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Abstract 37 
Studies on wild animals, mostly undertaken using 16S metabarcoding, have yielded 38 
ambigous evidence regarding changes in the gut microbiome (GM) with age and 39 
senescence. Furthermore, variation in GM function has rarely been studied in such wild 40 
populations, despite GM metabolic characteristics potentially being associated with host 41 
senescent declines. Here, we used seven years of longitudinal sampling and shotgun 42 
metagenomic sequencing to investigate taxonomic and  functional changes in the GM of 43 
Seychelles warblers (Acrocephalus sechellensis) with age and senescence. Our results 44 
suggest that taxonomic GM species richness declines with age and in the terminal year, 45 
with this terminal decline occurring consistently across all ages. Taxonomic and functional 46 
GM composition also shifted with host age. However, all the changes we identified 47 
occurred linearly with adult age, with little evidence of accelerated change in late life or 48 
during their terminal year. Therefore, the results suggest changes that changes in the GM 49 
with age are not linked to senescence. Interestingly, we found an increase in the 50 
abundance of a group of transposase genes with age, which may accumulate passively or 51 
due to increased transposition induced as a result of stressors that arise with age. These 52 
findings reveal taxonomic and functional GM changes with age in a wild vertebrate and 53 
provide a blueprint for future wild functional GM studies linked to age and senescence.  54 
 55 
Keywords: gut microbiome, age, senescence, metagenomics, transposase, Acrocephalus 56 
sechellensis   57 
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Introduction 58 
 59 
Senescence - a decline in physiological function in later life- occurs in most organisms 60 
[1,2]. However, its onset and rate often differ greatly among individuals within populations 61 
[1,3]. One factor that may contribute to individual differences in senescence is variation in 62 
host-associated microbial communities. The intestinal tract of animals contains a diverse 63 
collection of microbes and their genomes (the gut microbiome; GM), which play an 64 
important role in host adaptation and fitness [4,5]. The GM influences the regulation of 65 
essential processes, such as digestion, reproduction, and immune function [6,7]. However, 66 
shifts in GM composition can be detrimental to the host; certain microbes may be 67 
pathogenic, while overall dysbiosis may impair host function [8,9].  68 
 69 
Studies in humans and laboratory animals have shown that GM composition generally 70 
changes rapidly in early life [10,11] before stabilising during adulthood [12]. This is often 71 
followed by greater GM instability in advanced age including a loss of diversity and 72 
changes to composition [13–15]. These late-life compositional shifts are generally 73 
characterised by a loss of commensal or probiotic bacteria and an increase in pathogenic 74 
microbes [16]. GM functional changes with age have also been identified. For example, 75 
healthy ageing has been associated with microbes that enable increased biodegradation 76 
and metabolism of xenobiotics [16,17], whereas unhealthy ageing has been linked to 77 
increased production of detrimental microbial metabolites [16]. 78 
 79 
Studies have demonstrated links between the GM and senescence in humans and 80 
laboratory animals, however, their GM composition varies markedly from their counterparts 81 
living in natural environments because of the artificial environments they are exposed to 82 
[18,19]. It remains unclear if these effects can be generalised to wild animals [18–20].  83 
 84 
Recent studies on wild organisms have not reached a consensus on what characterises 85 
the ageing microbiome. Some have documented altered GM composition [21–23], 86 
increased GM diversity [22,24], and reduced GM stability [25] with increasing age. Other 87 
studies have indicated that GM characteristics remain relatively stable throughout 88 
adulthood [25–27]. However, these studies have been based on 16S rRNA gene 89 
metabarcoding, which is limited in resolution [28–30]. Shotgun metagenomic sequencing 90 
enables higher taxonomic resolution (species or strain level), as well as informing on the 91 
functional potential of microbial communities based on gene content [31–33]. In humans 92 
and captive primates, metagenomics has revealed an increase in pathogenic microbial 93 
genes, and a decrease in beneficial genes, with age [17,34,35]. To our knowledge, no 94 
previous studies have investigated GM functional changes with age and senescence using 95 
shotgun metagenomics in a wild population. 96 
 97 
Also, most GM studies on wild animals have relied on a cross-sectional sampling of 98 
differently aged individuals [36–38] and, therefore, may be confounded by the selective 99 
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appearance/disappearance of individuals with particular GM characteristics. A lack of 100 
longitudinal samples also makes it difficult to infer changes in GM stability with age [39]. 101 
Understanding what drives this GM variation is important, as it may lead to a deeper 102 
comprehension of the evolution of senescence and life-history trade-offs [3], and enhance 103 
our ability to prolong healthy lifespans. As senescence occurs at different rates across 104 
individuals, a longitudinal approach is crucial for accurately evaluating age-associated 105 
effects [40]. Given this rate variation, and because declines are expected to be greatest at 106 
the end of life, GM changes may be more closely associated with proximity to death than 107 
chronological age. Including such information in analyses requires accurate estimates of 108 
the point of death that are not confounded by dispersal.  109 
 110 
The long-term study of the Seychelles warbler population on Cousin Island provides a 111 
powerful natural system in which to study GM variation and host senescence [3]. Its 112 
isolated nature allows for the longitudinal sampling of uniquely marked, known-age 113 
individuals across their entire lifespan and the collection of accurate survival and 114 
reproductive success data [41,42]. Previous studies using 16S metabarcoding have 115 
demonstrated that Seychelles warbler GM composition is linked to subsequent survival 116 
[43] but identified no overall patterns of GM senescence [26].  117 
 118 
Here, we use shotgun metagenomics to assess fine-scale changes in the GM with age and 119 
senescence in the Seychelles warbler. First, we determine how GM taxonomic diversity 120 
and composition change with host age, particularly in a bird’s terminal year when GM 121 
dysregulation is expected to be at its greatest. Then we test the hypothesis that GM 122 
functional characteristics (assessed via microbiome gene content) will change with age, 123 
senescence, and in the terminal year.  124 
  125 
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Materials and Methods 126 

 127 
Study system and sample collection 128 

Seychelles warblers are insectivorous passerines endemic to the Seychelles archipelago. 129 
The population on Cousin Island (29 ha; 04° 20′ S, 55° 40′ E) has been extensively 130 
monitored since 1985 in the winter (January – March) and summer (June – October) 131 
breeding seasons [3,44,45]. Each season nearly all new birds (offspring) are caught, in the 132 
nest or as dependent fledglings in the natal territory [45]. As many adult birds as possible 133 
are re-caught each season using mist nets. Bird age is determined using either 134 
lay/fledgling date [45] for the majority of individuals, if birds are first caught without a 135 
fledging date being recorded, eye colour is used to estimate age instead (see [45]).  136 
 137 
The population on Cousin Island consists of ca. 320 individuals grouped into ca. 115 138 
territories, defended year-round by a dominant breeding pair [46,47]. Territory quality is 139 
calculated each season using arthropod counts, vegetation density, and territory size 140 
information [45,48]. 141 
 142 
Nearly every bird in the population (> 96% since 1997 [49]) has been caught and marked 143 
with a unique combination of a British Trust for Ornithology (BTO) metal ring and three 144 
plastic colour rings, which enables them to be monitored throughout their lives [3,50]. 145 
Individuals almost never disperse between islands and the annual resighting probability is 146 
around 98% ± 1% [41,42,51]. If an individual is not seen for two consecutive seasons it is 147 
assumed to have died (an error rate of 0.04%) [41,42]. Death dates for individuals were set 148 
as the final day of the season in which the bird was last seen. Benign climatic conditions 149 
and a lack of predators result in relatively long-lived individuals (median lifespan 5.5 years, 150 
max lifespan 19 years) [46,52]. Extensive previous research shows that reproductive and 151 
actuarial senescence occurs in this population (Hammers et al., 2015, 2019, 2021). 152 
 153 
Faecal samples were collected from caught birds and stored as described previously (see 154 
[26] and supplementary material). Contamination (hand) controls were collected from 155 
fieldworkers each season. The time-of-day that samples were collected and the number of 156 
days for which samples were stored at 4°C, were recorded. A ca 25 µl blood sample was 157 
also taken via brachial venepuncture and stored in 1 mL of absolute ethanol at 4°C. 158 
 159 
DNA extraction and sequencing 160 

Blood samples were processed with a salt extraction method [42] or Qiagen DNeasy 161 
Blood and Tissue Kit and the resulting DNA was used for molecular sexing [52,54]. 162 
DNA from faecal samples was extracted using the Qiagen DNeasy PowerSoil Kit with a 163 
modified protocol (see [55]). Individuals for which multiple longitudinal samples were 164 
available were prioritised for metagenomic sequencing to capture within-individual 165 



 6 

changes. In total, 155 faecal samples from 92 individuals across 7 years were sequenced, 166 
as well as three positive controls (two extractions from a ZymoBIOMICS Microbial 167 
Community Standard (D6300), and one extraction from a ZymoBIOMICS Fecal Reference 168 
with TruMatrix™ Technology (D6323)), and six hand controls. Library preparation was 169 
performed in two lanes per run using the LITE protocol [56] and sequencing undertaken in 170 
two runs of 2 x 150 bp NovaSeq X platform. The D6300 extraction control was sequenced 171 
on both runs to compare extraction and batch effects.  172 
 173 
Bioinformatics  174 

Shotgun metagenomic sequence analysis was carried out using the MATAFILER pipeline 175 
(see [5] and supplementary materials). Briefly, MATAFILER removes host reads, 176 
assembles reads, predicts and annotates genes, builds metagenome-assembled genomes 177 
(MAGs) and metagenomic species (MGSs), and taxonomically assigned MGSs. Due to the 178 
high individuality of the Seychelles warbler GM and the high sequencing coverage 179 
required to assign MGS, Metaphlan4 was also used to taxonomically classify reads (see 180 
supplementary materials for details).  181 
 182 
Gut microbiome analyses 183 

A total of 162 samples were successfully processed bioinformatically (153 faecal samples, 184 
4 controls). Positive controls were successfully recovered, and hand controls did not 185 
contribute to substantial contamination in samples (Figure S1). 186 
 187 
The 153 faecal samples (Figure S2) included 71 from 40 females and 82 from 51 males. In 188 
total, 41 individuals had one sample, 41 had two, eight individuals had three, and one 189 
individual had four samples. Age at sampling ranged from 0.6-17.0 years (mean 5.7 ± 0.3 190 
SE). Of these, 48 were from 22 individuals in their terminal year (the year in which they 191 
died); with ages in terminal year ranging from 1.4–17.0 years. From all these samples, 1025 192 
unique metaphlan4 species-genome-bins assignments were used for the subsequent 193 
taxonomic analysis (mean 29.3 ± 2.0 SE per sample).  194 
 195 
All statistical analysis was performed using R version 4.33 [57,58]. Variance Inflation 196 
Factor (VIF) scores (car version 3.1.2) were used to test for collinearity between variables 197 
in all models; all had a score <3 indicating no issues with collinearity [59]. 198 
 199 
Taxonomic GM changes with age 200 

Taxonomic GM alpha diversity 201 
 202 
A rarefaction curve of Metaphlan4 species was constructed with iNEXT version 3.0.1 to 203 
determine the read depth required to recover 95% of theoretically present species (Figure 204 
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S3) [60]. Taxonomic classifications were rarefied to a depth of 5,500 reads before alpha 205 
diversity analysis; two samples were removed due to insufficient read depth. Species 206 
richness and Shannon diversity metrics were calculated per sample using R packages 207 
phyloseq version 1.46.0 and microbiome 1.24.0 [61,62]. Wilcoxon rank sum tests were 208 
used to examine whether different sequencing plates affected species diversity (Shannon 209 
index, p = 0.353) and species richness (Observed index, p = 0.124), both were not 210 
significantly different.  211 
 212 
A linear mixed effect model with a Gaussian distribution (lmer), and a generalised linear 213 
mixed effect model with a negative binomial distribution (glmer.nb), were used to model 214 
changes in species diversity (Shannon index) and richness (observed taxa), respectively, 215 
using lme4 version 1.1-35.5 [63]. Fixed effect variables included in models were: host age 216 
(years); terminal year (yes/no); sex (male/female); breeding season (winter/summer); 217 
sample year (as a factor: 2017-2023); territory quality; storage at 4°C (days); time of day 218 
collected (minutes since sunrise at 6:00 am). Bird ID was included as a random effect. A 219 
quadratic age term, and an interaction between terminal year and host age, were tested to 220 
assess whether GM changes became more extreme in the terminal year but were dropped 221 
if not significant to allow interpretation of the main effects. Age was measured in years, but 222 
all samples taken when birds were >12 years of age were designated as 12 years because 223 
these samples were rare (n = 9, max age = 17 years). Model diagnostics were run using 224 
DHARMa version 0.4.6, with no significant issues in each chosen model [64]. Herein, all 225 
models were tested with the same variables unless stated otherwise.  226 
 227 
 A within-subject centering approach was used to separate between-individual (cross-228 
sectional) GM differences with age (which could be driven by the selective 229 
appearance/disappearance of individuals with particular GM characteristics), from within-230 
individual (longitudinal) change (which could indicate senescence) [65]. This involves 231 
calculating the mean age of each individual across all it’s sampling events (mean age) and 232 
the within-individual deviation from that mean age at each separate sampling event (delta 233 
age). These terms replace host age in the model. The fixed effect of terminal year was also 234 
replaced by a “terminal year bird” term (yes/no) which indicates whether individuals have 235 
at least one sample collected in the terminal year or not. An interaction between the 236 
terminal year bird and delta age, as well as quadratic delta age, were tested to assess 237 
whether within-individual GM changes were more extreme in birds with a sample taken in 238 
the terminal year of life and/or in older individuals, respectively (which would be indicative 239 
of senescence). These were dropped if not significant to allow interpretation of the main 240 
effects.  241 
 242 
Taxonomic GM composition 243 
 244 
A permutational multivariate analysis of variances (PERMANOVA) was carried out on a 245 
Euclidean distance matrix calculated using centered log ratio (CLR)-transformed reads, 246 
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using the adonis2() function in vegan version 2.6.6 [66]. A blocking effect of Bird ID was 247 
used to account for repeated measures. The same predictors were included as for the 248 
main model in the Alpha diversity analysis above. Differences in composition were 249 
visualised with a principal component analysis (PCA) in phyloseq version 1.46.0 [62].  250 
 251 
Taxonomic GM differential abundance analysis (DAA) 252 
 253 
Two different DAA methods were used to identify differentially abundant GM species with 254 
host age (as recommended by [67,68]; ANCOMBC2 version 2.4.0 and GLLVM version 255 
1.4.3 [69,70]. A total of 22 common species, defined as species found in 20% of the 256 
population at more than 0.01% abundance, were retained. Species that were significantly 257 
differentially abundant in the same direction using both DAA methods were considered 258 
robustly significant. Variables included in each model were the same as in models above.  259 
 260 
Functional GM changes with age 261 

Functional GM alpha diversity 262 
 263 
Initially, 4727 different eggNOG orthologues (mean = 3616.6 ± 64.4 SE per sample) were 264 
identified in our gene catalogues. A rarefaction curve of eggNOG orthologues was 265 
constructed using iNEXT to determine sample completeness [60]. Samples were then 266 
rarefied to 100,000 reads based on >95% completeness. One sample was removed due 267 
to insufficient reads. Following rarefication, 4685 eggNOG orthologues were retained 268 
(mean = 3054.3 ± 47.1 SE per sample). Due to the (negative) skewness of the observed 269 
richness and Shannon diversity of eggNOG annotations, a scaled exponential 270 
transformation and an exponential transformation were used for analyses, respectively, to 271 
improve residual fit. Both these alpha diversity indices were then analysed with linear 272 
mixed models containing the same predictors as for taxonomic alpha diversity above.  273 
 274 
Functional GM composition 275 
 276 
To test for changes in functional microbiome beta diversity, a PERMANOVA of Euclidean 277 
distances calculated from CLR-transformed read abundances per orthologue was used, 278 
using the same model structure as for taxonomic compositional analysis (described 279 
above). Differences in composition were visualized with a PCA plot as above. 280 
 281 
Functional GM differential abundance analysis (DAA) 282 
 283 
Differential abundance analysis was performed on eggNOG annotations using their 284 
assigned categories from the database of clusters of orthologous genes (COG) 285 
(Supplementary Table S5) [71] using ANCOMBC2 and GLLVM as described above 286 
[69,70]. Post-hoc DAA were performed on individual eggNOG members found within 287 
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differentially abundant COG categories to establish the drivers of any significant 288 
differences (see Supplementary material for details).  289 
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Results 290 
 291 
Taxonomic GM changes with age 292 

Taxonomic GM alpha diversity 293 
 294 
GM species richness declines with host age, and individuals in their terminal year had 295 
significantly lower species richness than those in a non-terminal year (Table S1 & Figure 296 
S4). However, Shannon diversity was not significantly associated with host age, and did 297 
not differ between samples taken in a terminal or non-terminal year (Table S2). A quadratic 298 
age term, and an interaction between host age and terminal year were not significantly 299 
associated with species richness or Shannon diversity (p > 0.05) and were dropped from 300 
the final model. 301 
 302 
The within-individual centering approach revealed that the decline in GM species richness 303 
with host age occurred longitudinally within individuals (Table 1, Figure 1) with no evidence 304 
of between-individual selective disappearance effects (Table 1). Shannon diversity did not 305 
change significantly with mean or delta age (Table S3). There was no evidence of a 306 
quadratic relationship between within-individual delta age and species richness or 307 
Shannon diversity, hence the quadratic age term was dropped from the final model. This 308 
suggests that within-individual changes were not more extreme in older individuals and 309 
that declines in species richness happen equally in all mature individuals. We also tested 310 
for an interaction between within-individual age and whether an individual’s final sample 311 
was in their terminal year, but this was not significant (p > 0.05) and was dropped. This 312 
result indicates that within-individual changes in species richness with age had a similar 313 
slope whether the bird was sampled in its terminal year or not. 314 
 315 
Taxonomic GM composition 316 
A PERMANOVA analysis found that cross-sectional host age was a marginally significant 317 
predictor of GM taxonomic composition (Table 2), but terminal year was not (Table 2). 318 
Sample year, season, and catch time were significant and explain the largest proportion of 319 
GM compositional variance (Table 2) followed by days sample stored at at 4°C and sex. An 320 
interaction between age and terminal year was not significant (p > 0.05). A PCA showed 321 
limited sample clustering according to age, which is consistent with the small amount of 322 
variance explained in the PERMANOVA (Figure S5).  323 
 324 
Taxonomic GM differential abundance analysis (DAA) 325 
Five of the 22 common GM species found in the Seychelles warbler population (i.e. in 326 
>20% individuals) differed significantly in relative abundance with age in the GLLVM 327 
analysis (Escherichia coli, Lactococcus lactis, Brucella pseudogrignonensis, Lactococcus 328 
garvieae, Microbacterium enclense), but none were differentially abundant with age in the 329 
ANCOMBC2 analysis (Figure S6A & S6B). Similarly, six species were differentially 330 
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abundant in the terminal year in the GLLVM analysis (Lactococcus garvieae, Pantoea 331 
anthophila, Escherichia coli, Rothia sp AR01, Microbacterium enclense, Brucella 332 
pseudogrignonensis), but none were differentially abundant with terminal year in the 333 
ANCOMBC2 analysis (Figure S6C & S6D). Thus, there is no clear consensus of significant 334 
variation in the abundance of specific GM species with age or in the terminal year.  335 
 336 
Functional GM changes with age 337 
 338 
Functional GM alpha diversity 339 
 340 
Alpha diversity of eggNOG gene orthologues declined significantly with host age for both 341 
observed richness and Shannon diversity metrics (Table S4, Figure S7). Alpha diversity of 342 
eggNOG orthologues did not differ between terminal year and non-terminal year samples 343 
(Table S4). Additionally, the interaction between host age (or quadratic age) and terminal 344 
year was not significant (p > 0.05). 345 
 346 
The decrease in functional alpha diversity with host age is best explained by within-347 
individual longitudinal changes with age for both tested indices (Table 3, Figure 2). Cross-348 
sectional, between-individual age was a marginally significant predictor of Shannon 349 
diversity but not observed richness. Alpha diversity did not differ between individuals that 350 
had at least one sample taken in their terminal year and those that did not. The interaction 351 
of terminal year bird and within-individual age as well as quadratic within-individual age 352 
were also not significant (p > 0.05) predictors of either index. Sample year was a 353 
significant variable of both eggNOG observed richness and Shannon diversity.  354 
 355 
Functional GM beta diversity 356 
A PERMANOVA analysis identified factors that were significantly related to GM functional 357 
composition (Table 4). Host age, but not terminal year, was a marginally significant 358 
predictor of functional composition (Table 4). An interaction between age and terminal 359 
year was not significant (p > 0.05). The largest effect sizes were found in relation to 360 
season, sample year, sex, and days stored at 4℃ (Table 4). Time of day was not significant 361 
related to GM functional composition (in contrast to GM taxonomic composition). A PCA 362 
plot showed limited clustering of GM samples according to age, consistent with the small 363 
amount of variance explained by this variable (Figure S8). 364 
 365 
Functional GM differential abundance analysis (DAA) 366 
Only one cluster of orthologous genes (COG) category was differentially abundant in 367 
relation to age. The COG category “X”, which represents mobilome COGs such as 368 
prophages and transposons, significantly increased in abundance with age in both the 369 
ANCOMBC2 and the GLLVM analyses (Figure 3). Several COG categories were 370 
significantly differentially abundant with environmental variables including Cat A (RNA 371 
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processing and modification) with season and Cat C (Energy production and conversion) 372 
with sample year (Figure S10, Figure S11). 373 
 374 
Within category X (mobilome), only COG2801 (transposase genes) was found to 375 
significantly increase in abundance with age in both GLLVM and ANCOMBC2 analyses 376 
(Figure S9). A within-subject centering approach within a linear mixed model showed an 377 
increase in COG2801 was associated with both within-individual (longitudinal) age and 378 
between-individual (cross-sectional) age (Table S7, Figure 4). However, the interaction 379 
between within-individual age and terminal year was not significant (p > 0.05). 380 
 381 
COG2801 located within MGSs (509 COG2801 copies from 160 MGS) were most closely 382 
related to the group insertion sequences (IS) 3 family of transposases (30%), other IS 383 
family transposases (12%), partial or putative transposases (33%) or other/unknown 384 
function (25%; Table S8). An increased abundance of COG2801 in the GM may be due to 385 
either an increase in the abundance of COG2801-carrying microbes or increased 386 
replication of the transposase gene itself. However, contrary to the first hypothesis, we 387 
found no relationship between the total abundance of COG2801-carrying MGSs (n = 160) 388 
and host age (Table S9). To further test this, COG2801-MGSs were matched with 389 
metaphlan4 annotations at the genus level; the abundance of COG2801-metaphlan4 390 
genera was not significantly associated with host age (Table S10). Hence, the increase in 391 
COG2801 abundance with host age could not be attributed to an increased abundance of 392 
COG2801-carrying bacteria. Additionally, within COG2801, ten gene catalogues were 393 
commonly shared across 50% of samples. Each of these ten COG2801 gene catalogues 394 
was not significantly (p > 0.05) differentially abundant with age individually when tested 395 
using both ANCOMBC2 or GLLVM analysis (Figure S12). Thus, the increase in abundance 396 
of COG2801 with age was not being driven by the abundance of a single prevalent, gene 397 
catalogue but rather the cumulative abundance of many.  398 
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Discussion 399 

 400 
We used a longitudinal metagenomic dataset from individuals in a Seychelles warbler 401 
population to investigate how GM taxonomic and functional characteristics varied with 402 
host age. We identified a linear decrease in species richness, and small shifts in GM 403 
taxonomic composition, with host age. Additionally, species richness was lower in samples 404 
taken during an individual’s terminal year, but taxonomic composition did not differ 405 
between terminal and non-terminal samples. We also identified a linear decrease in the 406 
GM’s functional richness and diversity, and differences in functional GM composition, with 407 
host age. Finally, COG categories representing the mobilome increased in prevalence with 408 
bird age, driven by an increase in the abundance of COG2801, a group of transposases. 409 
 410 
The small reduction in GM richness, but not Shannon diversity, with age suggests a loss of 411 
rare taxa that is not linked with a major restructuring of the evenness of the GM. This also 412 
concurs with the small changes in GM composition with age we identified; i.e showing a 413 
limited number of differentially abundant taxa with increasing host age. This result is 414 
consistent with a previous 16S metabarcoding analysis of senescence of the Seychelles 415 
warbler GM despite the increased taxonomic resolution afforded by a metagenomics 416 
approach [26] Overall, the results support the conclusion that, taxonomically, most of the 417 
GM stays the same with increasing age, apart from the loss of a few rare taxa.  418 
 419 
Taxonomic changes in GM species diversity and composition with age have been 420 
repeatedly demonstrated in humans and captive animals [16]. However, in these species, 421 
late-life changes in the GM may be due to external factors such as antibiotic use, lifestyle, 422 
and dietary changes [18,20]. An increasing number of wild animal studies are finding little 423 
evidence of a late-life shift in GM taxonomic diversity without such external factors (see 424 
[26,72]). Our study supports this conclusion despite the longitudinal sampling and 425 
increased resolution yielded by shotgun metagenomics, which can potentially reveal more 426 
nuanced changes at lower taxonomic levels. 427 
 428 
Few studies have directly investigated functional changes in the GM with age in wild 429 
animals [73]. Some studies have been undertaken using functional inferences from 430 
metabarcoding sequence homology. However, this can be misleading due to being limited 431 
to variation within the same genus thus providing potentially inaccurate functional profiles. 432 
[74,75]. In our study using a higher resolution metagenomic approach, we found evidence 433 
of small, linear, changes in GM functional diversity and composition with age in the 434 
Seychelles warbler. Functional observed richness and Shannon diversity declined with 435 
age, which suggests not only that rare functions are lost, but that the evenness of these 436 
GM functions also changes linearly with adult age. Age-related decreases in functional 437 
richness and shifts in functional composition have previously been identified in elderly 438 
humans [76,77]. Such changes have been linked to the onset of specific disease states, 439 
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such as inflammation and pathogenesis and changes to diet degradation and digestion, in 440 
humans and laboratory mice [78]. However, other studies have either found no change in 441 
functional alpha diversity, or even an increase in microbial functional richness and diversity 442 
with age [35,79]. Whether the loss of functional diversity, and minor changes in functional 443 
composition, with host age in Seychelles warbler is linked to declines in health and 444 
condition remains unclear and requires further study. 445 
 446 
Despite the small changes in functional diversity and composition with age in the 447 
Seychelles warbler, we only identified one specific functional category whose abundance 448 
was significantly associated with host age. An increase in the abundance of COG2801 449 
transposases occurred with age. However, this was not due to an increase in COG2801-450 
carrying microbes. COG2801 are a group of transposases that are primarily found in 451 
bacteria (89.5%) and have been shown to be the most widely transferred genes among 452 
prokaryotes [80]. Most COG2801 genes found within MGSs were group insertion 453 
sequences 3 (IS3), which use a copy-out-paste-in mechanism to replicate [81]. This could 454 
lead to an increased number of transposon copies in the same individual bacterial genome 455 
over time, or to horizontally transfer to other bacterial genomes. [82,83]. Thus, the 456 
increased abundance of COG2801 with age in Seychelles warbler GM’s may be the result 457 
of self-replication, independent of microbial host cell DNA replication. An increase in 458 
transposition has been observed when bacteria are stressed and COG2801 is one of the 459 
most horizontally transferable eggNOG genes [84,85]. Therefore, as vertebrate hosts get 460 
older, the GM may be exposed to a greater number or intensity of stressors, such as mucus 461 
barrier thinning or inflammation, which may induce activation of COG2801 [86]. However, 462 
there was not an accelerated increase (i.e. a quadratic relationship) of COG2801 463 
abundance with host age, which would be expected if the cumulative effects of host 464 
senescence were driving these changes. Therefore, stressors to the host that occur 465 
linearly in adulthood, such as cell death in the gastrointestinal autonomic nervous system 466 
[87,88], may better explain the increased abundance of COG2801 with host age  467 
 468 
We also focused on assessing terminal year effects in the Seychelles warbler GM. Only 469 
species richness was found to be significantly lower in the final year of a bird’s life. 470 
Moreover, the effect of terminal year was uniform across age, i.e. it was not more extreme 471 
in older individuals. Previous research has identified age-dependent terminal-declines in 472 
fitness components (reproductive success and survival probability) in the Seychelles 473 
warbler [89]. However, the lack of age-dependent terminal changes in GM characteristics 474 
identified in our study suggests that the GM does not undergo senescence in association 475 
with these other traits. As such, the declines in microbial species richness in terminal year 476 
samples (and linearly with age) may rather reflect the stabilisation of the GM with age 477 
rather than a senescence effect. These results concur with the previous 16S 478 
metabarcoding analysis of the Seychelles warbler GM which found little evidence of GM 479 
senescence [26]. 480 
 481 
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Across analyses, environmental factors explained most of the variance in the Seychelles 482 
warbler GM. This concurs with previous research on this species [26,43,55] as well as 483 
studies of other taxa [21,90,91]. Temporal variation -specifically year and season- 484 
explained the most variance in both taxonomic and functional GM composition. This may 485 
be explained by many factors including climate variability, differences in insect prey 486 
availability, or host population density [92–94]. Most Seychelles warbler individuals breed 487 
in the summer rather than the winter season, and GM shifts may therefore reflect 488 
reproductive activity and related hormonal changes [24]. Time of day was also associated 489 
with GM composition. Differences in insect activity might drive this pattern due to light 490 
availability and/or temperature [95,96]. However, such patterns could also be due to host 491 
intrinsic circadian rhythms [97]. These factors lead to a substantial amount of noise in GM 492 
studies that can confound studies on ageing, reproduction, and disease outcomes in wild 493 
populations. Therefore, accounting for these factors is important when investigating the 494 
GM in natural systems. 495 
 496 
Our findings highlight the need for more studies investigating the functional characteristics 497 
of wild microbiomes as taxonomic relationships might not capture functional GM changes 498 
that occur (e.g. the increased prevalence of COG2801). However, researchers should not 499 
totally discount the utility of 16S metabarcoding for investigating general GM questions, as 500 
it may, in many cases, provide sufficient taxonomic resolution to answer specific questions 501 
[28]. Indeed, we identified similar taxonomic patterns using shotgun metagenomics to 502 
those revealed by a previous metabarcoding study on the Seychelles warbler [26]. The 503 
cost-effectiveness of 16S rRNA allows greater sample sizes, and thus power, to resolve 504 
certain questions. A combination approach that harmonises both 16S metabarcoding and 505 
shotgun metagenomics has been proposed to maximise sample size, although such 506 
analyses are limited to genus-level comparisons [98]. On the other hand, shotgun 507 
metagenomics not only allows higher taxonomic resolution and functional analysis of the 508 
GM, but also an assessment of the interaction between taxa and their functions. As 509 
described with transposable elements, our functional analysis uncovered changes in GM 510 
function that were not detectable using 16S metabarcoding analysis.  511 
 512 
In conclusion, while we found that the Seychelles warbler GM changes in terms of 513 
diversity, composition and even function with age, this happens gradually over the adult 514 
lifespan and there is little evidence of late-life GM senescence. Whilst species richness is 515 
lower in the terminal year, this occurs at all ages and is not more extreme in the oldest 516 
individuals. Interestingly, we found that the abundance of a group of transposase gene 517 
increases considerably with age in the GM, probably because of more frequent 518 
transposition within the GM community over time. Future work is required to determine 519 
exactly why these transposable element changes occur and what impact they may have. 520 
Additionally, work should investigate the generality of these conclusions by assessing 521 
whether functional changes occur in the GM of other wild vertebrates.  522 
  523 
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Tables and figure legends 763 
 764 
Table 1. A generalised linear mixed effect model with a negative binomial distribution 765 
(glmer.nb) investigating gut microbiome species richness in relation to within- (delta) and 766 
between- (mean) individual variation in age amongst Seychelles warblers (n = 151 767 
samples, 91 individuals). Conditional R2 = 47.1%. Reference categories for categorical 768 
variables are shown in brackets.  769 

Predictor Estimate SE z P 
(Intercept) 2.69 0.32 8.41 < 0.001 
Delta Age  -0.13 0.06 -2.10 0.036 
Mean Age  -0.03 0.02 -1.50 0.134 
Terminal Year Bird (yes) -0.19 0.14 -1.37 0.172 
Season (winter) 0.00 0.16 -0.01 0.995 
Sex (female) -0.02 0.14 -0.11 0.916 
Days at 4℃ -0.18 0.14 -1.31 0.190 
Time of day 0.23 0.12 1.84 0.066 
Territory quality -0.07 0.13 -0.56 0.577 
Sample Year (2017)    

2018 0.47 0.29 1.64 0.101 
2019 0.45 0.33 1.38 0.169 
2020 0.80 0.35 2.25 0.025 
2021 0.76 0.34 2.21 0.027 
2022 0.74 0.35 2.12 0.034 
2023 0.89 0.40 2.20 0.028 

Random 
Individual ID 151 observations 91 individuals Variance 0.2075 

Note: Significant (p < 0.05) predictors are shown in bold. 770 
 771 
Table 2. A PERMANOVA analysis of gut microbiome taxonomic composition in relation to 772 
age and terminal year in the Seychelles warbler. The PERMANOVA was performed using a 773 
Euclidean distance matrix of CLR-transformed taxon abundances. N = 153 samples from 774 
91 individuals. Bird ID was included as a blocking factor. 775 

Predictor df R2 F P 
Age  1 0.009 1.368 0.043 
Terminal Year  1 0.007 1.051 0.569 
Season  1 0.013 2.021 0.001 
Sample Year 6 0.056 1.479 < 0.001 
Sex 1 0.007 1.096 0.064 
Days at 4℃ 1 0.008 1.193 0.034 
Time of day 1 0.010 1.583 < 0.001 
Territory Quality 1 0.005 0.813 0.982 

Note: Significant (p < 0.05) predictors are shown in bold. 776 
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 777 
Table 3. A linear mixed effect model investigating variation in gut microbiome functional 778 
diversity (observed richness and Shannon diversity) in relation to within- (delta) and 779 
between- (mean) individual age in Seychelles warblers (n = 152 samples, 90 individuals). 780 
Functional diversity is based on eggNOG annotations. Observed richness and Shannon 781 
diversity were transformed using a scaled exponential and exponential function, 782 
respectively. Conditional R2 = 35.6% and 13.7% respectively. Reference categories for 783 
categorical variables are shown in brackets 784 

Observed Richness 
Predictor Estimate SE df t P 
(Intercept) 0.99 0.17 124.77 5.68  < 0.001 
Delta Age  -0.12 0.04 137.00 -3.31 0.001 
Mean Age  -0.03 0.01 89.42 -1.97 0.052 
Terminal Year Bird (yes) 0.01 0.08 83.34 0.17 0.870 
Season (winter) -0.06 0.10 136.94 -0.64 0.525 
Sex (female) -0.06 0.08 81.33 -0.79 0.430 
Days at 4℃ -0.19 0.09 127.35 -2.23 0.028 
Time of day -0.07 0.08 137.00 -0.88 0.381 
Territory quality -0.07 0.08 129.62 -0.88 0.381 
Sample Year (2017)      

2018 0.13 0.15 135.76 0.82 0.416 
2019 0.08 0.18 135.88 0.46 0.647 
2020 0.36 0.20 136.54 1.82 0.071 
2021 0.39 0.19 136.94 2.04 0.044 
2022 0.56 0.19 128.48 2.90 0.004 
2023 0.57 0.23 122.81 2.50 0.014 

Random 
Individual ID 152 observations 90 individuals Variance 0.050 
Shannon Diversity 
Predictor Estimate SE df t P 
(Intercept) 757.59 182.06 119.47 4.16 < 0.001 
Delta Age  -117.01 41.06 135.71 -2.85 0.005 
Mean Age  -27.30 13.54 83.56 -2.02 0.047 
Terminal Year Bird (yes) 17.93 79.75 76.74 0.23 0.823 
Season (winter) 173.07 104.67 127.74 1.65 0.101 
Sex (female) -4.98 80.46 69.67 -0.06 0.951 
Days at 4℃ -48.55 95.70 133.26 -0.51 0.613 
Time of day -21.18 81.57 132.14 -0.26 0.796 
Territory quality -0.74 85.97 136.99 -0.01 0.993 
Sample Year (2017)      

2018 88.02 168.08 136.67 0.52 0.601 
2019 32.22 200.48 136.71 0.16 0.873 
2020 169.50 210.62 131.73 0.81 0.422 
2021 464.12 206.85 136.39 2.24 0.026 
2022 484.95 202.78 124.82 2.39 0.018 
2023 453.37 238.55 116.14 1.90 0.060 

Random 
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Individual ID 152 observations 90 individuals Variance 5046 
Note: Significant (p < 0.05) predictors are shown in bold. 785 
 786 
 787 
Table 4. A PERMANOVA analysis of gut microbiome functional composition in relation to 788 
age (and other factors) in the Seychelles warbler. The PERMANOVA was performed using 789 
a Euclidean distance matrix calculated using CLR-transformed (eggNOG) abundances. N 790 
= 153 samples. 91 individuals. Bird ID was included as a blocking factor. 791 

Predictor df R2 F P 
Age  1 0.007 1.096 0.044 
Terminal Year 1 0.006 0.890 0.292 
Season  1 0.011 1.823 0.042 
Sample Year 6 0.052 1.374 0.020 
Sex 1 0.008 1.250 0.001 
Days at 4℃ 1 0.010 1.569 0.007 
Time of day 1 0.008 1.200 0.139 
Territory quality 1 0.007 1.094 0.413 

Note: Significant (p < 0.05) predictors are shown in bold. 792 
 793 
 794 
Figures 795 
 796 
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 797 
Figure 1. Gut microbiome species richness in relation to within-individual, longitudinal 798 
differences in age (delta age in years) in Seychelles warblers. The solid line represents 799 
model predictions with 95% confidence intervals calculated from the generalised linear 800 
mixed effect model (Table 1). Each point represents an individual gut microbiome sample, 801 
and the dashed grey lines connect samples from the same individual (n = 151 samples, 91 802 
individuals). 803 
 804 
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 805 
Figure 2. Gut microbiome functional diversity measured as (A) observed richness and (B) 806 
Shannon diversity in relation to within-individual host age (years). Functional diversity 807 
calculations are based on eggNOG orthologue groups. Solid lines represent model 808 
predictions (± 95% confidence interval) from linear mixed effects models. Each point 809 
represents a unique gut microbiome sample, and the dashed grey lines connect samples 810 
collected from the same individual (n = 152 samples, 90 individuals). 811 
 812 



 27 

 813 
Figure 3. Differential abundance analysis of functional gut microbiome cluster of 814 
orthologous genes (COG) categories in Seychelles warblers using (A) ANCOMBC2 and 815 
(B) GLLVM. Each COG category is represented on the y-axis. Points and error bars are 816 
coloured according to significance (green: p < 0.05; grey: p > 0.05). 817 
 818 



 28 

 819 
Figure 4. CLR-transformed COG2801 abundance in relation to (A) within-individual (delta) 820 
host age and (B) between-individual (mean) host age in the gut microbiome of Seychelles 821 
warblers. The solid line represents model predictions (± 95% confidence intervals) from a 822 
linear mixed effect model (Table 5). Each point represents a gut microbiome sample with 823 
dashed grey lines connecting samples from the same individual (n = 153 samples, 91 824 
individuals). 825 
  826 
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Supplementary methods 876 
Sample collection and storage 877 
Between 2017 and 2023 all caught birds were placed in a disposable flat-bottom waxed 878 
paper bag containing a sterilised plastic weighing tray underneath a sterilised metal grate 879 
[43,55,100]. This allows the bird to stand on the grate and faecal samples to fall into the 880 
sterile tray, minimising contact with the bird’s surface. After ca 15 minutes (or when 881 
defecation was observed) the bird was removed. Any sample was collected, using a 882 
single-use sterile flocked swab, and placed into a microcentrifuge tube containing 1 mL of 883 
absolute ethanol. Samples were stored at 4°C in the field before being transferred to -884 
80°C for long-term storage. 885 
 886 
Bioinformatics  887 
Briefly, host reads were removed by mapping sequences to the Seychelles warbler 888 
genome (unpublished; complete BUSCO = 96.0% with a total length = 1,081,018,985 bp), 889 
using Kraken 2 (version 2.1.3). Remaining reads underwent quality filtering using sdm 890 
software version 2.14 beta [101,102]. After trimming, two samples and five hand controls 891 
were removed because they did not return enough reads for subsequent analysis (< 892 
300,000 reads). An average of 20,481,040 (±1,109,059 SE) paired-end reads per sample 893 
were retained across the remaining samples. 894 
 895 
The same trimmed reads were also used for de novo metagenome assembly, as 896 
implemented in MATAFILER: MEGAHIT version 1.2.9 [103] was used for metagenomic 897 
assemblies, on these genes were predicted using Prodigal version 2.6.3 [104] and 898 
clustered into a gene catalogue (95 % identity) of 19,527,109 gene clusters, and a gene 899 
abundance matrix created using rtk2 [105]. Functional annotations of clustered genes 900 
were done using eggNOGmapper version 2.1.12 and the evolutionary genealogy of genes: 901 
Non-supervised Orthologous Groups (eggNOG) database version 4 [82,106]. 902 
Subsequently, genome binning was done with SemiBin which created 4,176 bins (mean 903 
completeness = 34.95%, mean contamination = 1.41%) [107]. The bins were then filtered 904 
based on >80% completeness and <5% contamination using CheckM2 [108]; this 905 
retained 824 metagenome-assembled genomes (MAGs). MAGs were dereplicated across 906 
samples to generate 323 non-redundant metagenomic species (MGS) level bins, using 907 
clusterMAGs (https://github.com/hildebra/clusterMAGs). For MGSs, taxonomic 908 
assignment was performed using a marker-based approach with GTDB database version 909 
214 [109]. Due to the high individuality of the warbler GM and the high sequencing 910 
coverage required to assign MGS, only one MGS was present in more than 50% of 911 
sequenced samples and relatively fewer MGSs were identified per sample (average 17 ± 912 
1.3 SE per sample) which is likely to be an underestimate of the true diversity of the GM.  913 
 914 
Therefore, Metaphlan4 version 4.1.0 (which is assembly-free and therefore requires lower 915 
coverage) was used to taxonomically classify reads using the default parameters [110]. 916 
Metaphlan4 assignments identified an average of 29.3 ± 2.0 species genome bins per 917 
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sample and were used for the subsequent taxonomic analysis and MGS was only used for 918 
tracking functional annotations back to their taxonomy.  919 
 920 
Post-hoc functional differential abundance analysis 921 
Posthoc investigations were performed on individual eggNOG members found within the 922 
COG categories that were significantly differentially abundant with age. Firstly, a linear 923 
model was performed for each significant eggNOG member to test whether age-related 924 
changes were driven by between- or within-individual processes. Second, we tested if 925 
changes in the abundance of significant eggNOG members could be driven by changes in 926 
the abundance of the taxa from which these genes originate. To test this, the total 927 
abundance of MGSs carrying the eggNOG gene orthologs of interest was used as the 928 
response variable and age was included as a predictor in a lmer model. Furthermore, 929 
genera of eggNOG-carrying MGSs were matched with metaphlan4 genera to test whether 930 
the total abundance of known eggNOG-carrying genera was significantly associated with 931 
host age. Lastly, a protein-protein Basic Local Alignment Search Tool (BLASTp) analysis of 932 
each eggNOG gene ortholog of interest embedded within each MGS was performed to 933 
determine the identity of genes [111,112]. To test if the differential abundance of eggNOG 934 
members was driven by changes in the abundance of a specific gene (versus the 935 
cumulative abundance of many genes), gene catalogues assigned to the eggNOG cluster 936 
of interest (filtered to those with > 20% prevalence and 0.1% detection) were tested for 937 
differential abundance.   938 
 939 
 940 
Supplementary Figures and Tables 941 
Components of positive controls were successfully recovered as high-quality MGSs in 942 
acceptable relative abundances (Figure S2). Only 2 out of the 18 MGS from controls were 943 
found in faecal samples, both were widespread species Enterococcus faecalis and 944 
Klebsiella pneumoniae [113,114]. E. faecalis was part of the positive control but not found 945 
in the hand controls. K. pneumoniae was found in hand controls as well as samples but due 946 
to the low abundance in hand controls, we decided to retain all species for taxonomic 947 
analysis.  948 
 949 
 950 
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 951 
Figure S1. Controls and relative abundance of MGS at the species level. SWControl is 952 
positive control (ZymoBIOMICS Fecal Reference with TruMatrix™ Technology), SW984 953 
and SWzymo are positive controls (ZymoBIOMICS Microbial Community Standard) 954 
sequenced separately, and SW1421 is a contamination (hand) control from 2023. We 955 
identified subspecies of Bacillus subtilis - Bacillus spizizenii and Lactobacillus fermentum 956 
– Limosilactobacillus fermentum . In SW1421 hand control, Cutibacterium acnes is linked 957 
to acne, Klebsiella pneumoniae is commonly found in the gut, Salinisphaera orenii are 958 
bacteria commonly isolated in high salinity environments, Staphylococcus hominis is 959 
commonly found to be harmless on human and animal skin.  960 
 961 

 962 
Figure S2. Seychelles warbler gut microbiome samples that were retained for analysis after 963 
sequencing and bioinformatics (n = 153 from 91 individuals). Points represent each 964 
sample, the y-axis represents individual’s age at sampling, whilst the x-axis represents 965 
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individuals. Solid lines connect samples that were collected from the same individual. 966 
Colours represent the different sex (black = female, gold = male). Shape represents 967 
whether the sample was collected in the individual’s terminal year (circle = no, triangle = 968 
yes). 969 
 970 
 971 
Taxonomy 972 

 973 
Figure S3. Sequencing depth against number of observed (metaphlan4) assembly-free 974 
taxonomic assignments (left) and read count against sample completeness (right) of each 975 
gut microbiome sample from Seychelles warblers (n = 153). 5500 reads at 95% 976 
completeness. 977 
 978 
Table S1. A generalised linear mixed effect model with a negative binomial distribution 979 
investigating the relationship between age, terminal year, and species richness in the gut 980 
microbiome of Seychelles warblers (n = 151 samples, 91 individuals). Significant (p < 0.05) 981 
predictors are shown in bold. Conditional R2 = 38.9%. 982 

Predictor Estimate SE z P 
(Intercept) -125.20 71.62 -1.75 0.081 
Age -0.04 0.02 -2.10 0.036 
Terminal Year (yes) -0.26 0.13 -2.06 0.039 
Season (winter) 0.01 0.13 0.09 0.932 
Sex (female) 0.01 0.13 0.05 0.959 
Time at 4℃ -0.18 0.14 -1.33 0.183 
Time of day 0.22 0.12 1.82 0.069 
Territory quality -0.08 0.12 -0.67 0.506 
Sample Year 0.06 0.04 1.79 0.073 
Random  
Individual ID 151 observations 91 individuals Variance 0.14 

 983 
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 984 
Figure S4. Species richness prediction from glmer.nb of the gut microbiome in the 985 
Seychelles warblers (n = 151 samples from 91 individuals). (A) Species richness against 986 
host age in years, solid black line and grey shaded area represent model predictions and 987 
confidence intervals respectively, points represent raw data. (B) Species richness against 988 
terminal year (0: No, 1: Yes), black dot and lines represent model predictions and error bars 989 
respectively, grey dots represent raw data points. 990 
 991 
Table S2. A linear mixed effect model of Shannon diversity with chronological age and 992 
terminal year in the gut microbiome of Seychelles warblers (n = 151 samples, 91 993 
individuals). Significant (p < 0.05) predictors are shown in bold. Conditional R2 = 46.4%.  994 

Predictor Estimate SE df t P 
(Intercept) -152.40 76.85 142.00 -1.98 0.049 
Age -0.01 0.02 86.36 -0.46 0.644 
Terminal Year (yes) -0.16 0.14 133.79 -1.17 0.244 
Season (winter) -0.12 0.17 130.60 -0.69 0.491 
Sex (female) 0.10 0.16 74.64 0.63 0.529 
Time at 4℃ -0.32 0.15 113.36 -2.15 0.034 
Time of day -0.01 0.13 133.62 -0.10 0.920 
Territory quality -0.14 0.14 124.33 -1.02 0.311 
Sample Year 0.08 0.04 142.00 2.00 0.047 
Random  
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Individual ID 151 observations 91 individuals Variance 0.27 
 995 
Table S3. A linear mixed effect model of Shannon diversity within- and between- individual 996 
age analysis, accounting for subsequent close-to-death samples in the gut microbiome of 997 
Seychelles warblers (n = 151 samples, 91 individuals). Significant (p < 0.05) predictors are 998 
shown in bold. Conditional R2 = 49.7%.  999 

Predictor Estimate SE df z P 
(Intercept) 0.95 0.35 129.65 2.75 0.007 
Delta Age -0.07 0.07 135.41 -1.12 0.265 
Mean Age -0.18 0.16 77.16 -1.14 0.257 
Terminal Year Bird (yes) -0.01 0.03 81.30 -0.24 0.809 
Sample Year 0.09 0.06 105.90 1.60 0.11 
Season (winter) -0.12 0.17 128.97 -0.72 0.470 
Sex (female) 0.10 0.16 75.58 0.62 0.535 
Time at 4℃ -0.33 0.15 112.75 -2.24 0.027 
Time of day -0.02 0.13 131.47 -0.12 0.908 
Territory quality -0.15 0.14 122.92 -1.08 0.281 
Random 

Individual ID 151 observations 91 individuals Variance 0.3003 

 1000 
 1001 

 1002 
Figure S5. PCA plot of CLR-transformed reads in Euclidean distance, coloured by age.  1003 
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 1004 
Figure S6. Taxonomic differential abundance analysis for common species (> 20% 1005 
prevalence in the population). (A) ANCOMBC2 with age, (B) GLLVM with age, (C) 1006 
ANCOMBC2 with terminal year, (D) GLLVM with terminal year. Significant (p < 0.05). 1007 
Green = significant (p < 0.05) log fold change, grey = insignificant log fold change.  1008 
 1009 
Table S4. A linear mixed effect model testing for age-related changes in functional scaled 1010 
exponentially transformed observed richness and exponentially transformed Shannon 1011 
diversity of eggNOG annotations in the gut microbiome of Seychelles warblers (n = 152 1012 
samples, 90 individuals). Conditional R2 = 33.7% and 9.2% respectively. 1013 

Observed Richness 
Predictor Estimate SE df t P 
(Intercept) -109.417 42.293 142.715 -2.587 0.011 
Age (years) -0.036 0.013 92.620 -2.877 0.005 
Terminal Year (yes) -0.124 0.077 142.784 -1.605 0.111 
Season (winter) -0.080 0.078 141.089 -1.024 0.307 
Sex (female) -0.080 0.080 78.890 -1.008 0.317 
Days at 4℃ -0.198 0.082 130.818 -2.422 0.017 
Time of day -0.027 0.071 142.930 -0.373 0.710 
Territory quality -0.074 0.072 134.361 -1.030 0.305 
Sample Year 0.055 0.021 142.686 2.618 0.010 
Random 
Individual ID 152 observations 90 individuals Variance 0.047 
 

Shannon Diversity 
Predictor Estimate SE df t P 
(Intercept) -92473.06 46119.45 143.00 -2.01 0.047 
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Age (years) -31.31 12.59 143.00 -2.49 0.014 
Terminal Year (yes) -20.41 83.74 143.00 -0.24 0.808 
Season (winter) 105.32 85.76 143.00 1.23 0.221 
Sex (female) -21.32 78.14 143.00 -0.27 0.785 
Time at 4℃ -36.85 92.11 143.00 -0.40 0.690 
Time of day 27.32 76.97 143.00 0.36 0.723 
Territory quality -1.21 79.70 143.00 -0.02 0.988 
Sample Year 46.31 22.85 143.00 2.03 0.045 
Random  
Individual ID 152 observations 90 individuals Variance 108.9 

 1014 

 1015 
Figure S7. Evolutionary genealogy of genes: Non-supervised Orthologous Groups 1016 
(eggNOG) (A) observed richness and (B) Shannon diversity against host age (years) 1017 
model prediction from linear mixed effect model in the gut microbiome of Seychelles 1018 
warblers. The solid line represents model predictions and ribbon-shadding represent 1019 
confidence intervals from model predictions. Each point represents a sample, and the 1020 
dashed grey lines connect samples collected from the same individual (n = 152 samples 1021 
from 90 individuals). 1022 
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 1023 
Figure S8. Functional PCA plot of CLR-count, euclidean distances of eggNOG annotations 1024 
 1025 
Table S5. COG functional categories [71] 1026 

Abbreviation COG Functional Categories 
A   RNA processing and modification 
K   Transcription 
L   Replication, recombination and repair 
B   Chromatin structure and dynamics 
D   Cell cycle control, cell division, chromosome partitioning 
V   Defense mechanisms 
Y   Nuclear structure 
T   Signal transduction mechanisms 
M   Cell wall/membrane/envelope biogenesis 
N   Cell motility 
Z   Cytoskeleton 
W   Extracellular structures 
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U   Intracellular trafficking, secretion, and vesicular transport 
O   Posttranslational modification, protein turnover, 

chaperones 
X   Mobilome: prophages, transposons 
C   Energy production and conversion 
G   Carbohydrate transport and metabolism 
E   Amino acid transport and metabolism 
F   Nucleotide transport and metabolism 
H   Coenzyme transport and metabolism 
I   Lipid transport and metabolism 
P   Inorganic ion transport and metabolism 
R   General function prediction only 
Q   Secondary metabolites biosynthesis, transport and 

catabolism 
S   Function unknown 
` Unassigned 

 1027 
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 1028 



 42 

Figure S9 Differential abundance of COG X eggNOG members (A) ANCOMBC2 and (B) 1029 
GLLVM. 1030 
 1031 
Table S7. A linear mixed effect model of COG2801 abundance in the gut microbiome of 1032 
Seychelles warblers in relation to within- (delta) and between- individual (mean) age. n = 1033 
153 samples, 91 individuals. Significant (p < 0.05) predictors in bold. Conditional R2 = 1034 
14.7%. Reference categories for categorical variables are shown in brackets 1035 

Predictor Estimate SE df t P 
(Intercept) 9.700 0.971 115.370 9.989 < 0.001 
Delta Age  0.549 0.218 141.991 2.516 0.013 
Mean Age  0.157 0.062 85.606 2.534 0.013 
Terminal Year Bird (yes) 0.028 0.420 69.803 0.067 0.947 
Season (winter) -0.502 0.553 132.368 -0.908 0.365 
Sex (female) 0.219 0.422 63.434 0.520 0.605 
Days at 4℃ -0.196 0.495 136.509 -0.396 0.693 
Time of day -0.313 0.428 136.421 -0.730 0.466 
Territory quality -0.315 0.452 141.901 -0.697 0.487 
Sample Year (2017)     

2018 -1.662 0.902 140.921 -1.844 0.067 
2019 -1.457 1.068 141.645 -1.363 0.175 
2020 -2.200 1.129 134.384 -1.949 0.053 
2021 -2.911 1.119 140.585 -2.601 0.010 
2022 -3.341 1.098 118.243 -3.042 0.003 
2023 -3.215 1.289 111.442 -2.495 0.014 

 Random 
Individual ID 153 observations 91 individuals  Variance 0.1776 

 1036 
 1037 
Table S8. BLASTp top hits for each COG2801 found in the genomes of all constructed 1038 
metagenomics species (MGS) from the gut microbiome of Seychelles warblers (n = 153 1039 
from 91 individuals). 1040 

Top hit (contains keyword) Count Percentage 
IS3 transposase 154 30% 
otherIS transposase 64 13% 
transposase 170 33% 
integrase 30 6% 
Mobile element protein 4 1% 
Helix-turn-helix 19 4% 
Hypothetical protein 45 9% 
Unknown 23 5% 

 1041 
 1042 
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Table S9. Linear mixed model on the CLR-transformed abundance of metagenomic 1043 
species in the gut microbiome of Seychelles warblers (n = 2589 from 89 individuals). To 1044 
test if COG2801-carrying MGS significantly differed in abundance with host age. 1045 
Significant (p < 0.05) predictors are shown in bold. Conditional R2 = 46.9%. 1046 

Predictor Estimate SE df t P 
(Intercept) 5.44 0.41 233.52 13.34 < 0.001 
Age 0.03 0.04 69.32 0.79 0.432 
Terminal Year 
(yes) 0.24 0.19 339.71 1.26 0.210 

Season (winter) -0.09 0.22 394.36 -0.43 0.671 
Sex (female) 0.01 0.26 69.10 0.02 0.982 
Time at 4℃ -0.44 0.18 434.74 -2.40 0.017 
Time of day -0.35 0.18 395.12 -2.01 0.045 
Territory quality -0.47 0.17 379.46 -2.85 0.005 
Sample Year 
(2017) 

     

2018 -0.77 0.41 402.12 -1.90 0.059 
2019 -1.69 0.46 416.15 -3.71 0.000 
2020 -1.19 0.48 360.43 -2.50 0.013 
2021 -0.70 0.46 334.48 -1.53 0.127 
2022 -0.56 0.45 266.74 -1.25 0.213 
2023 -0.65 0.49 239.09 -1.33 0.186 
Random 
Individual ID 874 

observations 
85 individuals Variance 1.042 

 1047 
Table S10. Linear mixed model on the CLR-transformed abundance of metaphlan4 genera 1048 
in the gut microbiome of Seychelles warblers (n = 4477 from 91 individuals). To test if 1049 
known COG2801-carrying genera significantly differed in abundance with host age. 1050 
Significant (p < 0.05) predictors are shown in bold. Conditional R2 = 16.8%. 1051 

Predictor Estimate SE df t P 
(Intercept) 9.08 0.45 316.13 20.37 < 0.001 
Age 0.04 0.04 77.18 0.91 0.363 
Terminal Year 
(yes) 0.30 0.22 272.48 1.37 0.173 
Season (winter) -0.30 0.27 271.10 -1.09 0.276 
Sex (female) 0.15 0.27 70.01 0.54 0.589 
Time at 4℃ -0.52 0.22 373.62 -2.34 0.020 
Time of day -0.60 0.21 224.79 -2.82 0.005 
Territory quality 0.03 0.21 486.10 0.13 0.898 
Sample Year (2017) 
2018 -0.15 0.47 519.08 -0.33 0.745 
2019 -0.85 0.54 423.70 -1.57 0.116 
2020 -0.80 0.55 380.92 -1.46 0.145 
2021 -1.13 0.52 377.58 -2.20 0.029 
2022 -0.56 0.49 363.36 -1.14 0.254 



 44 

2023 -0.06 0.55 281.62 -0.11 0.916 
Random 
Individual ID 1794 observations 89 individuals Variance 0.995 

 1052 

 1053 
Figure S10. Differential abundance analysis of functional gut microbiome cluster of 1054 
orthologous genes (COG) categories in Seychelles warblers using ANCOMBC2 with 1055 
season and sample year. Each COG category is represented by a letter on the y-axis. 1056 
Details of all COG categories are given in Table S5 [71]. “Cat_`” represents eggNOG 1057 
annotations that were not assigned a COG category. Points and error bars are coloured 1058 
according to significance (green: p < 0.05; grey: p > 0.05). 1059 
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 1060 
Figure S11. Differential abundance analysis of functional gut microbiome cluster of 1061 
orthologous genes (COG) categories in Seychelles warblers using GLLVM with season 1062 
and sample year. Each COG category is represented by a letter on the y-axis. Details of all 1063 
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COG categories are given in Table S5 [71]. “Cat_`” represents eggNOG annotations that 1064 
were not assigned a COG category. Points and error bars are coloured according to 1065 
significance (black: p < 0.05; grey: p > 0.05). 1066 
 1067 
 1068 
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 1069 
Figure S12. Differential abundance analysis of functional gut microbiome COG2801 gene 1070 
catalogue that were commonly (20% prevalence) found in Seychelles warblers using (A) 1071 
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ANCOMBC2 and (B) GLLVM. Each gene catalogue (95% average nucleotide identity) are 1072 
represented on the y-axis by their gene catalogue number.  Points and error bars are 1073 
coloured according to significance (black: p < 0.05; grey: p > 0.05). 1074 
 1075 
 1076 


