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Abstract1

At-border interventions are a critical step along the biosecurity continuum, to measure and2

control the risks associated with the cross-border movement of people and goods. Air pas-3

sengers are a high-volume pathway for a range of biosecurity risk materials, against which4

various interventions may be used (e.g., manual searches, detector dogs, x-rays, etc.). Using a5

large interception database for air passengers entering the southern Australian state of Tasma-6

nia, this study applies common statistical modelling tools to assess the efficacy of interventions7

(namely, dog detectors, and bag searches), and to identify pathway risk factors (e.g., flight8

origin/route). Tasmania is an island state, and its environment and industries have benefited9

from a low level of invasive pests due to their geographic isolation. Therefore, relatively strict10

at-border interventions are used to prevent the entry of new pests, including some serious in-11

vasive pests already present on mainland Australia (e.g., Queensland and Mediterranean fruit12

fly, Bactrocera tryoni, Ceratitis capitata). This analysis considered the effects of interventions13

on both voluntary declarations by passengers and also detections of undeclared risk material14

on passengers. The analysis also focused on biosecurity risk items generally (e.g., fruits and15

vegetables, meat products, cut flowers), and items that are specifically considered to be fruit-fly16

hosts. The results highlight the strong positive effects of detector dogs on the rate of intercep-17

tions, particularly of items detected on passengers. Conducting bag searches also appears to18

increase interceptions, both by increasing the rate of items being detected and by encouraging19

voluntary declarations. Sensitivity analyses then test the robustness of results to modelling im-20

plementation methods and distributional assumptions. This study demonstrates how statistical21

modelling can provide robust insights into biosecurity interventions and risk factors along path-22

ways, and further highlights the value of high-quality interception data resources for informing23

and improving biosecurity systems.24

25

Keywords: border biosecurity, detector dogs, sniffer dogs, pathway risk analysis, passenger26

screening, invasive species, fruit fly, Bactrocera tryoni, Ceratitis capitata.27
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1 Introduction28

Biosecurity border interventions seek to balance the need for the cross-border movement of29

goods and people against their biosecurity risks. Although intervention policies inherit from a30

common framework of international agreements (Outhwaite, 2010), there are substantial dif-31

ferences in the policies and implementation of biosecurity interventions across jurisdictions.32

These differences produce variation in the risk of pest introductions across states, countries33

and regions (Whattam et al., 2014; Epanchin-Niell et al., 2021). Australia’s biosecurity system34

tends to have a higher appropriate level of protection and to implement comparatively stricter35

interventions than many other jurisdictions (Whattam et al., 2014; Black & Bartlett, 2020).36

This is partially due to the opportunity presented by Australia’s historical isolation, which has37

made its primary industries relatively pest-free on a global scale. However, contemporary ac-38

tivities such as tourism and trade are reducing this isolation and increasing the risk of pest39

introductions. Recent studies estimate an aggregated cost of invasive species to Australia to be40

AU$389.59 billion since the 1960s (Bradshaw et al., 2021), and a net present value of AU$31441

billion for the national biosecurity system in terms of the assets that it protects (A. Dodd et42

al., 2020; Stoeckl et al., 2023). This highlights the critical importance of ensuring that border43

interventions act as effective barriers against biosecurity threats.44

This is particularly true for the Australian island state of Tasmania (Fig. 1). Due primarily45

to their geographic and evolutionary isolation, island ecosystems possess a disproportionate46

level of the earth’s endemic species and support a large percentage of its biodiversity (Kier et47

al., 2009; Weigelt & Kreft, 2013). Tasmania has specifically been identified as a major cen-48

tre of endemism for Australian flora, for example, more than half of the 30 native Eucalyptus49

species in Tasmania are endemic (Crisp et al., 2001; Potts et al., 2016). This isolation is an50

asset to agricultural producers who benefit from a relatively low-pest environment, but this also51

creates a biosecurity challenge because islands can be particularly vulnerable to the impacts of52

invasive pests and diseases (Keitt et al., 2011; Fraser, 2016; Brettell et al., 2021). For example,53

a 2018 incursion of Queensland fruit fly (‘Qfly’, Bactrocera tryoni) in northern Tasmania cost54

millions in direct eradication costs in addition to further indirect costs (e.g., via temporary mar-55

ket access losses; Blake, 2019). Furthermore, globalisation is expected to increase movement56
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across borders in both goods and people and to continue to bridge the geographic barriers that57

once kept Australia and Tasmania isolated (A. J. Dodd et al., 2015; Seebens et al., 2017, 2021).58

Air passengers are an important high-volume pathway for pest introductions, with around59

20 passengers arriving annually in Australia in 2023-24 (BITRE, 2024). Pests may be in-60

troduced via luggage (e.g., via infested fruit) or by being attached to passenger clothing or61

belongings (e.g., soil on shoes or sports equipment; McNeill et al., 2011; Pace et al., 2022;62

Robinson & McNeill, 2022). Air passenger pathways may be particularly important for pest63

insects, including Mediterranean fruit fly (‘Medfly’, Ceratitis capitata; Liebhold et al., 2006;64

McCullough et al., 2006). Passengers are also a pathway for animal diseases, for example,65

measures targeting African swine fever detected a yearly average of 33,684 pork products from66

2% of screened passengers entering Australia from 2021/22 – 2023/24; (DAFF, 2024). Inter-67

ventions on these pathways must therefore be able to mitigate a high volume and a diverse68

range of biosecurity threats.69

A range of risk mitigation tools can be employed at multiple points on the air passen-70

ger pathway, from pre-departure, in-transit and on-arrival screening/inspection phases of the71

biosecurity continuum (Whattam et al., 2014; Sequeira & Griffin, 2014). Common at-border72

interventions for air passengers in Australia include manual examination, dog detector teams,73

and x-rays (Inspector-General of Biosecurity, 2022).74

Detector dogs may be particularly valuable in air passenger screening, being able to screen75

large volumes of passengers and luggage efficiently, and able to be trained to target general76

biosecurity materials as well as specific pests and diseases (Whattam et al., 2014; Moser et al.,77

2020). Nonetheless, there are limited studies assessing their efficacy relative to other interven-78

tion methods.79

Furthermore, biosecurity interventions are often targeted towards specific flights to max-80

imise the utility of limited resources, e.g., flight-based-traveller profiles used to target inter-81

national arrivals into Australia (Inspector-General of Biosecurity, 2019). Therefore, further82

empirical evidence about the relative efficacy of different interventions may help target inter-83

vention resources towards the highest-risk arrivals.84

The analysis of biosecurity interception/surveillance data is prone to some common issues85
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in statistical modelling, including zero-inflation (i.e., where data includes a large proportion86

of zeros, for example where detections of targeted items are rare), overdispersion (e.g., where87

variance is much higher than predicted), and censoring (e.g., if data is only recorded where88

contamination is detected; Kachigunda, 2020; Turner et al., 2020; Trouvé & Robinson, 2021;89

Kachigunda et al., 2022). Failing to account for overdispersion or zero-inflation in data can lead90

to biased or inaccurate parameter or error estimates (Harrison, 2014; Feng, 2021; Campbell,91

2021). Although some studies suggest that the outputs of mixed-effects models can be robust92

to violations of distributional assumptions (e.g., Schielzeth et al., 2020; Knief & Forstmeier,93

2021), exploring the potential effects of model design and implementation may be important94

considerations when using interception data to inform biosecurity decision-making.95

Focusing on domestic interstate flight arrivals into Tasmania, the goal of this study is to96

assess the efficacy of passenger interventions and pathway risk factors on biosecurity inter-97

ceptions. This focuses on both general biosecurity risk material (‘BRM’) interceptions, and98

interceptions of BRM material specifically relevant to Qfly and Medfly (collectively referred to99

as fruit fly, ‘FF’). Preventing FF incursions has been a focus of Tasmania’s border biosecurity100

system, particularly following the 2018 incursion. This study uses recent air pathway inter-101

vention data for Tasmania. These data are rich resources for our remit, as they include records102

for all commercial arrivals, as well as relevant data on the types/amount of BRM intercepted.103

This provides a valuable opportunity to apply statistical modelling approaches and assess their104

sensitivity to implementation methods. The specific aims of this analysis were:105

1. To determine the relative effects of different interventions (namely, dog detector teams106

and luggage searches) on the rates of BRM and FF host interceptions, including voluntary107

declarations by passengers and involuntary detections of items by biosecurity officers.108

We did not make any specific directional predictions about the effects of searches and109

detector dogs on interceptions.110

2. To identify pathway-risk heterogeneity based on the origin and specific routes of flights.111

We expected substantial variation in interception rates related to flight origin and route,112

which may be used to identify high-risk arrivals.113

3. To test whether our results are sensitive to overdispersion and zero-inflation by imple-114
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menting Bayesian mixed models with zero-inflated Poisson and negative binomial dis-115

tributions. We expected the outputs of models and the estimated effects of intervention116

methods to be robust to different implementation approaches.117

2 Methods118

Data context and overview119

Tasmania is an island state (see Fig. 1), with a cool temperate climate, unique natural ecosys-120

tems characterised by high endemism (Potts et al., 2016; Crisp et al., 2001), and a large primary121

industry sector with and income from agriculture, forestry and fishing industries worth around122

AU$3.5 billion in 2022–23, or ∼9% of the Gross State Product (ABS, 2023). Local industries,123

communities, and natural ecosystems benefit from the state’s relative isolation and low levels124

of pests, including species that are present elsewhere in Australia, such as Qfly, Medfly, tomato125

potato psyllid (Bactericera cockerelli), and grape phylloxera (Daktulsphaira vitifoliae; Cook &126

Fraser, 2015; Florec et al., 2013; Moir et al., 2022; Skinner, 2018).127

The main entry pathway for passengers is by air, with a significant but smaller volume of128

Figure 1: Location of Tasmania in relation to mainland Australia (inset), including the locations of the
seven arrival ports for air passengers, namely (clockwise from top left) King Island, Burnie (Wynard),
Devonport, Launceston, Bridport, Flinders Island, and Hobart. (Note, airports have been anonymised
for the remainder of the analysis and labelled Airport A, Airport B. etc.)
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maritime arrivals (e.g., ferries, cruise vessels, private vessels, etc.). Interceptions from air pas-129

sengers are recorded in the Biosecurity Activity Database System (referred to as ‘BAS data’),130

from which data from 1/Jan/2019 – 1/Sept/2023 was available. There are BAS interception131

records for 59,917 domestic interstate flight arrivals, carrying over 6.5 M passengers (∼1.4132

M/year on average), from which 66,675 BRM interceptions were made.133

BRM items are generally defined to include fresh produce (i.e., fruits and vegetables), an-134

imal products including seafood, live animals, plant material (e.g., nursery stock, seeds), and135

soil attached to sports equipment or clothing. Biosecurity interventions for Tasmania have a136

particular focus on preventing incursions of FF into Tasmania, and a large subset of BRM in-137

terceptions (43,803, or approximately 2/3) are of items considered to be FF hosts. For this138

analysis, FF hosts include 130 taxa listed as Medfly and/or Qfly hosts in the Plant Biosecurity139

Manual Tasmania 2023 (Biosecurity Tasmania, 2023). For details of BRM and FF host item140

definitions and of intercepted BRM items, see Supplementary Materials A.141

Data processing142

Data for 59,917 arrivals was found to be within the scope of analysis, which excludes flights143

from international origins or within the state, and flights with no data (i.e., cancelled, diverted,144

missed, or cleared remotely; ∼14% of all records). A further subset of 27 records was excluded145

because of apparent data entry issues, and 25 arrivals into one airport were excluded as no146

commercial flights arrive at this location, and interceptions for the remaining private arrivals147

were extremely low, causing computational issues with model implementation. As only a small148

fraction of actual arrivals are excluded, and missed arrivals do not appear to be targeted/biased149

towards specific arrivals, we are confident that these exclusions do not reduce the operational150

relevance of the analyses.151

Six count variables were used as response variables, namely:152

1. the total number of BRM interceptions per flight (N Total);153

2. the number of BRM declarations by passengers (N Declarations);154

3. the number of undeclared BRM interceptions (N Detections);155
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4. the total number of FF host interceptions per flight (N Total FF);156

5. the number of FF host declarations by passengers (N Declarations FF); and,157

6. the number of undeclared FF host interceptions (N Detections FF).158

Total BRM and FF host interceptions are the sum of their corresponding declared and un-159

declared detection counts. Both BRM and FF variables were used to explore how interventions160

perform against both general biosecurity threats as well as high-priority/high-risk biosecurity161

materials. Both detections and declarations were included to explore how interventions influ-162

ence both voluntary and involuntary compliance behaviour in passengers (e.g., whether detector163

dogs primarily increase interception through direct detections, or whether they also encourage164

voluntary declarations).165

The number of interceptions was calculated as the sum of each distinct type of BRM/FF166

host material, separated by the passenger (e.g., if 2 passengers are intercepted each carrying167

3 types of BRM, N Total = 6). The rationale is that each commodity type may represent a168

distinct biosecurity threat, as may the same kind of commodity being carried by two separate169

passengers.170

Statistical analysis A: Intervention and pathway risk effects171

Generalized linear mixed effects (‘glm’) models with a Poisson distribution were implemented172

via package ‘lme4’ (v1.1-33, Bates et al., 2015), in the R statistical environment (v4.2.3, R173

Core Team, 2013). This was chosen for the primary analysis, as lme4 is an accessible package174

that can implement models using common distributions, relative to more complex Bayesian175

implementation methods that may be required for more advanced model types. Therefore, this176

approach may be more relevant for use by non-academic users such as biosecurity managers.177

Four fixed effects were included, namely: arrival airport (Location), intervention regime178

(Regime), number of bag searches (BagSearchCount), and number of passengers per flight179

(PassengerCount). Regime includes five combinations of dog detector teams (‘DDTs’) and180

biosecurity inspectors (‘BIs’), i.e. one BI, two BIs, one DDT, one DDT with one BI, and two181

DDTs. Both DDTs and BIs have been deployed across all airports. Airports were included as182

fixed effects, as they may differ both in their interception efficacy and in the underlying rates of183
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contamination on flights arriving at each location. Count predictor variables (i.e., passenger and184

bag search counts) were square-root transformed and Z-scaled to reduce skewness, to improve185

both model performance and the interpretability of effect estimates (per Schielzeth, 2010).186

Models included two random effects, to assess the level of variance associated with the187

flight’s state of origin (FlightOrigin) and specific flight route (FlightNumber; nested within188

origin). Flights without a number recorded were categorised as ‘Itinerant/Other’, with a large189

majority considered to be private non-commercial arrivals, but also likely to include a small190

percentage of commercial flights for which their numbers were not entered into the database.191

For further details of model structure see Supplementary Materials B.192

Unless otherwise stated, all values in square brackets below represent 95% confidence in-193

tervals (or credibility intervals for Bayesian models below; ‘95CI’) for the estimated effects.194

The statistical significance of any fixed effects is inferred from whether their 95CIs include195

zero. Random effects are assessed based on how much variance is explained in models, and196

whether 95CIs for any specific random intercept predictions include zero. Where appropriate,197

parameter/effect estimates below have been converted to percentage changes in the expected198

number of interceptions for ease of interpretability. Marginal means were extracted from mod-199

els using the package ‘emmeans’ (v1.8.7, Lenth, 2023), to estimate expected interception rates200

under different intervention regimes.201

Statistical analysis B: Model sensitivity202

Sensitivity to overdispersion and zero-inflation was tested by re-fitting a subset of models in a203

Bayesian framework via the package ‘brms’ (v2.19.0, Bürkner, 2017). From the six response204

variables used in the main analysis, two were selected for sensitivity analyses. These were205

the total BRM interceptions (N Total, i.e., the most inclusive aggregation of interception data),206

and the number of FF host declarations (N Declarations FF, i.e., the most sparse response207

variable).208

Four alternative distributions were tested for each response variable, namely Poisson (as in209

the main analysis but implemented in a Bayesian framework), zero-inflated Poisson, negative210

binomial, and zero-inflated negative binomial. These were chosen as common alternatives to211
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account for cases with excess zeros and overdispersion in ecology and other fields where count212

data is common (Campbell, 2021; Lindén & Mäntyniemi, 2011; Pittman et al., 2022). Models213

used the same fixed and random effects specifications as in the glm models, with default non-214

informative priors to reflect our lack of prior knowledge for parameter estimates (chains = 3,215

iterations = 3000, warmup = 1000). The outputs for the fixed effects of intervention regimes216

and bag searches and the random intercepts associated with flight origins were estimated and217

qualitatively compared between models.218

Measures of model fit were also estimated for all models, i.e., Akaike/Watanabe–Akaike219

information criterion ‘AIC’/‘WAIC’ as a measure of the quality of model fit for the dataset, and220

marginal and conditional R2 values as measures of the proportion of variance explained by fixed221

effects and both fixed and random effects respectively (via package ’performance’, v0.10.3,222

Lüdecke et al., 2021; Nakagawa & Schielzeth, 2013). Overdispersion and zero-inflation tests223

were also conducted (also via ‘performance’).224

3 Results225

Intervention and pathway risk effects226

Models identified significant effects of biosecurity interventions upon interceptions of both227

BRM and FF host items. Full results, code, models and outputs are available via Open Science228

Framework (doi: [access via review-only link]), and detailed model outputs are available in the229

Supplementary Materials B. Estimated BRM and FF host interception rates were significantly230

higher when detector dogs were present. For example, the estimated total BRM interceptions231

(N Total) per flight with one DDT was 0.88 [0.80, 0.96], compared to 0.50 [0.46, 0.55] for one232

BI. This effect appeared to primarily be driven by increases in the number of detections, with233

DDTs having strong positive effects on BRM and FF host item detections (Fig. 2).234

The number of bag searches conducted (performed both by DDTs and BIs) had a positive235

effect on the estimated total, declared, and detected BRM counts. Unsurprisingly, the square-236

root number of bag searches per arrival was associated with a per-unit increase in total BRM237

interceptions of 24.0% [23.3%, 24.6%]. A similar effect was found for BRM declarations (i.e.,238
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23.8% [22.8%, 24.9%]) and detections (i.e., 24.1% [23.3%, 24.9%]). Similar effects were ob-239

served for FF host interceptions in total (23.8% [23.0%, 24.6%], declarations (23.2% [22.1%,240

24.4%]), and detections (24.3% [23.2%, 25.4%]). In both cases, the effect was similar for241

detections and declarations, suggesting that conducting more bag searches increases the rate242

of BRM being detected and encourages more declarations. As expected, increased passenger243

counts were also associated with increased interception rates across all response variables. Fi-244

nally, there were also some differences between arrival airports in their estimated interception245

rates (see Supplementary Materials B).246

Figure 2: Estimated interception rates for air passenger interception regimes, for (A) BRM interceptions
and (B) FF host items. Note, that estimated rates are the predicted number of interceptions per flight, and
are independent of other factors included in the models (i.e., are estimated based on a flight with a mean
number of passengers, and a mean number of bag searches, and averaged across arrival airports). Total,
declared and detected rates come from distinct models, so estimates are not expected to be additive.
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Random factors flight number and flight origin both explained some variance in interception247

rates (e.g., for N Total, VFlightOrigin = 0.004, VFlightNumber = 0.042), although the random effects248

only explained a small proportion of variation relative to fixed effects (i.e., for N Total, R2
marginal249

= 0.543; R2
conditional = 0.570, proportional VFlightOrigin = 0.002, and proportional VFlightNumber =250

0.025). It should also be noted that the overdispersion may lead to overestimates of R2 values251

(e.g., Harrison, 2014), so these values should be interpreted cautiously. Nonetheless, random252

intercept predictions for flight origin show how pathway factors may be used to identify and253

target interceptions towards higher risk arrivals (Fig. 3). Similar pathway heterogeneity can254

also be identified for flight number (see Supplementary Figs. B.1– B.2).255

Model sensitivity256

Tests showed that models used in the main analysis for N Total and N Declarations FF both257

had probable zero-inflation (ratio of predicted to observed zeros: 0.85 and 0.92, respectively),258

and overdispersion was present in both cases (N Total: dispersion ratio = 1.634, χ2 = 97786.221,259

P < 0.001; N Declarations FF: dispersion ratio = 1.709, χ2 = 102303.640, P < 0.001). No-260

Figure 3: Predicted random intercepts by flight origin for (A-C) BRM interceptions, declarations, and
detections; and (B) FF host interceptions, declarations, and detections. Error bars represent 95CIs, and
intervals that do not include zero are considered to have significantly higher or lower levels of BRM
interceptions than an average flight. Intercept estimates are in the modelled unit, i.e., the log of the
proportional difference between the group and the overall expected BRM/FF host count.
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tably, overdispersion can be a common consequence of zero-inflation, in which case a zero-261

inflated Poisson approach may be sufficient to account for both issues (see Yang et al., 2009).262

Measures of model fit also showed that all models accounting for zero-inflation had lower263

WAIC scores than those that did not, whereas negative binomial models had lower scores com-264

pared to Poisson models (see Supplementary Table B.1).265

Nonetheless, sensitivity analysis showed that the outputs were relatively robust to imple-266

mentation methods, with the patterns identified qualitatively similar between implementation267

types, but with some variation in the magnitude and uncertainty of effects. Estimated intercep-268

tion rates under differing regimes showed similar patterns when using a Bayesian implementa-269

tion, although with slightly greater uncertainty (e.g., the estimated rate with one BI was 0.50270

[0.44, 0.57] compared to 0.50 [0.46, 0.55] in the main model; see Fig. 4). Incorporating zero-271

inflation into Poisson models led to higher rate estimates (see also Supplementary Fig. B.3).272

Whereas, negative binomial models produced lower estimates of BRM interceptions, while also273

Figure 4: Estimated BRM interception rates for air passenger intervention regimes using different model
implementations. Estimates are for five different model implementations, based on the modelled distri-
bution and on a frequentist (lme4) vs Bayesian (brms) framework (see further details under Supplemen-
tary Table B.1).
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showing similar differences between regimes.274

Random intercept predictions also appeared to show qualitatively similar patterns for FF275

host detections (Fig. 5) and BRM interceptions (Supplementary Fig. B.4). Bayesian approaches276

produced greater uncertainty in the mean intercept estimates/predictions when directly com-277

paring the Poisson implementation in lme4 and brms (Fig. 4,. 5), although the means were278

relatively consistent.279

Figure 5: Predicted random intercepts for FF host item detections, by flight origin. Estimates are
included from five different model implementations, which from the top include the following; (green)
Poisson-lme4; (purple) Poisson-brms; (blue) zero-inflated Poisson-brms; (gold) negative binomial-brms;
and, (orange) zero-inflated negative binomial-brms. Intercept estimates are in the modelled unit, i.e., the
log of the proportional difference between the group and the overall expected FF host count.

4 Discussion280

Biosecurity interceptions were strongly influenced by the methods used, for example, the num-281

ber of bag searches conducted increased both detections and declarations from passengers. This282

suggests that increased effort in active at-border surveillance by officers will increase the ef-283

ficacy of interventions by promoting both voluntary compliance by passengers and detections284

of undeclared risk items that may otherwise have been missed. Similarly, dog detector teams285

are increasingly deployed for border interventions along high-volume phytosanitary risk path-286

ways, both in Australia and many other countries (Whattam et al., 2014; Inspector-General of287
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Biosecurity, 2022). Few studies have quantitatively assessed the efficacy of detector dogs, al-288

though a recent study from Williams & Sharp (2023) showed how the presence of a dog versus289

an officer alone can alter passenger behaviour including eye contact, gestures or interactions290

with the officer/dog. Our study provides further insights into the effects dogs may have on291

passenger behaviour and the rate of interceptions at airports. The increase also appears to be292

largely driven by detections of undeclared items instead of voluntary declarations, suggesting293

that dogs may be particularly useful for capturing a component of the biosecurity risk material294

that may otherwise not be found through more passive, voluntary compliance-based methods295

(e.g., public awareness and education campaigns, biosecurity signage and announcements).296

The ability to analyse pathway risk heterogeneity is limited by the type of data collected297

on pathway risk factors. Despite the relatively limited set of pathway factors included in mod-298

els and the relatively small proportion of total variance explained by these factors, models299

were able to identify specific flight origins and routes as potentially high- and low-risk ar-300

rivals. This shows how interception data may be useful for supporting risk-based approaches to301

interventions (e.g., Australia’s flight-based-traveller profiles; Inspector-General of Biosecurity,302

2019) by identifying higher and lower risk arrivals to allocate limited resources to these arrivals303

(Trouvé et al., 2024). These analyses can provide important quantitative evidence supporting304

targeted resource allocations at the border, particularly when combined with further contex-305

tual information such as pre-border pest prevalence data or estimates of potential post-border306

impacts. While Tasmania currently targets 100% of air arrivals, risk-based approaches could in-307

clude decisions about where and when to allocate their most effective methods (e.g., DDTs), or308

to potentially identify a subset of low-risk arrivals that can be met with less resource-demanding309

methods (e.g., passive interventions, signage, amnesty bins).310

While this data is valuable in identifying how interventions or pathway risk influence the311

actual interception rates, many unknowns remain that limit our ability to fully quantify the risk312

of incursions along this pathway. For example, the risk of FF establishing through this pathway313

would require us to estimate the actual volume of BRM on flights and the proportion of those314

items infested with FF (i.e., contamination/infestation rates), the proportion of risk material315

missed (i.e., leakage), or the viability of any FF individuals or larvae that may infest any of316
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the risk material. These parameters may be estimated using complementary methods, such as317

endpoint surveys that target a subset of passengers as manual or X-ray searches to estimate318

BRM contamination rates (Mannix et al., 2024). Samples of intercepted BRM may also be319

further tested to measure their pest contamination/infestation rates. In many cases, particularly320

in biosecurity, empirical data is lacking. Structured expert judgement may then be used to321

elicit unknown parameters from relevant experts (e.g., biosecurity managers, entomologists,322

academics, etc.), using advanced methods to directly elicit uncertainty in parameter estimates323

and incorporate this uncertainty into the decision-making process (Hemming et al., 2018; Bau et324

al., 2024). Therefore, although this study highlights the value of interception data for informing325

biosecurity practices, additional knowledge is required to more completely assess and quantify326

risk across a biosecurity continuum.327

This study used a simple and common approach for count data (i.e., regression modelling328

based on a Poisson distribution), performed with modelling tools that are accessible, and rela-329

tively easy to implement. Sensitivity analysis suggested that the outputs of this approach were330

qualitatively similar to approaches using more advanced tools (i.e., Bayesian modelling meth-331

ods), or distributions (e.g., that account for zero-inflation). Although there were some notable332

differences in outputs, for example, interception rates estimated from negative binomial mod-333

els tended to be lower, suggesting that failing to account for over-dispersion may lead to slight334

overestimates of predicted rates. Also, Bayesian methods tended to lead to higher uncertainty335

estimates around fixed- and random-effect parameters, so may represent a more conservative336

approach to modelling pathway risk factors. Therefore, while our conclusions were generally337

robust to implementation methods, sensitivity analysis may also be a valuable step for provid-338

ing additional information for decision-makers about the robustness of any conclusions drawn339

from modelling. In this case, however, the operational interpretation of the simpler models was340

borne out by the more complex models.341

Finally, effective at-border interventions are a key step in the biosecurity continuum. As342

at-border interventions become more sophisticated and widely implemented, large interception343

data sets will inevitably become more available to researchers and biosecurity decision-makers.344

This study highlights how this data can be a valuable resource for informing management345

15



decisions for Tasmania and can provide empirical evidence to support the implementation of346

risk-based approaches or the use of specific methods such as detector dogs, which can improve347

resource allocations and lead to more effective interventions at borders.348
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Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015, October). Fitting Linear Mixed-384

Effects Models Using lme4. Journal of Statistical Software, 67, 1–48. Retrieved from385

https://doi.org/10.18637/jss.v067.i01 doi: 10.18637/jss.v067.i01386

Bau, S., Hanea, A., Robinson, A. P., & Burgman, M. (2024). Elicit: Using Structured Elic-387

itation in Biosecurity. In Biosecurity: A Systems Perspective. CRC Press. (Num Pages:388

20)389

Biosecurity Tasmania. (2023). Plant Biosecurity Manual Tasmania 2023 Edition. De-390

partment of Natural Resources and Environment Tasmania. Retrieved 2023-05-16,391

from https://nre.tas.gov.au/biosecurity-tasmania/plant-biosecurity/plant392

-biosecurity-manual393

BITRE. (2024). Airport traffic data (Tech. Rep.). Canberra, Australia: Bureau of Infrastructure394

and Transport Research Economics, The Department of Infrastructure, Transport, Regional395

Development, Communications and the Arts. Retrieved 2024-11-13, from https://www396

.bitre.gov.au/publications/ongoing/airport traffic data397

Black, R., & Bartlett, D. M. F. (2020). Biosecurity frameworks for cross-border movement398

of invasive alien species. Environmental Science & Policy, 105, 113–119. doi: 10.1016/399

j.envsci.2019.12.011400

17

https://www.abs.gov.au/statistics/economy/national-accounts/australian-national-accounts-state-accounts/latest-release
https://www.abs.gov.au/statistics/economy/national-accounts/australian-national-accounts-state-accounts/latest-release
https://www.abs.gov.au/statistics/economy/national-accounts/australian-national-accounts-state-accounts/latest-release
https://www.abs.gov.au/statistics/economy/national-accounts/australian-national-accounts-state-accounts/latest-release
https://www.abs.gov.au/statistics/economy/national-accounts/australian-national-accounts-state-accounts/latest-release
https://doi.org/10.18637/jss.v067.i01
https://nre.tas.gov.au/biosecurity-tasmania/plant-biosecurity/plant-biosecurity-manual
https://nre.tas.gov.au/biosecurity-tasmania/plant-biosecurity/plant-biosecurity-manual
https://nre.tas.gov.au/biosecurity-tasmania/plant-biosecurity/plant-biosecurity-manual
https://www.bitre.gov.au/publications/ongoing/airport_traffic_data
https://www.bitre.gov.au/publications/ongoing/airport_traffic_data
https://www.bitre.gov.au/publications/ongoing/airport_traffic_data


Blake, M. (2019, November). Report of the Independent Review of the Queensland Fruit401

Fly incursion in Tasmania (Tech. Rep.). Department of Natural Resources and Envi-402

ronment Tasmania. Retrieved 2023-05-12, from https://nre.tas.gov.au/about-the403

-department/independent-review-of-the-queensland-fruit-fly-response404

Bradshaw, C. J. A., Hoskins, A. J., Haubrock, P. J., Cuthbert, R. N., Diagne, C., Leroy, B., . . .405

Courchamp, F. (2021, July). Detailed assessment of the reported economic costs of invasive406

species in Australia. NeoBiota, 67, 511–550. doi: 10.3897/neobiota.67.58834407

Brettell, L. E., Martin, S. J., Riegler, M., & Cook, J. M. (2021). Vulnerability of island insect408

pollinator communities to pathogens. Journal of Invertebrate Pathology, 186, 107670. doi:409

10.1016/j.jip.2021.107670410

Bürkner, P.-C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal411

of statistical software, 80(1), 1–28. doi: 10.18637/jss.v080.i01412

Campbell, H. (2021). The consequences of checking for zero-inflation and overdispersion413

in the analysis of count data. Methods in Ecology and Evolution, 12(4), 665–680. doi:414

10.1111/2041-210X.13559415

Cook, D. C., & Fraser, R. W. (2015). Eradication versus control of Mediterranean fruit fly416

in Western Australia. Agricultural and Forest Entomology, 17(2), 173–180. doi: 10.1111/417

afe.12093418

Crisp, M. D., Laffan, S., Linder, H. P., & Monro, A. (2001). Endemism in the Australian flora.419

Journal of Biogeography, 28(2), 183–198. doi: 10.1046/j.1365-2699.2001.00524.x420

DAFF. (2024). Annual report 2023-24 (Tech. Rep.). Canberra, Australia: Department of Agri-421

culture, Fisheries and Forestry. Retrieved 2024-11-13, from https://www.agriculture422

.gov.au/about/reporting/annual-report423

DNRET. (2023). Traveller’s Guide to Tasmanian Biosecurity - What You Can and424

Can’t Bring into Tasmania. Retrieved 2023-11-14, from https://nre.tas.gov.au/425

biosecurity-tasmania/biosecurity/travellers-guide-to-tasmanian426

-biosecurity-what-you-can-and-cant-bring-into-tasmania427

Dodd, A., Stoeckl, N., Baumgartner, J., & Kompas, T. (2020). Key Result428

Summary: Valuing Australia’s Biosecurity System (Tech. Rep.). Centre of Excel-429

lence for Biosecurity Risk Analysis, University of Melbourne. Retrieved 2023-04-430

21, from https://cebra.unimelb.edu.au/ data/assets/pdf file/0020/3535013/431

CEBRA Value Docs KeyResultSummary v0.6 Endorsed.pdf432

Dodd, A. J., Burgman, M. A., McCarthy, M. A., & Ainsworth, N. (2015). The changing433

patterns of plant naturalization in Australia. Diversity and Distributions, 21(9), 1038–1050.434

doi: 10.1111/ddi.12351435

Epanchin-Niell, R., McAusland, C., Liebhold, A., Mwebaze, P., & Springborn, M. R. (2021).436

Biological Invasions and International Trade: Managing a Moving Target. Review of Envi-437

ronmental Economics and Policy, 15(1), 180–190. doi: 10.1086/713025438

Feng, C. X. (2021, June). A comparison of zero-inflated and hurdle models for modeling439

zero-inflated count data. Journal of Statistical Distributions and Applications, 8(1), 8. doi:440

10.1186/s40488-021-00121-4441

18

https://nre.tas.gov.au/about-the-department/independent-review-of-the-queensland-fruit-fly-response
https://nre.tas.gov.au/about-the-department/independent-review-of-the-queensland-fruit-fly-response
https://nre.tas.gov.au/about-the-department/independent-review-of-the-queensland-fruit-fly-response
https://www.agriculture.gov.au/about/reporting/annual-report
https://www.agriculture.gov.au/about/reporting/annual-report
https://www.agriculture.gov.au/about/reporting/annual-report
https://nre.tas.gov.au/biosecurity-tasmania/biosecurity/travellers-guide-to-tasmanian-biosecurity-what-you-can-and-cant-bring-into-tasmania
https://nre.tas.gov.au/biosecurity-tasmania/biosecurity/travellers-guide-to-tasmanian-biosecurity-what-you-can-and-cant-bring-into-tasmania
https://nre.tas.gov.au/biosecurity-tasmania/biosecurity/travellers-guide-to-tasmanian-biosecurity-what-you-can-and-cant-bring-into-tasmania
https://nre.tas.gov.au/biosecurity-tasmania/biosecurity/travellers-guide-to-tasmanian-biosecurity-what-you-can-and-cant-bring-into-tasmania
https://nre.tas.gov.au/biosecurity-tasmania/biosecurity/travellers-guide-to-tasmanian-biosecurity-what-you-can-and-cant-bring-into-tasmania
https://cebra.unimelb.edu.au/__data/assets/pdf_file/0020/3535013/CEBRA_Value_Docs_KeyResultSummary_v0.6_Endorsed.pdf
https://cebra.unimelb.edu.au/__data/assets/pdf_file/0020/3535013/CEBRA_Value_Docs_KeyResultSummary_v0.6_Endorsed.pdf
https://cebra.unimelb.edu.au/__data/assets/pdf_file/0020/3535013/CEBRA_Value_Docs_KeyResultSummary_v0.6_Endorsed.pdf


Florec, V., Sadler, R. J., White, B., & Dominiak, B. C. (2013). Choosing the battles: The442

economics of area wide pest management for Queensland fruit fly. Food Policy, 38, 203–443

213. doi: 10.1016/j.foodpol.2012.11.007444

Fraser, G. (2016). Biosecurity and food security—effective mechanisms for public-private445

partnerships. Food Security, 8(1), 83–87. doi: 10.1007/s12571-015-0535-9446

Harrison, X. A. (2014). Using observation-level random effects to model overdispersion in447

count data in ecology and evolution. PeerJ, 2, e616. doi: 10.7717/peerj.616448

Hemming, V., Burgman, M. A., Hanea, A. M., McBride, M. F., & Wintle, B. C. (2018). A449

practical guide to structured expert elicitation using the IDEA protocol. Methods in Ecology450

and Evolution, 9(1), 169–180. doi: 10.1111/2041-210X.12857451

Inspector-General of Biosecurity. (2019). Pest and disease interceptions and incursions452

in Australia (Tech. Rep.). Canberra, Australia: Department of Agriculture and Wa-453

ter Resources. Retrieved 2023-06-02, from https://www.igb.gov.au/current-and454

-completed-reviews455

Inspector-General of Biosecurity. (2022). Efficacy and adequacy of department’s X-ray456

scanning and detector dog screening techniques to prevent entry of biosecurity risk ma-457

terial into Australia (Tech. Rep.). Canberra, Australia: Department of Agriculture and458

Water Resources. Retrieved 2023-09-12, from https://www.igb.gov.au/current-and459

-completed-reviews460

Kachigunda, B. (2020). Remote islands are vulnerable to non-indigenous461

species: Utilization of data analytics to investigate potential modes of introduc-462

tion and pest interceptions (PhD Thesis, Murdoch University). Retrieved 2024-11-463

14, from https://researchportal.murdoch.edu.au/esploro/outputs/doctoral/464

Remote-islands-are-vulnerable-to-non-indigenous/991005542668407891465

Kachigunda, B., Mengersen, K., Perera, D. I., Coupland, G. T., Van der Merwe, J., & McKirdy,466

S. (2022). Use of mixed-type data clustering algorithm for characterizing temporal and467

spatial distribution of biosecurity border detections of terrestrial non-indigenous species.468

PLoS ONE, 17(8-Aug). doi: 10.1371/journal.pone.0272413469

Keitt, B., Campbell, K., Saunders, A., Clout, M., Wang, Y., Heinz, R., . . . Tershy, B. (2011).470

The global islands invasive vertebrate eradication database: a tool to improve and facili-471

tate restoration of island ecosystems. In Island Invasives: Eradication and Management:472

Proceedings of the International Conference on Island Invasives (pp. 74–77). International473

Union for Conservation of Nature (IUCN) Gland, Switzerland.474

Kier, G., Kreft, H., Lee, T. M., Jetz, W., Ibisch, P. L., Nowicki, C., . . . Barthlott, W. (2009).475

A global assessment of endemism and species richness across island and mainland regions.476

Proceedings of the National Academy of Sciences, 106(23), 9322–9327. doi: 10.1073/pnas477

.0810306106478

Knief, U., & Forstmeier, W. (2021, December). Violating the normality assumption may479

be the lesser of two evils. Behavior Research Methods, 53(6), 2576–2590. doi: 10.3758/480

s13428-021-01587-5481

19

https://www.igb.gov.au/current-and-completed-reviews
https://www.igb.gov.au/current-and-completed-reviews
https://www.igb.gov.au/current-and-completed-reviews
https://www.igb.gov.au/current-and-completed-reviews
https://www.igb.gov.au/current-and-completed-reviews
https://www.igb.gov.au/current-and-completed-reviews
https://researchportal.murdoch.edu.au/esploro/outputs/doctoral/Remote-islands-are-vulnerable-to-non-indigenous/991005542668407891
https://researchportal.murdoch.edu.au/esploro/outputs/doctoral/Remote-islands-are-vulnerable-to-non-indigenous/991005542668407891
https://researchportal.murdoch.edu.au/esploro/outputs/doctoral/Remote-islands-are-vulnerable-to-non-indigenous/991005542668407891


Lenth, R. V. (2023). emmeans: Estimated Marginal Means, aka Least-Squares Means.482

Retrieved from https://CRAN.R-project.org/package=emmeans (R package version483

1.8.7)484

Liebhold, A. M., Work, T. T., McCullough, D. G., & Cavey, J. F. (2006). Airline Baggage as a485

Pathway for Alien Insect Species Invading the United States. American Entomologist, 52(1),486

48–54. doi: 10.1093/ae/52.1.48487

Lindén, A., & Mäntyniemi, S. (2011). Using the negative binomial distribution to model488

overdispersion in ecological count data. Ecology, 92(7), 1414–1421. doi: 10.1890/10-1831489

.1490

Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P., & Makowski, D. (2021). performance:491

An R package for assessment, comparison and testing of statistical models. Journal of Open492

Source Software, 6(60). doi: 10.21105/joss.03139493

Mannix, E., Baumgartner, J. B., Bau, S., Bland, L. M., Robinson, A. P., & Page, N. (2024).494

Profiling and Automation. In Biosecurity (pp. 211–230). CRC Press.495

McCullough, D. G., Work, T. T., Cavey, J. F., Liebhold, A. M., & Marshall, D. (2006). In-496

terceptions of Nonindigenous Plant Pests at US Ports of Entry and Border Crossings Over a497

17-year Period. Biological Invasions, 8(4), 611–630. doi: 10.1007/s10530-005-1798-4498

McNeill, M., Phillips, C., Young, S., Shah, F., Aalders, L., Bell, N., . . . Littlejohn, R.499

(2011). Transportation of nonindigenous species via soil on international aircraft passengers’500

footwear. Biological Invasions, 13(12), 2799–2815. doi: 10.1007/s10530-011-9964-3501

Moir, M. L., Croeser, L., Telfer, D., Fenner, C., & McCauley, R. (2022). Value-adding in502

biosecurity surveillance and monitoring: Testing colour and non-target semiochemical lures503

on Psylloidea and Pentatomoidea. Journal of Applied Entomology, 146(10), 1333–1342. doi:504

10.1111/jen.13074505

Moser, A. Y., Brown, W. Y., Bizo, L. A., Andrew, N. R., & Taylor, M. K. (2020). Biosecurity506

Dogs Detect Live Insects after Training with Odor-Proxy Training Aids: Scent Extract and507

Dead Specimens. Chemical Senses, 45(3), 179–186. doi: 10.1093/chemse/bjaa001508

Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2 from509

generalized linear mixed-effects models. Methods in Ecology and Evolution, 4(2), 133–142.510

doi: 10.1111/j.2041-210x.2012.00261.x511

Outhwaite, O. (2010). The International Legal Framework for Biosecurity and the Challenges512

Ahead. Review of European Community & International Environmental Law, 19(2), 207–513

226. doi: 10.1111/j.1467-9388.2010.00678.x514

Pace, R., Ascolese, R., Miele, F., Russo, E., Griffo, R. V., Bernardo, U., & Nugnes, F. (2022).515

The Bugs in the Bags: The Risk Associated with the Introduction of Small Quantities of516

Fruit and Plants by Airline Passengers. Insects, 13(7), 617. doi: 10.3390/insects13070617517

Pittman, B., Buta, E., Garrison, K., & Gueorguieva, R. (2022). Models for Zero-Inflated and518

Overdispersed Correlated Count Data: An Application to Cigarette Use. Nicotine & Tobacco519

Research, 25(5), 996–1003. doi: 10.1093/ntr/ntac253520

20

https://CRAN.R-project.org/package=emmeans


Potts, B. M., Sandhu, K. S., Wardlaw, T., Freeman, J., Li, H., Tilyard, P., & Park, R. F. (2016).521

Evolutionary history shapes the susceptibility of an island tree flora to an exotic pathogen.522

Forest Ecology and Management, 368, 183–193. doi: 10.1016/j.foreco.2016.02.027523

R Core Team. (2013). R: A language and environment for statistical computing. Retrieved524

from https://www.r-project.org/ (Publisher: Vienna, Austria)525

Robinson, A. P., & McNeill, M. R. (2022). Biosecurity and post-arrival pathways in New526

Zealand: relating alien organism detections to tourism indicators. NeoBiota, 71, 51–69. doi:527

10.3897/neobiota.71.64618528

Schielzeth, H. (2010). Simple means to improve the interpretability of regression coefficients.529

Methods in Ecology and Evolution, 1(2), 103–113. doi: 10.1111/j.2041-210X.2010.00012.x530

Schielzeth, H., Dingemanse, N. J., Nakagawa, S., Westneat, D. F., Allegue, H., Teplitsky, C.,531

. . . Araya-Ajoy, Y. G. (2020). Robustness of linear mixed-effects models to violations532

of distributional assumptions. Methods in Ecology and Evolution, 11(9), 1141–1152. doi:533

10.1111/2041-210X.13434534

Seebens, H., Bacher, S., Blackburn, T. M., Capinha, C., Dawson, W., Dullinger, S., . . . Essl,535

F. (2021). Projecting the continental accumulation of alien species through to 2050. Global536

Change Biology, 27(5), 970–982. doi: 10.1111/gcb.15333537

Seebens, H., Blackburn, T. M., Dyer, E. E., Genovesi, P., Hulme, P. E., Jeschke, J. M., . . .538

Essl, F. (2017). No saturation in the accumulation of alien species worldwide. Nature539

Communications, 8(1), 14435. doi: 10.1038/ncomms14435540

Sequeira, R., & Griffin, R. (2014). The biosecurity continuum and trade: Pre-border opera-541

tions. In G. Gordh & S. McKirdy (Eds.), The Handbook of Plant Biosecurity: Principles542

and Practices for the Identification, Containment and Control of Organisms that Threaten543

Agriculture and the Environment Globally (pp. 119–148). Dordrecht: Springer Netherlands.544

Skinner, W. (2018). Presence Through Absence: Phylloxera and the Viticultural Imagination545

in McLaren Vale, South Australia. Asia Pacific Journal of Anthropology, 19(3), 245–263.546

doi: 10.1080/14442213.2018.1461916547

Stoeckl, N., Dodd, A., & Kompas, T. (2023). The monetary value of 16 services protected by548

the Australian National Biosecurity System: Spatially explicit estimates and vulnerability to549

incursions. Ecosystem Services, 60, 101509. doi: 10.1016/j.ecoser.2023.101509550
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