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Integrating macroecology with temporal and
trait-based perspectives : toward better
attribution of human drivers to diversity changes
Short title :DynamicMacroecology for diversity changes

Abstract
The ongoing biodiversity crisis presents a complex challenge for ecological science. Despite a consensus on
general biodiversity decline, identifying clear trends remains difficult due to variability in data, methodologies,
and scales of analysis. To enhance our understanding of ongoing biodiversity changes and address
discrepancies in biodiversity trend detection, we propose integrating macroecological theory with temporal
and trait-based perspectives.

● First, analyzing temporal changes in macroecological patterns, such as species accumulation curves,
can reconcile and synthesize conflicting observations of biodiversity change, enabling quantification of
diversity shifts across scales.

● Second, diversity patterns across scales are linked to three proximate components: abundance,
evenness, and spatial aggregation. Investigating temporal changes in these components provides
deeper insights into how human activities directly influence biodiversity trends.

● Third, incorporating species traits into the analysis of these macroecological patterns improves our
understanding of human impacts on biodiversity by elucidating the links between species
characteristics and their responses to environmental changes.

We discuss the limitations and challenges of this integrative approach and highlight how it offers a
comprehensive framework for understanding the drivers of biodiversity change across scales. This framework
facilitates a more nuanced understanding of how human activities impact biodiversity, ultimately paving the
way for more informed actions tomitigate biodiversity loss across spatial and temporal scales.
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Introduction
Quantifying multiple aspects of the ongoing biodiversity crisis and delivering a comprehensive

evaluation of its magnitude is a key challenge. Global empirical studies documenting species diversity changes

show a complex picture (Cardinale et al., 2018). First, global and regional decreases in species richness (gamma

diversity) appear to contradict local observations of "no net loss" or increases in species number (alpha

diversity) (Vellend et al., 2013; Primack et al., 2018; Boënnec et al., 2023). Second, the reduction of diversity

among communities (beta diversity), aka biotic homogenization, is recognized as a pervasive feature

(Magurran et al., 2015). This phenomenon might explain the apparent contradiction between alpha and

gamma diversity trends by attributing local increases in species richness to expanding “winner” species, while

regional or global decreases result from the extinction of “loser” species. However, this interpretation is

difficult to test due to uncertainty regarding the spatial scale at which homogenization occurs and is

increasingly challenged by empirical evidence (Buhk et al., 2017; Blowes et al., 2024). Despite improved clarity

and guidance on the use of metrics to assess temporal biodiversity trends at different scales (McGill et al.,

2015), fundamental gaps remain. A key limitation is that the spatial scaling of diversity is not fully integrated in

a continuous way, oftenmerely comparing artificially defined local or regional scales, without providing a clear

mechanistic connection betweenmetrics and scales of diversity change.

Yet, macroecology has long stated that macroecological patterns result from invariant laws that depict

changes in diversity across scales (Brown, 1995; Gaston & Blackburn, 2000;McGill & Collins, 2003; Azaele et

al., 2015). For instance, the well-known Species Area Relationship (SAR), Species Accumulation Curve (SAC), and

Distance Decay of Similarity (DDS) integrate diversity across continuous scales, by describing changes in

species richness or beta diversity with area, number of samples or geographic distance between samples.

These laws define parametric functions that describe the expected change in diversity with scale.

Macroecological patterns have been partly extended to address temporal biodiversity changes (Engen et al.,

2002; Harte et al., 2021), in particular to quantify the effects of disturbance on species diversity (Petraitis et

al., 1989; Newman et al., 2020; Franzman et al., 2021). They thus offer the benefit of explicitly incorporating

ecologically meaningful measures of scales which are relevant across ecosystems. An additional benefit of

examining biodiversity dynamics through the lens of macroecological laws is that their variations are

intrinsically linked to the total number of individuals (abundance), the distribution of abundance among

species (evenness), and species spatial aggregation (McGill & Collins, 2003; Azaele et al., 2015; Chase et al.,

2018). These three descriptors, commonly referred to as proximate components, bring a deeper

understanding of diversity changes while integrating changes at the population scale, for which the average

decline in population abundance appears as another critical aspect of biodiversity loss (Loh et al., 2005; Leung

et al., 2022). Yet, the study of temporal diversity changes through the concept of “dynamic macroecological

patterns” is still marginal. Only few empirical studies have attempted to integrate macroecological (spatial)

patterns across time (White et al., 2010), or have studied the temporal dynamics of macroecological patterns
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(Blowes et al., 2022; Terry & Rossberg, 2023; van Klink et al., 2024) in the context of directional changes such

as anthropogenic pressures.

Species abundance and diversity alone do not fully capture the multifaceted nature of biodiversity. It

has long been recognized that species trait characteristics bring a complementary and essential perspective to

biodiversity thanks to their close link to ecosystem functions and services (Lavorel & Garnier, 2002; Cadotte

et al., 2011). For instance, the loss of functional diversity per unit of habitat loss (as measured from a

functional diversity area relationship) is likely a more accurate predictor of ecosystem vulnerability than the

loss of individual species. A decrease of a certain level of functional diversity—typically associated with

specific combinations of functional traits—can jeopardize ecosystem functionality. In contrast, the loss of a

single species may go unnoticed if other species with similar roles continue to thrive (Srivastava et al., 2012) .

Incorporating traits into macroecological laws is an active field of research (Mazel et al., 2014), but the

temporal aspect of these laws remains largely unexplored. Linking the temporal perspective of

macroecological theory with trait-based approaches can illuminate our understanding of what drives

biodiversity changes, and at which scales.

In this paper, we first outline how temporal variation in macroecological patterns integrate diversity

change across spatial scales, then we explain how recent developments in macroecology theory can help to

better understand changes in biodiversity. We then showcase how integrating species traits and dynamic

macroecological patterns can link changes to drivers. We finally outline the current pitfalls limiting the

generalization of such an approach, and how to better leverage dynamicmacroecological patterns to attribute

and quantify the potential effects of anthropogenic drivers to diversity changes across scales in the future

(McGlinn et al., 2019; Gonzalez et al., 2023). By doing so, a path towards richer andmore robust insights into

how human activities affect biological diversity over time and space will emerge.

Dynamic macroecological patterns integrate diversity changes across

time and space

Beyond data deficiency and statistical issues, the lack of explicit consideration and reporting of the

scale at which diversity changes are estimated is a major issue when reporting and quantifying biodiversity

changes (Estes et al., 2018). Even when a specific scale such as local alpha diversity is the focus, the actual

sampled area is often not clearly reported (Blowes et al., 2024), and the definition of what is a “local” or

“regional” changes significantly with the organism and biodiversity metric of interest. For example, even

within a single taxonomic group such as vascular plants, the definition of local scale is likely to vary between a

grassland and a forest. Similarly, regional gamma diversity is generally tightened to the study’s spatial extent,

often without proper consideration of its actual area or how well it covers the regional species pool.

Consequently, the lack of clarity regarding the examined scales and their ecological relevance can affect the

interpretation and comparability of biodiversity change at local and regional scales. Importantly, it can also
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affects measures of beta diversity often defined as the ratio or difference between regional (gamma) and local

(alpha) diversity (see Figure 1).

We argue that macroecological patterns that integrate diversity across an explicit spatial scale or sampling

effort offer a valuable, theory-grounded solution to the aforementioned scaling issues. For example, the

well-known Species–Area Relationship (SAR) describes the expected increase in the number of species with

the area sampled, generally described as a simple function with two or three parameters (Connor & McCoy,

1979; Dengler, 2009). However, common biodiversity monitoring schemes rarely cover contiguous areas, but

instead generally focus on scattered sampling units. In this case, the Species Accumulation Curve (SAC),

describing the positive relationship expected between the number of species sampled in a group of sites and

the number of sites, appears more suited (Figure 1A). This macroecological pattern can describe diversity

continuously from the local scale (𝛂 species richness, i.e. within a single site), to regional scale (𝛄 species

richness at the maximum number of sampling sites), or even global scale (in the case where the entire earth is

sampled) and can be summarized by a limited number of parameters (e.g intercept and slope) depending on

the best model to fit the data. As the turnover of species, or 𝜷 diversity, can be defined as 𝛄/𝛂, the SAC can also

describe species turnover for any number of samples, called beta rarefaction (Ricotta et al., 2019). We will

thus further base our argumentation on the example of SAC but note that other macroecological patterns

describing diversity along continuum of scales can equally be used.

Looking at temporal changes in SAC (for example with richness of fish species from 1970 to 1995, see Figure

1B) integrate changes continuously from local to global scales, and effectively summarize diversity changes of

numerous forms of diversity (McGill et al., 2015). In a first example, a temporal increase in 𝛄 richness will bend

the SAC upwards at broad scales (top left in Figure 1C), which can be measured as an increase of the SAC

slope over time but no change of the intercept. In a second example, an increase in site-average 𝛂 richness

bend the SAC upwards at local scales will be measured as a decrease of the SAC slope over time and increase

of the intercept (top middle in Figure 1C). In both examples, the resulting 𝜷 diversity also changes at larger or

smaller scales, respectively for first and second example. Looking at change in the SAC allows a supplementary

layer of understanding, as combinations of observed diversity changes across scales are underpinned by

compositional changes in terms of species occupancy. In the second example, observed diversity changes can

be interpreted by the replacement of range-restricted species by widespread species (Blowes et al., 2024). In

other cases, similar increase in 𝛂 richness and 𝛄 richness will shift the SAC up without changing its slope

(bottom left in Figure 1C), while a combination of increase in 𝛂 richness and decrease in 𝛄 richness will change

the slope of the SAC (temporal decrease in the slope of the SAC) without shifting its overall level (no change in

intercept) (bottom middle in Figure 1C). Most combinations of SAC changes can be linked to temporal

compositional changes of range-restricted vs. widespread species (Socolar et al. 2016; Chase et al. 2019;

Leroy et al. 2023). However, some combinations are likely to be impossible because of the link between alpha,

gamma and beta diversity (Ricotta et al., 2019; Chao et al., 2023), and mapping between compositional

changes and changes in SAC parameters is not fully resolved and requires more research. It is thus possible to

translate temporal changes in different forms of diversity arising from the combination of spatial scales and
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diversity metrics (McGill et al., 2015) in terms of changes in the parameters of macroecological patterns, along

a spatial continuum. Altogether, such integration through continuous spatial scale can clarify diversity trends

detection by avoiding the ambiguity inherent to interpreting and comparing trends when they are reporting

diversity change at distinct but loosely defined scales.

Figure 1. A. Species Accumulation Curves (SAC) describe how the number of species sampled increases with

the number of samplesM. This macroecological pattern can describe diversity from local scale (𝛂 diversity,M

= one site sampled), to regional scale (𝛄 diversity,M=maximum site samples). As 𝜷 diversity can be defined as

𝛄/𝛂, the SAC can also describe species turnover for any M, called beta rarefaction. B When biodiversity is

monitored in time, one can compute SAC for different times (from purple, 1970 to yellow = 2000), the change

in the parameters of the SAC describes change in diversity from local to regional scale in a continuous way (for

every M values). Here SAC are computed from fish monitoring (Biotime dataset #288). C Different possible

forms of diversity changes can affect the shape of the SAC. The x-axis was log10 transformed in order to ease

visualization at smallest scales.
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Three low-level biodiversity components underpin dynamics of

macroecological patterns

Macroecology theory acknowledges that scaling of diversity emerges due to the spatial structuring of species

abundance distributions within species’ geographic ranges (McGill & Collins, 2003; Storch et al., 2008).

Subsequent application of this theory (Azaele et al., 2015; Chase et al., 2018; Keil et al., 2021; McGlinn et al.,

2021; Blowes et al., 2022) has uncovered that diversity accumulation across scale is governed by three

lower-level components (Figure 2): the total number of individuals in communities (abundance), the

distribution of abundance among species (evenness), and the aggregation of individuals in space. As such,

these building blocks of biodiversity patterns are defined as “proximate” components governing parameters of

macroecological patterns, because they differ from ultimate drivers such as climate, or direct human species

extirpations / introductions (McGlinn et al., 2019).

While the examination of proximate components to uncover spatial biodiversity patterns is already

operational (McGlinn et al., 2019), it has mostly been used to compare the effect of specific drivers between

spatial contexts or to separate treatment effects (Azaele et al., 2015). While promising, only a few studies

using it actually integrate the temporal dimension to better understand species diversity trends (Blowes et al.,

2022). We thus call for a more general application of this approach on dynamic data. Detecting and

quantifying the role played by proximate components on the temporal dynamics of macroecological patterns

would provide a supplementary layer of understanding of diversity changes across scales and metrics. We

claim that it also has direct implications in terms of conservation actions, as it represents a relevant

opportunity to gain insights into how anthropogenic drivers impact diversity dynamics across scale (Blowes et

al., 2020). Instead of focusing on the direct effect of humans on diversity, conservationists should rather focus

on the direct effect of humans on species abundance, evenness and aggregation, and how in turns these affect

biodiversity change. Indeed, it is likely that human activities directly influence proximate components, rather

than diversity per se (van Klink et al., 2024). Currently though, some limitations still prevent a more general

elucidation of the effects of proximate components on.

First, the intricate interdependence between proximate components is not elucidated (Storch et al., 2018;

Avolio et al., 2019; Blowes et al., 2022).Whether and howmuch abundance, evenness, and spatial aggregation

influence each other, and how they might themselves be influenced by diversity patterns still needs to be

clarified. Such likely existence of dynamic feedback is still to be explored with the proper methods and data,

for example using empirical dynamic modeling (Ye et al., 2015; Chang et al., 2017) applied to dynamic data.

Second, the appropriate metrics and the scale at which these proximate components should be quantified

remain open questions, in particular for Species Abundance Distribution (Avolio et al., 2019) and spatial

aggregation (Keil et al., 2021). In any case, this change of perspective calls for amore systematic monitoring of

species abundance (or density) and traits (see next section), and more standardized monitoring protocols

allowing the estimation of simultaneous changes in abundance and spatial aggregation.
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Figure 2. Variation inmacroecological patterns are underpinned by change in proximate components of diversity across scales.
Macroecology theory indicates that the abundance (total number of individuals), evenness (species - abundance distribution ) and
spatial aggregation jointly determine the shape of Species Accumulation Curve. In this simulation run using themobsimR package, a
reference SAC (e.g at t0) is compared to SAC (e.g at t1) after a decrease in the total abundances (purple), a decrease in spatial
aggregation of individuals (yellow), or a decrease in evenness (green). Ecah independent change in proximate component has a
different influence on the SAC, either on the intercept (see inner zoom) or on the slope coefficient.
Simulations were performed using the sim_thomas_community() function frommobsim R package. In black, the reference simulation
was runwith s_pool = 100 n_sim = 1000, sad_type = "lnorm", sad_coef = 1, and sigma = 0.1. In purple the “lower abundance” simulation
with n_sim/3, in green the “less evenness” simulation with a steeper Species Abundance Distribution sad_coef *5, and in yellow the
“more aggregated” simulation with a higher spatial clustering of individuals with sigma / 2. The species accumulation curve for each
simulation using function specaccum() from vegan R package.
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Integrating trait-based perspectives into temporal dynamics of

macroecological patterns helps moving toward attribution of human

drivers

Following a clear detection of trends in diversity across scales, a subsequent step, called “attribution”, lies in

evaluating the contributions of potential drivers (Gonzalez et al., 2023). Taxonomic approaches have inherent

limitations for (human) drivers attribution because species identity itself is not related to its susceptibility to a

given driver. In some cases, local species richness may not change but hide strong species turnover driven by

human-induced environmental changes, which can involve stark alteration in trait composition.We argue that

advancing species-based approaches (such as the one described above) thanks to trait-based approaches will

allow for a more sensitive attribution of human drivers, and a more nuanced understanding of community

responses to threats and disturbances.

The first reason is that species traits, encompassing characteristics of life history, morphology, habitat or

climatic preferences, can be robust indicators of species' susceptibility to anthropogenic impacts (Cardillo et

al., 2005; Chichorro et al., 2019; Carmona et al., 2021). Because traits are linked to species responses to global

changes, community recomposition can also bemeasured by change in trait composition, making it possible to

dissect and understand the nuanced recomposition of communities under various threats (Devictor et al.,

2012; Kampichler et al., 2012; Cheung et al., 2013;Mouillot et al., 2013; Gaüzère et al., 2020b) that may remain

unnoticed by taxa-based metrics alone (Villéger et al., 2010). Considering species traits in conjunction with

dynamic macroecological patterns thus has a high potential to enlighten the mechanisms behind ecological

responses across diverse taxa (Smith et al., 2013; Mazel et al., 2014; Ricotta et al., 2019). This approach has

been successfully used, for example, to determine whether human activities increase abundance of species

with certain characteristics at the expense of others: common / widespread / generalist / small-bodied vs. rare

/ restricted / specialist / large-bodied species (Purvis et al., 2000; Cardillo et al., 2005; Cooke et al., 2019), or

affect the spatial aggregation of individuals and species : physical barriers due to human settlements,

landscape configuration (Tucker et al., 2018, 2021).

The second reason is that patterns of trait diversity can reveal key insights into community assembly

processes (Weiher et al., 2011): low functional diversity (relative to random expectation) can result from

environmental filtering or biotic hierarchical competition, while high functional diversity can indicate

interspecific competition (Smith et al., 2013; Münkemüller et al., 2020). Interestingly, the influence of

community assembly processes are thought to vary as a function of spatial scale, and should thus be expected

to leave variable imprint on functional diversity depending on scale. Over the last decade, several studies have

recast macroecological laws from a functional trait perspective (e.g., (Lamanna et al., 2014; Hulshof &Umaña,

2023; Matthews et al., 2023). Trait diversity accumulation over space has been explored with Functional

Diversity Area Relationships (FDAR), the trait-based equivalent to SAR (Mazel et al., 2014), Functional
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rarefaction, the trait-based equivalent of SAC (Ricotta et al., 2012), or Distance Decay of Functional Similarity

(FDDS), (Graco-Roza et al., 2022). FDAR, for example, identifies the scale-dependence of environmental vs.

biotic filtering (Smith et al., 2013), while FDDS deciphers the relative effect of pure dispersal from

environmental and biotic filtering depending on the spatial scale (Graco-Roza et al., 2022). As such, trait-based

macroecological patterns offer promising means to better identify the influence of global change drivers on

diversity dynamics (Chapin et al., 2000; Violle et al., 2014). However, the theoretical foundations of these laws

are still developing. One obvious reason is that the shape of trait-basedmacroecological patterns depends on

the traits under consideration, even though recent studies indicate a low-dimensional evaluation of functional

spaces may capture the primary dimensions of organismal functioning across taxonomic groups (Mouillot et

al., 2021).

A first, straightforward and easy way to integrate the trait-based perspective into the dynamic

macroecological patterns is to compare dynamics between groups of species with contrasting traits or

requirements across groups. For example, one might anticipate distinct responses between endotherms and

ectotherms, small vs.large organisms, cold vs. hot dwellers, sessile vs.mobile species, those with varying

mating systems, genome sizes and longevity (Staab et al., 2023). A second approach is to use quantitative trait

values to build trait-based macroecological patterns. This could entail switching from traditional

macroecological measures (SAR, DDS, SAD) to before mentioned trait-based equivalents that are emerging

(FRAR, FDDS, TAD) (Figure 4). Both approaches only require knowledge about species’ mean trait values,

which is more and more accessible from databases for many taxonomic groups, thus facilitating the

construction of “trait-based” dynamic macroecological patterns (Smith et al., 2013;Mazel et al., 2014; Ricotta

et al., 2019; Matthews et al., 2023) and offering a more comprehensive understanding of biodiversity

dynamics in the face of global change (Graco-Roza et al., 2022; Koffel et al., 2022).
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Figure 3. Integrating trait-based perspectives to dynamic macroecological patterns can be achieved by comparing temporal changes in

SAC (A, top-left) between different functional groups (A, bottom), or bymeasuring temporal changes in functional diversity

accumulation (A, top-right). Integrating trait-based perspective with proximate diversity components can be achieved bymoving from

species abundance distribution (B, top-left) to species trait distribution describing the variations in the number of species holding a

particular trait value (B, top-right), or via trait-abundance distribution describing the abundance of species holding particular trait

values (B, bottom-left). Here exemplified using species biomass. Dots are individuals from different species (one color per species).

Attributing detected diversity changes to anthropogenic drivers using

(trait-based) dynamic macroecological patterns

While changes in diversity can be detected and quantified with large spatio-temporal inference, causally

attributing them to ultimate (human) drivers is rarely accomplished. Yet, many temporal diversity changes are

believed to be driven by anthropogenic impacts on the environment. Land and sea use change, climate change,

pollution, invasive species and direct exploitation are all thought to have predominantly negative effects on

diversity (Díaz et al., 2020), while land protection and biodiversity restoration actions are thought to have a

positive effect (Kail et al., 2015; Meli et al., 2017). Three main factors make the attribution of diversity

changes to human drivers challenging. First, human drivers impact diversity patterns differently depending on

the spatial scale. Here, we have seen that a dynamic macroecological pattern approach, which considers

continuous scale dependence can clarify which human drivers influence diversity along an explicit scale

continuum (Powell et al., 2013). Second, diversity measures focused on species identity alone are inherently

limited in linking specific drivers to diversity. As outlined in the previous section, trait-based dynamic

macroecological patterns can provide a complementary, functional perspective. Third, human drivers' effects

on diversity are complex, intercorrelated (Bowler et al., 2020), and interact with each other (Gaüzère et al.,

2020a). Such intrications can lead to confounding effects and biases when trying tomeasure their influence on

biodiversity patterns, particularly if the influencing variables are not available or incorrectly related. Away to

address this third issue is to rely on structural causal modeling (Arif & MacNeil, 2023). A graph model

represents qualitative causal relationships as a directed graph where variables of interest are nodes related

by edges that represent potential directional influence. Such graphs can be used to clearly set and visualize

assumptions about the cause-and-effect relationships between anthropogenic drivers and diversity changes

and to identify the role of variables (i.e. confounder, mediator) when targeting a causal effect. Graphs can be

built from expert knowledge alone, or with the help of causal discovery algorithms that look for causal

signatures in the data (Glymour et al., 2019). This allows assessing the need for statistical adjustments (i.e. in

case of confounders) which is especially relevant when causal relationships are determined from

observational data (for more explanations, see (Arif & MacNeil, 2023). Such a priori identification of the role

of potential driver variables offers a more comprehensive and relevant expectation of human impacts on

biodiversity (Laubach et al., 2021; Gonzalez et al., 2023; Runge, 2023; Runge et al., 2023).
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We propose to leverage the “dynamic (trait-based) macroecological pattern” framework described above by

integrating it with the structural causal modeling framework for causal attribution. Studying the proximate

components of biodiversity change (abundance, evenness, spatial aggregation, Figure 2) in the context of

structural causal modeling allows identification of direct causal pathways from (ultimate) human drivers via

change in proximate components to change in macroecological patterns, thus enabling to better understand

the underlying drivers ( and potentially mechanisms) through which human drivers impact species diversity

over time and across spatial scales.We can extend causal graphs by explicitly including proximate components

to hypothesize specific paths of action for different contexts (Figure 4). For example, in the case of wild

capture fisheries, a causal graph might indicate how this human activity drives changes in aquatic animal

diversity mainly indirectly through selective effects on the total number of individuals and species abundance

distributions. In practice, switching from qualitative causal graphs to (quantitative) causal models fitted to

empirical time series can be achieved using a Structural EquationModeling (SEM) approach. Thesemodels can

estimate the effects of the proximate components as well as the direct and indirect effects of potential

(human) drivers on SAR and DDS parameters (DeMalach et al., 2019), while handling the dynamic nature of

time-series data using, for example, Latent Growth Curve (LGC) models or ARMA-based SEMs, (Fan et al.,

2016). Compared to already existing frameworks (e.g mobr, see Box 2) causal graphs and SEM enable the

integration of several drivers and thus to consider their interaction, which is essential for (many) real-world

scenarios. This enhanced understanding of causal pathways from human activities to diversity changes across

scales could then be used to propose concrete control policies aimed at impacting particular components

(Blonder et al., 2023) in order to achieve effective prevention andmitigation of diversity loss.
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Figure 4. Graphical causal models integrating Dynamic macroecological patterns potential causal pathways from human drivers
(top) to proximate components (middle) to trait-based dynamic macroecological patterns (bottom). All potential links across taxa
and contexts are in gray. In the case of diversity changes in exploited marine ecosystems, expert knowledge might contribute to
specify a causal pathway where change in species richness across scales in response to exploitation (wild capture fisheries) could be
mediated by the effect of fisheries on the total number of individuals, particularly on exploitation-sensitive fishes (Blowes et al., 2020),
and to change in species abundance distribution (for all species).We emphasize this pathway to exemplify a potential case, which is not
supposed to reflect reality. Moreover, it does not incorporate possible compensation effects leading to the increase in abundance and
size of small species in response to decrease of large predator species.

Concluding remarks

To date, research on diversity change detection hasmainly focused on separate discrete spatial scales without

embracing its scale dependence and without accounting for the linkage between different metrics, which

often produces conflicting “diversity trends” that cannot easily be reconciled. In response to the need for a

coherent framework that embraces complexities in biodiversity trends observed at different scales (Cardinale

et al. 2018; Primack et al. 2018; Boënnec et al. 2024), we support the study of dynamic macroecological

patterns as a way to integrate diversity changes in a continuous and scalable manner (Connor and McCoy

1979; Nekola and White 1999).It is important to note that althoughwe here focused on SAC because it is one
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of the most studied patterns due among others to its suitability to handle data from most existing

standardized biodiversity monitoring, the potential of using dynamicmacroecological patterns to understand

diversity changes across scales is not limited to this specific example. Macroecological patterns provide

bridges from observed diversity to ecological processes (Grilli, 2020), while effectively synthesizing varying

forms of diversity change, and providing a clear (albeit more complex) picture of biodiversity dynamics.

Beyond improving the detection of diversity trends, we outlined the importance of studying proximate

components of biodiversity changes which are pivotal for understanding diversity dynamics (McGill and

Collins 2003; Storch et al. 2008).

We argue that such understanding is essential for accurately interpreting biodiversity trends and their

underlying causes. One of the strengths of this approach is that most of the required tools are already

available (Box - metrics andmethods for DynamicMacroecological Patterns) and only need to be “tweaked” to

accommodate temporal data. Furthermore, we discuss how integrating trait based perspective and causal

graphical models approach into this framework represents two important steps towards attributing

biodiversity changes to specific anthropogenic drivers. This integration will enable a more nuanced

understanding of how human activities impact biodiversity at various scales (Bowler et al., 2020; Gonzalez et

al., 2023). In summary, dynamic and trait-based macroecological patterns not only enhance our ability to

quantify diversity changes across scales, but also provide a powerful tool for identifying, preventing and

mitigating the impacts of human activities on ecological systems. It advocates for policies that are informed by

a deeper understanding of the intricatemechanisms driving biodiversity changes.

Box 2. Methods for Dynamic Macroecological Patterns
Simulations of macroecological patterns

● mobsimr (May et al., 2018) is an R package designed for simulating the abundances and spatial

distribution of different species. This package is particularly useful for deriving biodiversity patterns

and simulating sampling of biodiversity. It enables researchers to study how abundance, evenness,

and aggregation drives the shape of SAC, making it a valuable tool to understand the intrinsic links

between proximate components and macroecological patterns. Although not primarily design to

study temporal dynamics of macroecological pattern, current development are going toward

extension of the capabilities of mobsimr ( https://github.com/sRealmWG)

Empirical analyses of macroecological patterns

● Rarefy R package (Thouverai et al., 2020) summarize directional and non-directional species

accumulation (Chiarucci et al., 2009) and multi-site beta diversity (Ricotta et al., 2019) as a function
of sampling effort (i.e. via species accumulation curves), hence measuring spatial autocorrelation in

species composition among plots along an a-priori defined spatial, temporal or environmental

gradient.

● mobr R package (Mcglinn et al., 2021) performs analyses of biodiversity data at various spatial

scales, and quantify the roles of proximate components (evenness, density, and aggregation) in

shaping macroecological patterns, based on the Measurement of Biodiversity framework (Chase et
al., 2018;McGlinn et al., 2019, 2021).
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● (Keil et al., 2021) test and compare approaches to quantify interspecific spatial associations on

empirical and simulated data, and provide recommendations for how to use and interpret them in

biodiversity science. The R package spasm allows to compute and compare different measures of

spatial aggregation (https://github.com/petrkeil/spasm/tree/1.4)

● (Keil & Chase, 2022)proposes a machine learning approach to estimate biodiversity changes over

time by allowing for the interpolation of biodiversity data across spatial scales while accounting for

variations in data availability and completeness.

Causal graph building andmodeling

● DAGitty is a browser-based environment for creating, editing, and analyzing causal diagrams (also
known as directed acyclic graphs or causal Bayesian networks). The focus is on the use of causal

diagrams for minimizing bias in empirical studies in epidemiology and other disciplines :

https://dagitty.net/

● piecewiseSEM R package (Lefcheck, 2016) is an implementation of confirmatory path analysis for

the R. The package allows to perform Structural EquationModels (SEM) tomany types of statistical

models such as generalized linear, phylogenetic least-square, and mixed effects models, and as such

can handle random effects and temporal autocorrelation: https://jslefche.github.io/sem_book/
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