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Abstract14

Interannual variability of seed production, known as masting, has far-reaching ecological impacts15

including effects on forest regeneration and the population dynamics of seed consumers. It is16

important to understand the mechanisms driving masting patterns to help predict how plant17

populations and ecosystem dynamics may change into the future, and for short-term forecasting18

of seed production to aid management decisions. We used long-term observations of individual19

flowering effort in snow tussocks (Chionochloa pallens) and European beech (Fagus sylvatica)20

to test how endogenous resource levels and weather variation interact in driving masting in these21

species. In both species, there was an interaction between the weather cue and plant resources.22

If resource levels were high, even weak temperature cues triggered relatively high reproductive23

effort, and depleted resources suppressed reproduction even in the presence of strong cues.24

Thus, resource dynamics played dual roles of both suppressant and prompter of reproduction,25

allowing plants to fine-tune the length of intervals between large-seeding years regardless of26

variable cue frequency. The strong interaction between resource storage and weather cues has27

immediate application in mast forecasting models increasingly important for global afforestation28

efforts. Moreover, the important role of resource storage in the plant response to weather cues29

will dictate the masting responses to climate change.30
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Introduction35

Synchronous and highly variable reproduction among years by a population of perennial plants,36

called mast seeding or masting, characterizes the reproduction of numerous plant species (Qiu37

et al., 2023; Journé et al., 2023). Resulting boom and bust dynamics have widespread con-38

sequences for food webs, nutrient cycling, plant and fungi community dynamics, and nature39

management (Ostfeld & Keesing, 2000; Clark et al., 2019; Pearse et al., 2021; Michaud et al.,40

2024). It is therefore important to understand the mechanisms driving masting patterns to help41

predict how plant populations and ecosystem dynamics may change into the future (Hacket-Pain42

& Bogdziewicz, 2021), as well as for short-term forecasting of seed production to aid man-43

agement decisions (Elliott & Kemp, 2016; Journé et al., 2023). Both these goals are urgent:44

accumulating evidence indicates that masting patterns can be altered by climate change with45

severe consequences for seed supply (Hacket-Pain & Bogdziewicz, 2021), but the response46

hinges on the proximate mechanisms involved (Shibata et al., 2020; LaMontagne et al., 2021;47

Bogdziewicz et al., 2024). At the same time, ambitious afforestation plans widely planned across48

2



countries (Steffen et al., 2015; Richardson et al., 2023) increase seed demand and require mast49

forecasting tools to aid efficient seed collection (Pearse et al., 2021; Fargione et al., 2021). Yet,50

while major evolutionary drivers of masting are relatively well-explored (Bogdziewicz et al.,51

2024), the proximate drivers of mast seeding, imperative for climate change biology and fore-52

casting, are less well crystallized. Multiple drivers play a role, including weather cues, internal53

resource dynamics, and underlying environmental variation (Norton & Kelly, 1988; Crone &54

Rapp, 2014; Pearse et al., 2016; Pesendorfer et al., 2021). It remains unclear how these various55

mechanisms apply across species and how they interact (Bogdziewicz et al., 2024).56

In the absence of selection for higher interannual masting variation, weather variation sets the57

base level of variation in seed production (resource matching) (Pearse et al., 2016; Bogdziewicz58

et al., 2024). Two major mechanisms can increase masting variation above that generated by59

resource matching; weather cues and internal resource budgets (Pearse et al., 2016; Bogdziewicz60

et al., 2024). Selection for high interannual variation in seed production can make plants hyper-61

sensitive to weather variation (Kelly et al., 2013; Bogdziewicz et al., 2020b). The relationship62

between seeding and weather is often exponential, with heavy reproduction resulting from high63

values of the weather cue (Kelly et al., 2013; Fernández-Martínez et al., 2017; Schermer et al.,64

2020; Smith et al., 2021). Moreover, seed production requires substantial nutrient investment,65

which led to the formulation of resource budget models (Satake & Iwasa, 2000; Crone et al.,66

2009). Briefly, these models assume that there is a resource threshold for reproduction so that67

reproduction is only initiated when sufficient internal resources accumulate. Resources are68

depleted by seed production, and the time required to replenish depleted resources amplifies the69

interannual variation in seed production (Crone & Rapp, 2014; Han & Kabeya, 2017). Finally,70

resource status and cues may be integrated if flowering induction by the weather cue is dependent71

on the resource state of the plant (Smaill et al., 2011; Monks et al., 2016).72

Intense discussion over recent decades has led to the formulation of the general model73

of masting that unified these various drivers, suggesting that each mechanism is potentially74

involved in creating masting, but with varying importance across species (Bogdziewicz et al.,75

2024). For example, the model predicts that in extreme cases, masting can be driven almost76

solely by weather cues, but whether that is indeed the case needs to be tested (Bogdziewicz77

et al., 2024). Clarifying these different drivers is imperative for a more accurate prediction of78

masting both in the long and short term. For example, where cues are dominant, the increased79

cueing frequency associated with climate warming will lead to more frequent reproduction, but80

if resource levels are also important then the mast years may also be smaller in magnitude (i.e.81

dampened interannual variation) (Bogdziewicz, 2022).82

A major example of a weather cue hypothesized to generate masting without the need to83

invoke resource dynamics is the ΔT, i.e. the temperature difference between the two previous84

summers (see Glossary) (Kelly et al., 2013). The ΔT model gave a good fit to observational85

seeding data, but was criticized as a proxy that captures the interaction between resource state86

and environmental drivers (Pearse et al., 2014; Monks et al., 2016). Specifically, the low87
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temperature in T2 (two years before seedfall) may veto reproduction (lack of cue), resulting88

in resource accumulation. Subsequent hot T1 summer (strong cue) combines with accrued89

resources and triggers large flowering. Indeed, a model including an interaction between T1 and90

T2 (T1 x T2) provided a better fit to the data than the ΔT in four Chionochloa species, supporting91

that hypothesis (Monks et al., 2016). Nonetheless, the issue is far from settled. Several studies92

compared the ΔT fit to reproductive data with models that included ΔT decomposed to various93

combinations of T1, T2, and lagged reproductive effort, with some finding support for ΔT94

(Holland & James, 2014; Kon & Saito, 2015; LaMontagne et al., 2021), but others failing95

to find support (Moreira et al., 2015; Monks et al., 2016). However, the majority of studies96

were inconclusive. Only one replaced T2 with an estimate of resource state (Monks et al.,97

2016). Yet, as that study replaced the T2 cue with resource state, the T2 cue was no longer98

included (Monks et al., 2016). Several studies used lagged (previous year) seed production as a99

resource depletion proxy (Pearse et al., 2014; Holland & James, 2014; Bisi et al., 2016). Yet,100

that is an imperfect proxy as it only includes the preceding year’s resource investment in seed101

production, foregoing information on reproductive investment in years before that. Moreover,102

most of these studies were conducted at the population level which includes noise created by103

imperfect synchronization of seed production between individuals (Koenig et al., 2003; Abe104

et al., 2016). Testing whether the flowering production depends on the resource state requires105

supplementing (not replacing) the T2 cue with an estimate of individual plant resource state.106

Glossary
• Weather cue - weather conditions, such as warm summer, that trigger reproduction,

typically by promoting heavy flowering.

• T0, T1, T2 cues - weather cues occurring in the same year as seedfall (T0), or lagged
by one year (T1) or two years (T2) before seedfall. In the current study, the T1 and T2
cues are summer temperatures (January - February for snow tussocks, and June-July
for European beech).

• ΔT cue - a weather cue based on a difference (Δ) in weather (temperature T) from
one growing season to the next, here temperature difference between the two previous
summers (ΔT = T1 - T2).

• Resource state - here, reconstructed stored resources from individual-level seed/flower
production data, following the Rees et al. (2002) method. In short, energy reserves are
estimated as residuals of the linear relationship between cumulative seed production
and cumulative time (or weather conditions during the growing season).

Using stored resources together with the T2 weather cue is important to test whether the107

T1+T2 model involves mechanisms unrelated to the resource state. Molecular mechanisms108

behind weather cues likely include gene regulatory networks that integrate various signals,109
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such as temperature and photoperiod, allowing flowering to occur only when cues are received110

(Satake & Kelly, 2021). For example, in European beech (Fagus sylvatica), high temperatures111

after the summer solstice (when the day length peaks) trigger flowering (Journé et al., 2024).112

Crucially, both T1 and T2 summer temperature effects on seed production are seen only after113

the summer solstice, suggesting environmental signal integration, not resource-related effects in114

summer T2 (Journé et al., 2024). In another example, drought and subsequent cold temperatures115

initiate a molecular regulation that triggers flowering in Shorea, and drought does not feed into116

the model via its effect on resource accumulation (Yeoh et al., 2017). Finally, despite the ΔT117

being initially criticized for lack of possible underlying mechanism, later studies introduced an118

epigenetic summer memory model (Samarth et al., 2020). The T2 summer temperature initiates119

the activation of the floral integrator genes such as FT and SOC1. Then, elevated summer T1120

temperature is required to activate these genes sufficiently to allow the plant to fully commit to121

the reproductive transition (Samarth et al., 2020, 2021).122

The flowering gene expressions modulated by environmental signals may also be regulated123

by resource availability. For example in Fagus crenata the interannual variation flowering is124

associated with off-and-on cycles of expression in major flowering genes, with the expression of125

genes depending on nitrogen supply (Miyazaki et al., 2014). Thus, our current understanding126

of mechanisms triggering reproduction requires the T1xT2 (or ΔT) model to be supplemented127

with the resource state of the plant to incorporate the full suite of possible drivers. Such128

comprehensive testing has not been done so far.129

Here, we used 35-year-long flowering observations in 81 alpine snow tussock plants (Chinochloa130

pallens) and 16-year-long seed production observations in 32 European beech (Fagus sylvatica)131

trees to test the drivers of masting in these species. In C. pallens, the ΔT provided better fit over132

the T1+T2 model (Kelly et al., 2013), but with data from a different site T1xT2 was later found133

to fit even better (Monks et al., 2016). Transplant experiments showed that high T1 temperatures134

indeed trigger reproduction through activation of molecular flowering pathways (Samarth et al.,135

2022). The role of low temperatures in T2 summer is unclear, as it may represent either a veto136

that allows resource accumulation (Monks et al., 2016), or molecular priming that modulates137

the plant response to summer T1 temperatures (Kelly et al., 2013; Samarth et al., 2020). In138

F. sylvatica, the ΔT consistently scored lower compared to the T1 + T2 and T1 x T2 models,139

although very few studies are available (Bogdziewicz et al., 2017b, 2020c; Szymkowiak et al.,140

2024). The effects of summer T2 temperatures on seeding in European beech were long believed141

to represent resource priming (Piovesan & Adams, 2005; Drobyshev et al., 2014; Vacchiano142

et al., 2017), but the fact that correlations between seeding and temperature appear only after143

the summer solstice questions that interpretation (Journé et al., 2024).144

We constructed models to specifically test these various mechanisms (summarized in Table145

1). By reconstructing the energy budgets of individuals, we tested whether the T2 effects are146

just a proxy for plant resource state or not. By including the ΔT in the models together with147

estimated resource reserves, we test whether ΔT is indeed largely independent from the resource148
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Table 1: Summary of predictors we tested and associated hypothetical mechanisms. T1 and
T2 are temperature cues (mean summer temperatures one and two years before reproduction,
respectively); ΔT is a differential-temperature cue (= T1 - T2), and R is individual plant resource
levels (estimated from individual-level annual flower and seed production records, see Glossary).

Predictor Hypothetical mechanism
T1 High temperatures promote heavy flowering through enhancing flower-

ing genes expression
T2 Environmental signal: low temperatures promote heavy flowering

through activation of the floral integrator genes that are later activated
by T1 cues. Alternatively, surrogate for past seed production: negative
summer temperatures decrease seed production in T1, enhancing seed
production in T0

T1 x T2 The response to T1 temperature is amplified by low T2 temperature.
Specific values of each year’s temperatures interact, with a higher slope
of T1 effect for lower T2 temperatures.

ΔT Plants measure the relative change in temperature between T2 and T1,
with absolute values of T1 and T2 being unimportant

T1 + R or ΔT + R Resource state acts as a veto, i.e. suppresses reproduction when depleted,
even in the presence of cues.

T1 x R or ΔT x R In addition to the resource state acting as veto when resources are de-
pleted, the resource state acts as an amplifier plant response to the cue,
if reserves are high.

state of the plant, as previously hypothesized (Kelly et al., 2013; Bogdziewicz et al., 2024).149

Finally, by including the interaction between an individual’s resource state and weather cues, we150

tested whether accumulated resources modify plant responses to the weather cue.151

Materials and Methods152

Study species Snow tussocks (Chionochloa pallens, Poaceae) and European beech (Fagus syl-153

vatica, Fagaceae) are well-studied masting species (masting time series in Fig. S1). Chionochloa154

pallens (midribbed snow tussock, hereafter abbreviated to just snow tussock) is a long-lived155

grass, up to 1.5 m tall, growing in the alpine zone in New Zealand. European beech (Fagaceae)156

is a pan-European deciduous forest tree of high economic importance and ecological (Leuschner157

& Ellenberg, 2017; Chakraborty et al., 2024). Masting in both species reduces seed predation158

rates, and in beech increases pollination efficiency (Kelly & Sullivan, 1997; Kelly et al., 2001;159

Bogdziewicz et al., 2020c). In both species, temperature cues (T1, T2, and/or ΔT) and resource160

reserves are considered masting drivers (Piovesan & Adams, 2005; Kelly et al., 2013; Monks161

et al., 2016; Vacchiano et al., 2017), but a comprehensive test of a full suite of drivers has not162

been attempted.163
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Flowering and seed production monitoring In snow tussocks, we monitored flowering in164

permanent transects at 1070 m, Mount Hutt, Canterbury, New Zealand annually between 1990165

and 2024. Three transects, each 20 m long, were marked with steel pegs, and all tussocks that166

touched the line were mapped (n = 81). Each February, the number of inflorescences (flower167

stalks, abbreviated to flowers) were counted on each mapped plant (Rees et al., 2002; Kelly168

et al., 2013). During this interval, no plants died. The flower counts were censuses.169

In European beech (Fagus sylvatica), we sampled seed production at 15 sites spaced across170

England annually between 1980 and 2023 (44 years) (Bogdziewicz et al., 2023). The ground171

below each tree was searched for seeds for 7 minutes, and all seeds found were counted. In this172

study, we used the data on 32 individuals for which full records were available (no gaps) from173

1990 to 2005. Continuous records are required to estimate the energy budgets (see Methods:174

Reconstructing stored resources). After 2006, the interannual variation and synchrony of seed175

production in these populations declined due to warming (Bogdziewicz et al., 2020c). That176

included the disrupted relationship between the weather cues and masting; more frequent cue177

occurrence appears to deplete the energy budgets of trees, resulting in weaker responses to cues178

(Bogdziewicz et al., 2021). To exclude that confounding factor, we have used only the 16 years179

of the data (1990-2005), which resulted in 32 trees spaced across 12 sites.180

Reconstructing stored resources To reconstruct a plant’s stored resources from flowering181

and seed production data, we followed the approach developed by Rees et al. (2002). In182

short, this analysis involves first fitting a linear model of cumulative reproduction (summed183

flower or seed count) vs cumulative years (as a surrogate of resource acquisition over time)184

for each species. We used generalized linear mixed models (GLMMs) implemented via the185

‘lme4’ package (Bates et al., 2015) with plant ID (in tussocks) or plant ID and site ID (in186

European beech) as random intercepts and year as a random slope. The random effect structure187

allowed fitting a unique intercept for each plant which estimates stored resources of a plant188

at the beginning of the monitoring period (Rees et al., 2002), while random slope allowed189

heterogeneous resource acquisition of individuals over time (Crone et al., 2005). Residuals for190

each plant of these two models (one for each species) are an estimate of the stored resources of191

that individual in each year (Rees et al., 2002; Crone et al., 2005). We have also constructed192

an alternative version, in which stored resources are estimated from accumulated mean growing193

season temperature instead of accumulated time, but that provided qualitatively the same results194

(Table S1). Thus, simpler models are discussed in the main text. Note that the approach we195

used here for the reconstruction of resource reserves makes no assumption about the limiting196

resource, i.e. whether that is carbon, nitrogen, or another limiting resource (Han & Kabeya,197

2017).198

Hypothesis testing We constructed two sets of models for each species in which annual,199

plant-level flowering (snow tussocks) or seed production (European beech) was included as a200
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response. All models included plant ID (both species), and site ID (European beech) as random201

intercepts. We used the Tweedie error family and logit link and for this purpose, we scaled202

the response values to fall between 0 and 1 at the series level. Each set then included various203

combinations of predictors including past summer temperatures (T1 and T2 weather cues, or ΔT204

= [T1-T2]), plant stored resources (estimated resources plant i has in year t), and interactions.205

The interactions were between T1 and T2, between T1 and stored resources, or between ΔT and206

stored resources. We have not fitted models with all possible predictor combinations; rather, we207

have fitted ones relevant to the hypothesized mechanisms involved. Models were ranked using208

the standard AIC criteria (Burnham et al., 2011).209

Results210

In snow tussocks, the best-fitting model included the interaction term between reconstructed211

stored resources and summer T1 temperature (Table 2). Moreover, the top model also included212

the T1 x T2 interaction. Thus, the effect of the T1 cue on reproductive effort is modified213

both by resource storage and the T2 cue (Table 2). The support for such a complicated model214

was strong in snow tussocks (AIC weight = 0.96). In European beech, the top model also215

includes the interaction between resources and summer T1 temperature, but the importance of216

the T1xT2 interaction is equivocal, with the less complicated model (T1 x Resources + T2) being217

similarly supported (ΔAIC = 0.57; Table 2). Importantly, despite the direct inclusion of stored218

resources, summer T2 temperature was retained in the top model for both species, suggesting219

T2 temperatures do not only affect masting indirectly via resource dynamics (Table 2).220

In both species, high reproductive effort required both strong weather cues and large resource221

storage to align (Fig. 1, 2, Table 3). The interaction between weather cues and stored resources222

was strong; if resources were depleted, even very hot summer T1 led to only minor reproductive223

effort (Fig. 2). For example, in snow tussocks, estimated individual-level reproductive effort in224

response to a 14 °C T1 cue was ∼10 flowers if resources were depleted, but was 17-fold larger if225

resource levels were high (Fig. 2). In contrast, if reserves were large, heavy reproduction could226

be initiated even if the cue was relatively weak. For example, in European beech, individual-227

level seed production in response to a 21 °C T1 cue was ∼110 for the average level of resource228

storage, but reached almost 300 if storage was high (Fig. 2). Even a relatively cold T1 (e.g. 19229

°C) resulted in relatively good seed production of ∼100 seeds if storage levels were high (Fig.230

2). Finally, the T1 x T2 negative interaction in snow tussocks resulted in heavy reproduction231

occurring only when a hot summer occurred after a cold one (Table 3, Fig. 3). The modulating232

effect of the T2 cue on the T1 cue was similar to that of resource storage; if T2 summer was hot,233

even high T1 temperatures did not trigger heavy reproduction (Fig. 3).234
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Table 2: Model selection tables. Each model includes individual-level annual flowering (C.
pallens) or seed production (F. sylvatica) as a response, plant ID (both species) and site ID
(European beech) as random intercept, Tweedie error distribution, and logit link. T1 and T2 are
summer temperatures (June and July in F. sylvatica and January and February in C. pallens),
where numbers indicate lags: 1 for the previous year, and 2 for summer two years before
flowering. Resources are reconstructed deviations from the equilibrium energy budget (see
Methods).

Model AIC ΔAIC weight

Chionochloa pallens
T1 × Resources + T1 × T2 1052.8 0.0 0.996
T1 × T2 + Resources 1065.3 12.5 0.002
T1 × Resources + T2 1065.5 12.7 0.002
ΔT × Resources 1078.4 25.6 <0.001
ΔT + Resources 1100.0 47.2 <0.001
T1 + Resources + T2 1101.7 48.9 <0.001
T1 × T2 1133.0 80.2 <0.001
T1 + T2 1225.4 172.6 <0.001
ΔT 1231.8 179.0 <0.001
T1 × Resources 1523.0 470.2 <0.001
T1 + Resources 1604.2 551.4 <0.001

Fagus sylvatica
T1 × Resources + T2 391.8 0.0 0.57
T1 × Resources + T1 × T2 392.4 0.6 0.43
ΔT × Resources 406.1 14.3 <0.001
ΔT + Resources 411.8 20.0 <0.001
T1 × T2 + Resources 413.0 21.2 <0.001
T1 + Resources + T2 413.8 22.0 <0.001
T1 × Resources 451.1 59.3 <0.001
T1 + Resources 477.8 86.0 <0.001
T1 × T2 530.9 139.1 <0.001
T1 + T2 531.8 140.0 <0.001
ΔT 533.5 141.7 <0.001
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Figure 1: Relationships between the reconstructed resource reserves and annual variation
in flowering effort in Chionochloa pallens and seed production in Fagus sylvatica. Each
point is an annual flowering effort (or seed production) of an individual plant, mapped along the
gradient of the reconstructed annual deviations from the equilibrium energy budget (Rees et al.,
2002). Point sizes and colors are scaled according to the mean summer temperatures two years
and one year before flowering.

Table 3: Summary of the best-fitting generalized linear mixed model testing the effects of
previous summer temperatures and energy reserves on annual variation in reproductive output
in Chionochloa pallens and Fagus sylvatica. The models included individual-level annual
flowering (C. pallens) or seed production (F. sylvatica) as a response and were fitted with
Tweedie error distribution and logit link. T1 and T2 are mean summer temperatures a year
or two years before flowering, respectively. Resources are reconstructed deviations from the
equilibrium energy budget (see Methods).

Effect 𝛽 SE Z p

Chionochloa pallens
Intercept -53.94 13.993 -3.86 0.001
T1 5.64 1.196 4.72 <0.001
T2 2.94 1.175 2.51 0.012
Resources -0.10 0.032 -3.27 0.001
T1 × Resources 0.01 0.003 3.88 <0.001
T1 × T2 -0.36 0.099 -3.62 <0.001

Fagus sylvatica
Intercept -11.91 3.804 -3.13 0.002
T1 0.98 0.106 9.19 <0.001
T2 -0.77 0.104 -7.41 <0.001
Resources -0.12 0.029 -4.14 <0.001
T1 × Resources 0.01 0.001 4.80 <0.001
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Figure 2: Previous summer temperatures and reconstructed stored resources interact to determine annual
variation in flowering effort in Chionochloa pallens and seed production in Fagus sylvatica. A) and C)
Surface plots show estimated individual-level flowering (C. pallens) or seed production (F. sylvatica) effort across
combinations of previous summer (January-February in case of C. pallens and June-July in case of F. sylvatica)
mean daily temperature (°C) and the reconstructed deviations from the equilibrium resource budget, with the
convex hulls (parameter space across which predictions are computed) defined by observations (black circles).
Points show individual-level annual flowering or seed production. Black horizontal dashed lines at A) and indicate
the transects plotted in C), i.e., the conditional relationship between flowering or seed production effort and summer
temperature for selected levels of reconstructed resource budgets. Prediction lines and associated 95% CI at B) and
D) are sections through surfaces highlighted by transects at A) and C). Estimates are derived from GLMM with
Tweede distribution and logit link that included plant ID as a random intercept. The best fitting models plotted
(AIC selection Table 2) included also the negative effects of summer temperature two years before flowering or
seed production (model summary Table 3).
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Figure 3: Previous summer temperatures interact to determine annual variation in flowering effort in Chionochloa
pallens. Surface plot show estimated individual-level flowering effort across combinations of previous summer
(January-February) mean temperature one and two years before flowering. The convex hull (parameter space across
which predictions are computed) is defined by observations (black circles). Note that the apparently small number
of points is the result of overplotting, as all individuals in each year fall into the same area defined by past years’
temperatures.

Discussion235

Our study was inspired by the recently formulated general model of masting, which suggests236

that environmental cues could drive masting without the need to invoke resource dynamics237

(Bogdziewicz et al., 2024). We examined two species where strong weather cues indicated that238

resource effects might be relatively minor compared to the influence of these cues (Kelly et al.,239

2013; Vacchiano et al., 2017; Journé et al., 2024). Contrary to this assumption and predictions240

of the general model, our findings reveal that resource storage enables both species to fine-tune241

their reproductive schedules, balancing the benefits and costs of masting. This fine-tuning allows242

plants to optimize their reproductive timing, delaying reproduction when necessary but avoiding243

excessively long intervals between mast events.244

Our findings highlight a dual function of resource storage in its interaction with weather245

cues (T1) at both low and high resource levels. At low resources, depleted reserves act as246

a ’veto’ on reproduction (Isagi et al., 1997; Crone et al., 2009; Schermer et al., 2020), not247

as a complete block but as a significant reduction that can suppress reproduction even in the248

presence of strong cues. This strong effect disproves earlier predictions that a temperature-249

difference (ΔT) cue would render the resource veto rare and statistically hard to detect (Kelly250

et al., 2013). The constraint on consecutive heavy reproduction due to resource depletion has251

important ecological consequences: it prevents large seeding events from aligning with booms252
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in seed consumer populations after mast years, thus maintaining the starvation-satiation cycle253

that enhances reproductive efficiency (Zwolak et al., 2022). At high resource levels, the T1 x254

resource interaction has previously undocumented effects. As time since the last major flowering255

increases and the plant’s resource balance becomes more positive, the weather cue needed to256

trigger heavy reproduction decreases. This beneficially affects reproduction timing by reducing257

the gap between large events, even when the ideal weather cue is delayed (Waller, 1979; Kelly,258

1994; Bogdziewicz et al., 2024). These dual interactive effects enable plants to fine-tune their259

reproductive schedules: they are less sensitive to cues shortly after a big event but become more260

sensitive over time. This maintains a more constant long-term reproductive effort, preventing it261

from being overly influenced by unusual weather patterns, and helps plants balance the benefits262

and costs of masting—delaying reproduction without waiting too long.263

Our findings suggest that the temperature two years prior to flowering (T2) is not merely a264

surrogate for resource availability but functions as a signal integrated into flowering regulatory265

networks via molecular pathways. Previous studies have questioned whether T2 primarily266

reflects resource availability due to its significant effects on seed crop sizes (Monks et al., 2016;267

Vacchiano et al., 2017). However, our models retained both estimated resource storage and the268

T2 cue, indicating that T2 operates independently of resource levels. We interpret these results269

as evidence that temperatures in T1 and T2 are integral components of flowering regulatory270

networks, likely incorporating multiple signals such as photoperiod (Journé et al., 2024) and271

nutrient availability (Miyazaki et al., 2014).272

The strong role of resource storage in modulating the plant response to weather cues has273

important implications for masting forecasting. The statistical models used previously have274

not incorporated interactions, and their major shortcoming was poor performance in accurately275

predicting seed production in the largest mast years (Journé et al., 2023). In light of the results276

reported here that is unsurprising, as the coefficient for the T1 cues in these models is averaged277

across resource conditions. The plant response could be orders of magnitude stronger in years278

when strong cues and large resource reserves align. We thus suggest that integrating interactions279

between surrogates of resource levels and weather cues may greatly improve the forecasting280

models’ performance.281

The interaction between resource storage and weather cues has significant implications for282

the climate change biology of mast seeding. Our findings reveal that the fine-tuning mechanism283

by which plants adjust their reproductive schedules is asymmetrical. At low cue frequency284

and high resource balance, plants can amplify their flowering response even to weaker cues,285

producing large seed crops. This allows masting to persist effectively under conditions with286

infrequent cues, such as in colder climates. In contrast, at high cue frequency, plants will287

be less able to adjust. Frequent cues lead to repeated depletion of stored resources, and the288

interaction suppresses flowering due to low resources. However, as soon as plants accumulate289

some resources, another cue occurs, prompting plants to flower. This results in more frequent290

reproduction but smaller seed crops, a phenomenon observed as masting breakdown in European291

13



beech (Bogdziewicz et al., 2021; Foest et al., 2024). Importantly, environmental changes not292

only increase cue frequency but may also impact resource dynamics through factors such as293

nitrogen and phosphorus deposition and CO2 fertilization (LaDeau & Clark, 2006; Bogdziewicz294

et al., 2017a; McClory et al., 2024). The net effect depends on whether resource availability295

can keep pace with the increased cue frequency. If resources do not increase sufficiently, we296

predict more frequent but smaller seed crops. Conversely, if resources can match the higher cue297

frequency, plants may produce frequent and still large crops.298

Finally, we highlight the challenges in identifying weather cues driving masting. Distinguish-299

ing between absolute and relative temperature cues is crucial; a ΔT (year-to-year temperature300

difference) cue would render masting largely insensitive to gradual climate warming because301

increases in mean temperature have little effect on interannual variations (Kelly et al., 2013).302

Observational data have inconsistently supported absolute versus relative temperature cues, even303

within the same species. In our study, absolute temperatures (T1 and T2) were better predic-304

tors of masting in snow tussocks and European beech than ΔT. Previous studies have variously305

identified absolute T1, T1 and T2, ΔT, or T1×T2 as significant drivers (Kelly et al., 2008,306

2013; Monks et al., 2016; Bogdziewicz et al., 2020c). These discrepancies may result from307

differences in study sites, data durations, or models used. There is a trade-off between testing308

too many climate variables—risking spurious correlations—and too few, potentially missing309

complex drivers. Moreover, modeling studies have shown that ΔT models can fit data well even310

when the true drivers are absolute temperatures combined with resource availability (Monks311

et al., 2016), highlighting limitations of observational data (Kelly et al., 2013).312

To unambiguously identify masting cues, we propose genetic studies and experimental ma-313

nipulations. Genetic analyses can detect subtle weather events triggering reproduction (Satake314

et al., 2021, 2022a), and technological advances are reducing the required effort and cost (Sa-315

take & Kelly, 2021). Experimental manipulations, such as altering fertilizer levels, water stress,316

pollination, or temperature, can also provide insights (Crone & Rapp, 2014; Bogdziewicz et al.,317

2020a), though they are challenging to implement at large scales. Alternatively, observational318

studies during climate warming can serve as ’natural experiments’ to distinguish between cues.319

In North American conifers, masting remained unaffected by long-term warming, suggesting320

ΔT is the cue (LaMontagne et al., 2021). In contrast, European beech experienced ’mast-321

ing breakdown’ under warming conditions, consistent with absolute temperature cues driving322

masting (Bogdziewicz et al., 2020c; Foest et al., 2024). This led to increased seed predation323

and decreased pollination efficiency, resulting in an up to 80% decline in viable seed output324

(Bogdziewicz et al., 2023). However, natural experiments may involve modest temperature325

changes; for example, LaMontagne et al. (2021) reported a low warming rate (0.09°C per326

decade). An analysis across 50 European beech seed production series indicated that changes327

in variability are related to the rate of temperature change, suggesting slow warming may not328

significantly impact masting (Foest et al., 2024).329

In conclusion, our study demonstrates that masting in snow tussocks and European beech is330
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driven by the interactive effects of resource storage and summer temperatures. This indicates331

that resource storage is a key driver of masting, providing selective advantages by allowing332

high resource levels to act as a trigger for flowering. Understanding these interactions could333

improve the predictive accuracy of masting forecasting tools (Journé et al., 2023) and explain334

the reduced cue sensitivity observed with warming in European beech (Bogdziewicz et al.,335

2021; Foest et al., 2024). Determining whether plants respond to relative (ΔT) or absolute336

(T1 and T2) temperature cues is essential for understanding how climate change will affect337

perennial reproduction. We stress that our study is observational, and experiments are needed338

to draw definitive conclusions about the specific weather cues driving mast crops. Experimental339

approaches, such as artificial warming or transplanting plants to different climates, are needed.340

Future research should focus on pinpointing the molecular mechanisms that integrate T1 and341

T2 cues (Satake & Kelly, 2021; Satake et al., 2022b; Journé et al., 2024), clarifying the role of342

relative versus absolute temperature variations (Kelly et al., 2013; LaMontagne et al., 2021),343

and determining how environmental fertilization and increasing cue frequency will influence344

reproductive patterns in perennial plants.345
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Figure S1: Temporal patterns of flowering effort in snow tussocks (Chionochloa pallens) and
seed production in European beech (Fagus sylvatica). Each color line represents an individual
plant (N = 81 in tussocks, and N = 32 in beech), while the solid black lines show annual mean
flowering or seed production effort across all monitored plants.
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Table S1: Model selection tables. Each model includes individual-level annual flowering (C.
pallens) or seed production (F. sylvatica) as a response, plantID (both species) and site (European
beech) as random intercept, current growing-season mean temperature T_GS (representing
current-year favourability for resource gain: Nov-March for C. pallens and Apr-Aug for F.
sylvatica),Tweedie error distribution, and logit link. T1 and T2 are summer temperature (June
and July in F. sylvatica and January and February in C. pallens), where numbers indicate lags: 1
for the previous year, and 2 for summer two years before flowering. Resources are reconstructed
deviations from the equilibrium energy budget, here estimated based on cumulative temperature
during growing season as a surrogate of resource acquisition over time (see Methods). Each
model included mean temperatures in the growing season in the year seed production occurs,
i.e. November - March in snow tussocks and April - August in European beech.

Model AIC ΔAIC weight

Chionochloa pallens
T1 × Resources + T1 × T2 1043.8 0.0 0.998
T1 × Resources + T2 1057.5 13.7 0.001
T1 × T2 + Resources 1058.0 14.2 <0.001
ΔT × Resources 1069.1 25.3 <0.001
ΔT + Resources 1091.8 48.0 <0.001
T1 + Resources + T2 1093.6 49.8 <0.001
T1 × T2 1133.0 89.2 <0.001
T1 + T2 1225.4 181.6 <0.001
ΔT 1231.8 188.0 <0.001
T1 × Resources 1533.1 489.3 <0.001
T1 + Resources 1610.2 566.4 <0.001

Fagus sylvatica
T1 × Resources + T2 390.0 0.0 0.55
T1 × Resources + T1 × T2 390.4 0.4 0.45
ΔT × Resources 404.4 14.4 <0.001
ΔT + Resources 409.8 19.9 <0.001
T1 × T2 + Resources 410.4 20.4 <0.001
T1 + Resources + T2 411.8 21.8 <0.001
T1 × Resources 452.6 62.6 <0.001
T1 + Resources 479.8 89.8 <0.001
T1 × T2 530.9 141.0 <0.001
T1 + T2 531.8 141.8 <0.001
ΔT 533.5 143.5 <0.001
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Figure S2: Relationships between the reconstructed energy reserves and annual variation
in flowering effort in Chionochloa pallens and seed production in Fagus sylvatica. Each
point is the annual flowering effort (or seed production) of an individual plant, mapped along
the gradient of the reconstructed annual deviations from the equilibrium energy budget, here
estimated based on cumulative temperature during the growing season as a surrogate of resource
acquisition over time. Point sizes and colors are scaled according to the mean summer temper-
atures two years and one year prior to flowering.
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