: negative
summer temperatures decrease seed production in T1, enhancing seed
production in T0

T1 x T2 The response to T1 temperature is amplified by low T2 temperature.
Specific values of each year’s temperatures interact, with a higher slope
of T1 effect for lower T2 temperatures.

ΔT Plants measure the relative change in temperature between T2 and T1,
with absolute values of T1 and T2 being unimportant

T1 + R or ΔT + R Resource state acts as a veto, i.e. suppresses reproduction when depleted,
even in the presence of cues.

T1 x R or ΔT x R In addition to the resource state acting as veto when resources are de-
pleted, the resource reserves acts as an amplifier of plant response to the
cue, if reserves are high.

Finally, by including the interaction between an individual’s resource reserves and weather cues,149

we tested whether accumulated resources modify plant responses to the weather cue.150

Materials and Methods151

Study species Snow tussocks (Chionochloa pallens, Poaceae) and European beech (Fagus syl-152

vatica, Fagaceae) are well-studied masting species (masting time series in Fig. S1). Chionochloa153

pallens (mid-ribbed snow tussock, hereafter abbreviated to just snow tussock) is a long-lived154

grass, up to 1.5 m tall, growing in the alpine zone in New Zealand. European beech (Fagaceae)155

is a pan-European deciduous forest tree of high economic and ecological importance (Leuschner156

& Ellenberg, 2017; Chakraborty et al., 2024). Masting in both species reduces seed predation157

rates, and in beech increases pollination efficiency (Kelly & Sullivan, 1997; Kelly et al., 2001;158

Bogdziewicz et al., 2020c; Pesendorfer et al., 2024). In both species, temperature cues (T1,159

T2, and/or ΔT) and resource reserves are considered masting drivers (Piovesan & Adams, 2005;160

Kelly et al., 2013; Monks et al., 2016; Vacchiano et al., 2017), but a comprehensive test of a full161

suite of drivers has not been attempted.162
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Flowering and seed production monitoring In snow tussocks, we monitored flowering in163

permanent transects at 1070 m, Mount Hutt, Canterbury, New Zealand annually between 1990164

and 2024. Three transects, each 20 m long, were marked with steel pegs, and all tussocks that165

touched the line were mapped (n = 81). Each February, the number of inflorescences (flower166

stalks, abbreviated to flowers) were counted on each mapped plant (Rees et al., 2002; Kelly167

et al., 2013). During this interval, no plants died. The flower counts were censuses.168

In European beech (Fagus sylvatica), we sampled seed production at 15 sites spaced across169

England annually between 1980 and 2023 (44 years) (Bogdziewicz et al., 2023). The ground170

below each tree was searched for seeds for 7 minutes, and all seeds found were counted. In171

this study, we used the data on 32 individuals for which full records were available from 1990172

to 2005. After 2006, the interannual variation and synchrony of seed production in these173

populations declined due to warming (Bogdziewicz et al., 2020c). That included the disrupted174

relationship between the weather cues and masting; more frequent cue occurrence appears175

to deplete the energy budgets of trees, resulting in weaker responses to cues (Bogdziewicz176

et al., 2021). To exclude that confounding factor, we have used only the 16 years of the data177

(1990-2005), which resulted in 32 trees spaced across 12 sites.178

Reconstructing resource reserves To reconstruct a plant’s resource reserves from flowering179

and seed production data, we followed the approach developed by Rees et al. (2002). The180

method allows internal resource dynamics to be estimated from time series of reproductive181

effort and resource gain without directly measuring a plant’s energy stores, and has been used182

successfully across various woody and herbaceous species (Rees et al., 2002; Crone et al., 2005a;183

Bogdziewicz et al., 2018, 2019). In short, this analysis involves first fitting a linear model of184

cumulative reproduction (summed flower or seed count) vs cumulative years (as a surrogate185

of resource acquisition over time) for each species. We used linear mixed models (LMMs)186

implemented via the ‘lme4’ package (Bates et al., 2015) with plant ID as random intercepts and187

cumulative years as a random slope. The model for European beech included also site ID as a188

random intercept. The random effect structure allowed fitting a unique intercept for each plant189

which estimates resource reserves of a plant at the beginning of the monitoring period (Rees190

et al., 2002), while random slope allowed for different mean rates of reproduction on each plant191

due to variations in size or heterogeneous resource acquisition of individuals over time (Crone192

et al., 2005b). The model takes the form:193

cumulative_reproduction𝑖 ∼ 𝑁

(
𝛽1 𝑗 [𝑖] (cumulative_year), 𝜎2

)
𝛽1 𝑗 ∼ 𝑁

(
𝜇𝛽1 𝑗 , 𝜎

2
𝛽1 𝑗

)
, for plant ID j = 1, . . . ,J

194

Residuals for each plant from these two models (one for each species) can be used to estimate195

the resource reserves of that individual in each year. Basically, the regression line represents196

the long-term mean rate of reproduction for that plant. If the cumulative flowering gets above197

the regression line, the plant has been reproducing faster than the average (its expenditure is ’in198

overdraft’), giving a positive residual; whereas after an extended period of low flowering, the199
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cumulative flowering line falls below the regression, suggesting spending has fallen behind the200

mean and giving a negative residual. To reflect the inverse relationship between expenditure201

and resource reserves, we take the negative of these residuals, ensuring that positive residuals202

correspond to lower stored resources (overdraft) and negative residuals to higher stored resources203

(Rees et al., 2002; Crone et al., 2005b). Temporal dynamics of reconstructed resource reserves204

are presented in Fig. S1. Note that the approach we used here for the reconstruction of resource205

reserves makes no assumption about the limiting resource, i.e. whether that is carbon, nitrogen,206

or another limiting resource (Han & Kabeya, 2017). In fact, because cumulative reproduction207

is on the Y axis, the units of resource reserves are flower stalks for snow tussocks and seeds208

for European beech, including exactly the combination of carbon, nitrogen and other resources209

required for reproduction in that species. The OSF repository that includes the data supporting210

the paper also includes a a custom R code for the method application.211

Hypothesis testing We constructed two sets of models for each species in which annual,212

plant-level flowering (snow tussocks) or seed production (European beech) was included as a213

response. All models included plant ID (both species), and site ID (European beech) as random214

intercepts. We used the Tweedie error family and logit link and for this purpose, we scaled215

the response values to fall between 0 and 1 at the series level. Each set then included various216

combinations of predictors including past summer temperatures (T1 and T2 weather cues, or217

ΔT = [T1-T2]), plant resource reserves (estimated resources plant i has in the year before218

flowering t-1), and specific interactions. The interactions were between T1 and T2, between219

T1 and resource reserves, or between ΔT and resource reserves. We have not fitted models220

with all possible predictor combinations; rather, we have fitted ones relevant to the hypothesized221

mechanisms involved. Models were ranked using the standard AIC criteria (Burnham et al.,222

2011). Collinearity between predictors was checked with VIF (< 1.3 in all models).223

Results224

In snow tussocks, the best-fitting model included the interaction term between reconstructed225

resource reserves and summer T1 temperature (Table 2). The top model also included the T1226

x T2 interaction. Thus, the effect of the T1 cue on reproductive effort is modified both by227

resource reserves and the T2 cue (Table 2). The support for such a complicated model was228

strong in snow tussocks (AIC weight = 0.99). In European beech, the top model also includes229

the interaction between resource reserves and summer T1 temperature, but the importance of the230

T1xT2 interaction is equivocal, with the less complicated model (T1 x Resources + T2) being231

similarly supported (ΔAIC = 0.48; Table 2). Importantly, despite the direct inclusion of resource232

reserves, summer T2 temperature was retained in the top model for both species, suggesting T2233

temperatures do not only affect masting indirectly via resource dynamics (Table 2).234

In both species, the high reproductive effort required the alignment of both strong weather235
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Table 2: Model selection tables. Each model includes individual-level annual flowering (C.
pallens) or seed production (F. sylvatica) as a response, plant ID (both species) and site ID
(European beech) as random intercept, Tweedie error distribution, and logit link. T1 and T2 are
summer temperatures (June and July in F. sylvatica and January and February in C. pallens),
where numbers indicate lags: 1 for the previous year, and 2 for summer two years before
flowering. Resources reserves, abbreviated to R in the Table, are the negative of residuals of
cumulative reproduction fitted against cumulative years, see Methods.

Model AIC ΔAIC weight

Chionochloa pallens
T1 × R + T1 × T2 1052.1 0.0 0.995
T1 × R + T2 1064.0 11.9 0.003
T1 × T2 + R 1064.0 11.9 0.003
ΔT × R 1076.9 24.8 <0.001
ΔT + R 1098.7 46.6 <0.001
T1 + R + T2 1100.2 48.0 <0.001
T1 × T2 1139.0 86.9 <0.001
T1 + T2 1223.7 171.6 <0.001
ΔT 1232.1 180.0 <0.001
T1 × R 1521.1 469.0 <0.001
T1 + R 1603.9 551.8 <0.001

Fagus sylvatica
T1 × R + T1 × T2 394.8 0.0 0.52
T1 × R + T2 394.9 0.2 0.48
ΔT × R 416.2 21.4 <0.001
T1 × T2 + R 419.9 25.1 <0.001
ΔT + R 420.5 25.7 <0.001
T1 + R + T2 422.3 27.5 <0.001
T1 × R 449.9 55.2 <0.001
T1 + R 479.0 84.3 <0.001
T1 × T2 553.0 158.3 <0.001
T1 + T2 555.0 160.3 <0.001
ΔT 557.0 162.2 <0.001
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Figure 1: Relationships between the reconstructed resource reserves and annual variation
in flowering effort in Chionochloa pallens and seed production in Fagus sylvatica. Each
point is an annual flowering effort (or seed production) of an individual plant, mapped along the
gradient of resource reserves (Rees et al., 2002). Resource reserves are expressed as negative
residuals of cumulative reproduction fitted against cumulative years, see Methods. Units of
resource reserves are flowers in A and seeds in B. Point sizes and colors are scaled according to
the mean summer temperatures two years and one year before flowering.

cues and large resource reserves (Fig. 1, 2, Table 3). The interaction between weather cues and236

resource reserves was strong; if resources were depleted, even very hot summer T1 led to only237

minor reproductive effort (Fig. 2). For example, in snow tussocks, estimated individual-level238

reproductive effort in response to a 14 °C T1 cue was ∼10 flowers if resources were depleted,239

but was 17-fold larger if resource reserves were high (Fig. 2). In contrast, if reserves were240

large, heavy reproduction could be initiated even if the cue was relatively weak. For example,241

in European beech, individual-level seed production in response to a 21 °C T1 cue was ∼110242

for the average level of resource storage, but reached almost 300 if storage was high (Fig. 2).243

Even a relatively cold T1 (e.g. 19 °C) resulted in relatively good seed production of ∼100244

seeds if resource reserves were high (Fig. 2). Finally, the T1 x T2 negative interaction in snow245

tussocks resulted in heavy reproduction occurring only when a hot summer occurred after a cold246

one (Table 3, Fig. 3). The modulating effect of the T2 cue on the T1 cue was similar to that247

of resource reserves; if T2 summer was hot, even high T1 temperatures did not trigger heavy248

reproduction (Fig. 3).249

Discussion250

Our study was inspired by the recently formulated general model of masting, which suggests251

that environmental cues could drive masting without the need to invoke resource dynamics252

(Bogdziewicz et al., 2024). We examined two species where strong weather cues indicated that253
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Figure 2: Previous summer temperatures and reconstructed resources reserves interact to determine
annual variation in flowering effort in Chionochloa pallens and seed production in Fagus sylvatica. A) and C)
Surface plots show estimated individual-level flowering (C. pallens) or seed production (F. sylvatica) effort across
combinations of previous summer (January-February in case of C. pallens and June-July in case of F. sylvatica)
mean daily temperature (°C) and the reconstructed resource reserves, with the convex hulls (parameter space across
which predictions are computed) defined by observations (black circles). Points show individual-level annual
flowering or seed production. Black horizontal dashed lines at A) and C) indicate the conditional relationships
plotted in B) and D), i.e., the relationship between flowering or seed production effort and summer temperature for
selected levels of reconstructed resource reserves. Prediction lines and associated 95% CI at B) and D) are sections
through surfaces highlighted by transects at A) and C). Resource reserves are expressed as negative residuals of
cumulative reproduction fitted against cumulative years, see Methods. Estimates are derived from GLMM with
Tweedie distribution and logit link that included plant ID as a random intercept. The best fitting models plotted
(AIC selection Table 2) included also the negative effects of summer temperature two years before flowering or
seed production (model summary Table 3).
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Figure 3: Previous summer temperatures interact to determine annual variation in flowering effort in Chionochloa
pallens. The surface plot shows estimated individual-level flowering effort across combinations of the previous
summer (January-February) mean temperatures one and two years before flowering. The convex hull (parameter
space across which predictions are computed) is defined by observations (black circles). Note that the apparently
small number of points is the result of overplotting, as all individuals in each year (N = 81) fall into the same area
defined by past years’ temperatures.
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Table 3: Summary of the best-fitting generalized linear mixed model testing the effects of
previous summer temperatures and resource reserves on annual variation in reproductive output
in Chionochloa pallens and Fagus sylvatica. The models included individual-level annual
flowering (C. pallens) or seed production (F. sylvatica) as a response and were fitted with
Tweedie error distribution and logit link. T1 and T2 are mean summer temperatures a year or
two years before flowering, respectively. Resources reserves (R) are reconstructed deviations
from the equilibrium energy budget (see Methods).

Effect 𝛽 SE Z p

Chionochloa pallens (R2 = 0.55)
Intercept -51.90 13.660 -3.80 0.001
T1 5.39 1.156 4.66 <0.001
T2 2.74 1.144 2.39 0.017
R -0.10 0.031 -3.18 0.001
T1 × R 0.01 0.003 3.81 <0.001
T1 × T2 -0.34 0.097 -3.53 <0.001

Fagus sylvatica (R2 = 0.62)
Intercept -5.80 2.638 -2.20 0.028
T1 0.96 0.103 9.33 <0.001
T2 -0.72 0.099 -7.33 <0.001
R -0.13 0.029 -4.64 <0.001
T1 × R 0.01 0.001 5.34 <0.001

resource effects might be relatively minor compared to the influence of these cues (Kelly et al.,254

2013; Vacchiano et al., 2017; Journé et al., 2024). Contrary to this assumption and predictions255

of the general model, our findings reveal that resource reserves also have a strong effect, which256

enables both species to fine-tune their reproductive schedules, balancing the benefits and costs257

of masting. This fine-tuning allows plants to optimize their reproductive timing, delaying258

reproduction when necessary but avoiding excessively long intervals between mast events.259

Our findings highlight a dual function of resource reserves in its interaction with weather260

cues (T1) at both low and high resource levels. At low resource reserves, depleted reserves act261

as a ’veto’ on reproduction (Isagi et al., 1997; Crone et al., 2009; Schermer et al., 2020), not as a262

complete block but as a significant reduction that can largely suppress reproduction even in the263

presence of strong cues. This strong effect runs contrary to earlier predictions that a temperature-264

difference (ΔT) cue would render the resource veto rare and statistically hard to detect (Kelly265

et al., 2013). The constraint on consecutive heavy reproduction due to resource depletion has266

important ecological consequences: it prevents large seeding events from aligning with booms267

in seed consumer populations after mast years, thus maintaining the starvation-satiation cycle268

that enhances reproductive efficiency (Zwolak et al., 2022). At high resource reserves, the T1 x269

resource interaction has been previously hypothesized (Monks et al., 2016; Ascoli et al., 2017),270

but its effects rarely directly documented. As time increases since the last major flowering271

episode and the plant’s resource balance becomes more positive, the weather cue needed to272
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trigger heavy reproduction decreases. This beneficially affects reproduction timing by reducing273

the gap between large events, even when the ideal weather cue is delayed (Waller, 1979; Kelly,274

1994; Bogdziewicz et al., 2024). These dual interactive effects enable plants to fine-tune their275

reproductive schedules: they are less sensitive to cues shortly after a big event but become more276

sensitive over time. This maintains a more constant long-term reproductive effort, preventing it277

from being overly influenced by unusual weather patterns, and helps plants balance the benefits278

and costs of masting—delaying reproduction without waiting too long.279

While resource reserves clearly play an important role, our findings indicate that temperature280

two years prior to flowering (T2) acts as a distinct signal integrated into flowering regulatory281

networks, rather than merely serving as a surrogate for resource reserves. Our models retained282

both estimated resource reserves and the T2 cue, suggesting that T2 operates independently283

of resource reserves. We interpret these results as evidence that temperatures in T1 and T2284

are integral components of flowering regulatory networks, likely incorporating multiple signals285

such as photoperiod (Journé et al., 2024) and nutrient availability (Miyazaki et al., 2014).286

The strong role of resource reserves in modulating the plant response to weather cues has287

important implications for masting forecasting. The statistical models used previously have288

not incorporated interactions, and their major shortcoming was poor performance in accurately289

predicting seed production in the largest mast years (Journé et al., 2023). In light of the290

results reported here that is unsurprising, as the coefficient for the T1 cues in those models was291

averaged across resource conditions. However, the plant response could be orders of magnitude292

stronger in years when strong cues and large resource reserves align. We thus suggest that293

integrating interactions between surrogates of resource levels and weather cues may greatly294

improve the forecasting models’ performance. Furthermore, our study indicates a practical295

approach to incorporating resource reserves into forecast models that do not require direct field296

measurement (Han & Kabeya, 2017), or reliance on climate proxies of resource uptake (Ascoli297

et al., 2017). Additionally, using the approach proposed by (Rees et al., 2002) does not require298

assumptions about the resources locally limiting masting. These are often unknown, including299

in our study systems, but resource reserves are estimated in units of real-world plant reproductive300

output (flowers or seeds).301

The interaction between resource reserves and weather cues has significant implications for302

the climate change biology of mast seeding. Our findings reveal that the fine-tuning mechanism303

by which plants adjust their reproductive schedules is asymmetrical. At low cue frequency304

and high resource balance, plants can amplify their flowering response even to weaker cues,305

producing large seed crops. This allows masting to persist effectively under conditions with306

infrequent cues, such as in colder climates. In contrast, at high cue frequency, plants will307

be less able to adjust. Frequent cues lead to repeated depletion of resource reserves, and308

the interaction suppresses flowering due to low resource reserves. However, as soon as plants309

accumulate some resources, another cue occurs, prompting plants to flower. This results in more310

frequent reproduction but smaller seed crops, a phenomenon observed as masting breakdown311
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in European beech after 2005 (Bogdziewicz et al., 2021; Foest et al., 2024). Importantly,312

environmental changes not only increase cue frequency but may also impact resource dynamics313

through factors such as nitrogen and phosphorus deposition and CO2 fertilization (LaDeau &314

Clark, 2006; Bogdziewicz et al., 2017a; McClory et al., 2024). The net effect depends on315

whether resource availability can keep pace with the increased cue frequency. If resources316

do not increase sufficiently, we predict more frequent but smaller seed crops. Conversely, if317

resources can match the higher cue frequency, plants may produce frequent and still large crops.318

Finally, we highlight the challenges in identifying weather cues driving masting. Distinguish-319

ing between absolute and relative temperature cues is crucial; a ΔT (year-to-year temperature320

difference) cue would render masting largely insensitive to gradual climate warming because321

increases in mean temperature have little effect on interannual variations (Kelly et al., 2013).322

Observational data have inconsistently supported absolute versus relative temperature cues, even323

within the same species. In our study, absolute temperatures (T1 and T2) were better predic-324

tors of masting in snow tussocks and European beech than ΔT. Previous studies have variously325

identified absolute T1, T1 and T2, ΔT, or T1×T2 as significant drivers (Kelly et al., 2008,326

2013; Monks et al., 2016; Bogdziewicz et al., 2020c). These discrepancies may result from327

differences in study sites, data durations, or models used. There is a trade-off between testing328

too many climate variables—risking spurious correlations—and too few, potentially missing329

complex drivers. Moreover, modeling studies have shown that ΔT models can fit data well even330

when the true drivers are absolute temperatures combined with resource availability (Monks331

et al., 2016), highlighting limitations of observational data (Bogdziewicz et al., 2020a).332

To unambiguously identify masting cues, we propose genetic studies and experimental333

manipulations. Genetic analyses can detect subtle weather events triggering reproduction (Satake334

et al., 2021, 2022), and technological advances are reducing the required effort and cost (Satake335

& Kelly, 2021). Experimental manipulations, such as altering fertilizer levels, water stress,336

pollination, or temperature, can also provide insights (Crone & Rapp, 2014; Bogdziewicz et al.,337

2020a), though they are challenging to implement at large scales. Alternatively, observational338

studies during climate warming can serve as ’natural experiments’ to distinguish between cues339

(Redmond et al., 2012; Wion et al., 2020; LaMontagne et al., 2021). In North American conifers,340

masting remained unaffected by long-term warming, suggestingΔT is the cue (LaMontagne et al.,341

2021). In contrast, European beech experienced ’masting breakdown’ under warming conditions,342

consistent with absolute temperature cues driving masting (Bogdziewicz et al., 2020c; Foest343

et al., 2024). This led to increased seed predation and decreased pollination efficiency, resulting344

in an up to 80% decline in viable seed output (Bogdziewicz et al., 2023). However, natural345

experiments may involve modest temperature changes; for example, LaMontagne et al. (2021)346

reported a low warming rate (0.09°C per decade). An analysis across 50 European beech seed347

production series indicated that changes in variability are related to the rate of temperature348

change, suggesting slow warming may not significantly impact masting (Foest et al., 2024).349

In conclusion, our study demonstrates that masting in snow tussocks and European beech is350
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driven by the interactive effects of resource reserves and summer temperatures. This indicates351

that resource reserves are a key driver of masting, providing selective advantages by allowing352

high resource levels to act as a promoter of flowering; a weather cue still provides synchrony,353

but resource levels modify how big the weather cue has to be. Understanding these interactions354

could improve the predictive accuracy of masting forecasting tools (Journé et al., 2023) and355

explain the reduced cue sensitivity observed with warming in European beech (Bogdziewicz356

et al., 2021; Foest et al., 2024). Determining whether plants respond to relative (ΔT) or absolute357

(T1 and T2) temperature cues is essential for understanding how climate change will affect358

perennial reproduction. We stress that our study is observational, and experiments are needed359

to draw definitive conclusions about the specific weather cues driving mast crops. Experimental360

approaches, such as artificial warming or transplanting plants to different climates, are needed.361

Future research should focus on pinpointing the molecular mechanisms that integrate T1 and362

T2 cues (Satake & Kelly, 2021; Satake et al., 2022; Journé et al., 2024), clarifying the role of363

relative versus absolute temperature variations (Kelly et al., 2013; LaMontagne et al., 2021),364

and determining how environmental fertilization and increasing cue frequency will influence365

reproductive patterns in perennial plants.366
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Figure S1: Temporal patterns of A) flowering effort and B) reconstructed resource reserves
in snow tussocks (Chionochloa pallens), and C) seed production and D) resource reserves in
European beech (Fagus sylvatica). Note that after large flowering efforts, resource reserves take
multiple years to recover. Each color line represents an individual plant (N = 81 in tussocks, and
N = 32 in beech), while the solid black lines show annual mean flowering or seed production
effort across all monitored plants. Resource reserves are reconstructed following the Rees et al.
(2002) method, and are expressed as negative residuals of cumulative reproduction fitted against
cumulative years, see Methods.
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Figure S2: Relationships between the reconstructed energy reserves (estimated using an-
nual resource gain proportional to growing-season temperatures) and annual reproductive
effort. Each point is the annual flowering effort (in Chionochloa pallens) or seed production
(in Fagus sylvatica) of an individual plant, plotted against that plant’s reconstructed resource
reserves (annual deviations from the equilibrium energy budget) at flower initiation. Point sizes
and colors are scaled according to the mean summer temperatures two years and one year prior
to flowering.
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