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Abstract 18 

 19 

The 2019/20 Australian megafires impacted numerous species, including six of the seven 20 

montane frog species in the genus Philoria, which are confined to isolated rainforest habitats 21 

across high-altitude areas in eastern Australian Gondwonan rainforest. Using single 22 

nucleotide polymorphisms, we examined the genetic structure and diversity of the six 23 

northern Philoria species to inform conservation management and assess their capacity for 24 

post-fire recovery. Narrow-range species were confirmed as a single population for 25 

management purposes, while P. kundagungan, P. loveridgei, and P. sphagnicolus exhibit 26 

marked genetic differentiation between populations, indicating strong allopatric 27 

differentiation among populations isolated on separate mountaintops, suggesting limited 28 

natural dispersal ability. We further identify high-value genetic populations in these 29 

structured species. Populations that were heavily impacted by the fires, such as P. pughi and 30 

P. knowlesi, may face longer-term threats due to potential declines in adaptive capacity. We 31 

recommend prioritizing in situ management, genetic rescue, and translocation efforts to 32 

bolster resilience in isolated populations. Updated conservation planning and targeted fire 33 

buffer management are crucial for the survival of these ancient, regionally endemic frogs in a 34 

rapidly changing climate. 35 

 36 
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Introduction 39 

 40 

In recent decades, climate change has made Australia increasingly hotter and drier (Yu et al., 41 

2020), and climate projections suggest temperatures could rise by 2-4 °C by 2100 (Watterson 42 

et al., 2015). Climate change is also causing large wildfires to be more common (Liu et al., 43 

2010), and the time between large wildfires is decreasing. At the time, 2019 was the hottest 44 

and driest year in Australia’s recorded history (Yu et al., 2020), and consequently, the 45 

2019/20 bushfire season was the worst bushfire disaster Australia has ever suffered. These 46 

fires, now known as the Black Summer megafires (Davey & Sarre, 2020; Kemter et al., 2021) 47 

burned more than 18.6 million hectares of land, killed more than one billion animals, and 48 

severely damaged a wide area of Australia’s rainforest ecosystems (Roff & Aravena, 2020; 49 

Van Eeden et al., 2020). Specifically, 53% of Gondwanan rainforest burned on Australia’s 50 

east coast, destroying or altering the habitat of its endemic fauna (Collins et al., 2021). 51 

 52 

A Wildlife and Threatened Species Bushfire Recovery Expert Panel, convened by Australia’s 53 

Minister for Environment, compiled a list of 119 animal species requiring urgent 54 

management interventions following the 2019/20 megafires (Legge et al., 2020). Four of the 55 

16 amphibian species on the list belonged to the genus Philoria (Family Limnodynastidae) – 56 

a relatively poorly studied group of seven species of montane leaf-litter frogs from eastern 57 

and southern Australia. Philoria diverged from its sister genus Adelotus approximately 30 58 

MY (Brennan et al. 2023), and the divergence between individual Philoria species is >2 59 

MYA (Knowles et al. 2004), suggesting a long persistence of individual species on isolated 60 

mountain tops. Except for the most southern species, P. frosti, which occurs in alpine 61 

Victoria, all other species occupy mountain-top Gondwanan rainforests in north-eastern New 62 

South Wales and south-eastern Queensland (Fig. 1; Mahony et al., 2022; Anstis, 2018; 63 

Knowles et al., 2004). Each species has a highly fragmented habitat and is susceptible to 64 

environmental change due to low fecundity and terrestrial breeding (Bolitho et al., 2022; 65 

Anstis, 2018).  66 

 67 

Climate change, resulting in prolonged drought and the increasing frequency and severity of 68 

bushfires, is the main threat to Philoria (Bolitho and Newell, 2022; Heard et al., 2023; 69 

Beranek et al., 2023; Mahony et al., 2023; Abram et al., 2021). The 2019/20 megafires 70 
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affected many Philoria habitats in north-eastern New South Wales and south-eastern 71 

Queensland (Mahony et al. 2023). A post-fire impact assessment found that megafires burned 72 

30% of the habitat of P. kundagungan and 21% of the potential habitat of P. richmondensis. 73 

The megafires impacted over 90% of suitable habitats for P. pughi (Heard et al., 2021), 74 

making it one of the most fire-impacted species across all taxa affected by the megafires 75 

(Legge et al. 2020). Fire in Philoria habitat destroys ground cover and woody debris, changes 76 

hydrology, and promotes access for feral pigs that can destroy breeding habitats (Heard et al. 77 

2023). Given the additional risk of extinction of these species due the megafires, more 78 

information on the demography and genetic structure of rainforest Philoria is needed to guide 79 

their recovery. 80 

 81 

Ideally, conservation management of amphibians following a major disturbance should be 82 

undertaken with an understanding of mortality rates at embryonic, larval and juvenile life 83 

stages, and the age at maturity (Biek et al. 2002). Although several studies exist on Philoria 84 

species delimitation, population structure (Knowles et al., 2004; Mahony et al., 2022), and 85 

species distributions (Abram et al., 2021; Bolitho et al., 2019), little is known about species 86 

demography. Demographic studies in the field are challenging due to the species’ rarity, 87 

limited accessibility due to mountaintop distributions, and fossoriality. Count data exist from 88 

patch occupancy studies for P. richmondensis and P. kundagungan (Bolitho et al. 2019; 89 

Heard et al. 2021) and show that extremely low abundances of calling males characterise all 90 

populations. Capture of males at breeding sites presents an ethical challenge; disruption may 91 

damage a nest and compromise egg viability. Adult females are extraordinarily difficult to 92 

find; and so little information on female age at maturity or habitat use is available. However, 93 

individuals currently being raised to adulthood from eggs are still not sexually mature at three 94 

years of age (DN, unpubl. data), suggesting long-lived frogs. 95 

 96 

When demographic data are limited, population genetics can provide important information 97 

for conservation planning. For example, information on population structure provides an 98 

understanding of species’ ecological limits (Sexton et al. 2009) and the level of migration 99 

between areas (Bergl & Vigilant 2007; Meirmans & Hedrick 2011; Abdellaoui et al. 2013). 100 

Genetic diversity estimates can help identify isolated populations undergoing declines, which 101 
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should be a target for conservation actions such as relocations or supplementation (Ewen et 102 

al. 2012; Sheean et al. 2012; Kissel et al. 2014).  103 

 104 

This study focuses on the population genetics of the six northern Philoria species, aiming to 105 

clearly define their population genetic structure and diversity and to infer dispersal processes 106 

that may impact their recovery from the 2019-20 megafires. Firstly, we are interested in 107 

whether analysis of phylogenetic and population genetic structure can inform whether 108 

individuals can move between suitable habitat areas, suggesting an ability to recolonise 109 

habitats. Secondly, we seek to assess whether populations are at elevated risk of population 110 

decline due to low genetic diversity levels and inbreeding, which is relevant for planning 111 

conservation interventions such as translocations. Thirdly, we aim to identify high-value 112 

genetic populations that should be primary targets for protection and management, and to 113 

determine whether high-value populations are covered by current conservation plans for these 114 

species (e.g. Assets of Intergenerational Significance (AIS) in NSW). Fourthly, given that 115 

Philoria species were among those most impacted by the 2019/20 megafires (Legge et al. 116 

2020), there is value in analysing the potential impacts of the fires on each species, such as 117 

whether fires burned populations that had higher genetic diversity and/or a higher frequency 118 

of unique alleles. Guided by these new insights, we then make management 119 

recommendations to better protect this ancient radiation of regionally endemic frog species. 120 

 121 

Materials and Methods 122 

 123 

Study species 124 

 125 

Philoria species occur on high-elevation mountains almost entirely within protected areas 126 

(Bolitho et al. 2019). Due to their fossorial habit, adults are challenging to find during the 127 

non-breeding season (Knowles et al. 2004; Hoskin et al. 2009; Willacy et al. 2015), but males 128 

are conspicuous when calling during the breeding season from muddy seepages within 129 

rainforest headwater streams (Knowles et al. 2004; Anstis 2018; Bolitho et al. 2023). Unlike 130 

many other frogs that disperse as tadpoles, Philoria larvae remain in the nest until completing 131 

metamorphosis (Hollis 2004; Knowles et al. 2004; Mahony et al. 2022). 132 

 133 



 4  

The Mountain frog, Philoria kundagungan, occurs in the Main Range National Park 134 

Queensland (Qld) and the Koreelah, Mount Clunie, and Tooloom National Parks in New 135 

South Wales (NSW), with around eleven square kilometres of suitable habitat (Bolitho et al. 136 

2019). Pugh’s Mountain frog, P. pughi, is found only in the Gibraltar Ranges, Timbarra 137 

Plateau and New England Ranges in northern NSW, in both national parks and reserves and 138 

on land managed for forestry. The Mount Ballow Mountain frog, P. knowlesi, has one of the 139 

smallest distributions, occurring only in Mount Barney and Mt Ballow National Parks in Qld 140 

and on Mount Nothofagus and Levers Plateau in the eastern Border Ranges National Park 141 

NSW (Mahony et al. 2022). Loveridge’s Mountain Frog, P. loveridgei, occurs in the 142 

Lamington and Springbrook National Parks in Qld., and the Border Ranges, Mount Warning 143 

and Nightcap National Parks in NSW. The Richmond Range sphagnum frog, P. 144 

richmondensis, mainly occurs in the Yabbra, Richmond Range, and Toonumbar National 145 

Parks in NSW. The sphagnum frog, P. sphagnicolus, is the most widespread Philoria species, 146 

and occurs from Guy Fawkes River National Park in the north to the Tapin Tops National 147 

Park in the south in NSW. It appears to be naturally absent from the Oxley Wild Rivers 148 

National Park and was recognised previously as having northern and southern populations 149 

(Knowles et al. 2004; Murray & Hose 2005). 150 

 151 
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 152 
Figure 1. Genetic samples of Philoria species in northern NSW and QLD. Each species 153 

(coloured boxes) shows the listing status federally under the Environment Protection and 154 

Biodiversity Conservation (EPBC) Act and in relevant states. Samples are shown over 155 

elevation (a) and Green Vegetation Content 156 

(b; https://pid.geoscience.gov.au/dataset/ga/74350), highlighting the restriction 157 

of Philoria species to high elevation rainforest habitats. The asterisk for P. knowlesi 158 

represents the preliminary EPBC status. Photos by Liam Bolitho (P. richmondensis) and 159 

Stephen Mahony (all others). 160 

 161 
DNA Sequencing and SNP data generation 162 

 163 
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A total of 163 tissue samples (P. knowlesi=17, P. kundagungan = 32, P. loveridgei = 39, P. 164 

pughi = 16, P. richmondensis = 12, P. sphagnicolus = 47) from the Australian Biological 165 

Tissue Collection (ABTC) were used for DNA extraction and sequencing, and represented all 166 

Philoria tissue samples available after the 2019-20 megafires (details in Appendix S1). All 167 

tissue samples were submitted to Diversity Arrays Technology Pty Ltd (Canberra) for 168 

commercial DNA extractions, library preparation, and DArT-seq 1.0 high-density sequencing 169 

following the proprietary methods outlined in Kilian et al. (2012) and Sansaloni et al. (2011) 170 

papers. In brief, the PstI-SphI restriction enzyme combination was used for DNA digestion 171 

and all other laboratory steps followed by Georges et al. (2018).  172 

 173 

SNP data generation 174 

 175 

We used the Stacks v2.6.4 (Catchen et al. 2011; Catchen et al. 2013) for quality filtering, 176 

identifying loci in individuals, and genotyping each locus. We first ran process_radtags to 177 

remove barcodes and quality filter raw reads. We then used the Trimmomatic v0.39 (Bolger 178 

et al. 2014) to trim all obtained reads to 68 bp with the script: “java -jar trimmomatic-0.39.jar 179 

SE -phred64 ILLUMINACLIP: TruSeq3-SE.fa:2:30:10 LEADING:5 180 

SLIDINGWINDOW:4:5 CROP:68 MINLEN:68”. Then we ran the de novo pipeline with 181 

Stacks v2.6.4, using default settings for ustacks, cstacks, sstacks, tsv2bam, and gstacks.  182 

 183 

We ran gstacks and populations steps multiple times using different popmap files and settings 184 

as required for the theoretical requirements of different analyses. For the population genetic 185 

structure analysis, we used the single popmap file for each species with the following 186 

settings: “--min-samples-overall” to 0.75, “--min-mac” to 3, “--min-maf” to 0.05, and “--187 

max-obs-het” to 0.5. To generate a PHYLIP file for the phylogenetic analysis, we used a 188 

popmap file containing all the individuals after filtering and the following settings: “--min-189 

samples-overall” to 0.75, “--min-mac” to 3, “--min-maf” to 0.05, and “--max-obs-het” to 0.5. 190 

We used the popmap files with only one and each species for the genetic diversity analyses. 191 

We set the “--min-samples-overall” to 0.75 and “--max-obs-het” to 0.5 to calculate autosomal 192 

heterozygosity and FIS. 193 

 194 



 7  

The VCF files were filtered in R V4.3.2 (R Core Team, 2023) using the dartR package  195 

(Gruber et al. 2018) to filter the loci and individuals for each species. The key settings for the 196 

filtering process are outlined in Appendix S2. 197 

 198 

Phylogenetic analysis 199 

 200 

We used the IQ-TREE2 v2.2.2.6 (Minh et al. 2020) to generate the maximum likelihood 201 

(ML) phylogenetic tree, with 10000 ultrafast bootstrap (Hoang et al. 2017) replicates to 202 

provide approximately unbiased branch support values. ModelFinder v1.0 (Kalyaanamoorthy 203 

et al. 2017) was used to find the best nucleotide substitution model (-m TEST+ASC). 204 

 205 

Population genetic structure analysis 206 

 207 

We first ran the Principal Coordinates Analysis (PCoA) for each species using the dartR 208 

package. Then, we used the snmf (sparse Non-Negative Matrix Factorization algorithms) 209 

function from the R LEA package (Frichot & François 2015) to estimate the number of 210 

genetic clusters (K) for each Philoria species. We used 5% of the final data with K from 1 to 211 

6 to find the optimal tolerances and alpha values setting (Frichot et al. 2014), with the best 212 

tolerances and alpha settings used to run the full dataset for each K value, and repeated 100 213 

times. The cross-entropy criterion was used to determine the best K-value (Frichot et al. 214 

2014). Pairwise FST and Nei’s genetic distances were calculated in R using the hierfstat 215 

package (Goudet 2005). 216 

 217 

Genetic diversity and inbreeding analysis 218 

 219 

The number of private alleles (NP), allelic richness (AR), observed and expected 220 

heterozygosity (HO and HE), and the inbreeding coefficient (FIS) for each species and 221 

subpopulation (as identified in the population structure analyses) were calculated in R using 222 

the dartR and hierfstat packages. 223 

 224 

Bushfires dataset and potential impacts analysis 225 

 226 
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Due to the lack of tissue samples available after the megafires, we classified all individuals 227 

into “Burnt” and “Unburnt” groups based on whether the 2019/20 megafires burned the 228 

sampling location. By comparing the number of private alleles and allelic richness of these 229 

groups, we assessed whether the megafires could impact genetic diversity by assessing the 230 

diversity held within burnt populations versus unburnt populations. To classify the individual 231 

locations as unburnt or burned, we used the National Indicative Aggregated Fire Extent 232 

Datasets (NIAFED, 233 

https://fed.dcceew.gov.au/datasets/dc651afe7ec944d0a22e6c1f120f3a15), which mapped all 234 

the areas that burned during the 2019/20 megafires. 235 

 236 

Results  237 

 238 

After filtering for population genetic structure analyses, we retained 15 individuals with 239 

1,273 SNPs for P. knowlesi, 23 individuals with 4,621 SNPs for P. kundagungan, 29 240 

individuals with 2,980 SNPs for P. loveridgei, 11 individuals with 758 SNPs for P. pughi, 11 241 

individuals with 949 SNPs for P. richmondensis, and 37 individuals with 4,117 SNPs for P. 242 

sphagnicolus. 243 

 244 

Phylogenetic analyses 245 

 246 

Our maximum likelihood phylogeny (Fig. 2) with additional sampling for P. kundagungan, 247 

P. pughi, P. richmondensis and P. sphganicolus, was consistent with previous studies of 248 

northern Philoria (Mahony et al., 2022). The southernmost species, P. sphagnicolus, was set 249 

as the sister lineage to the other two major clades following Mahony et al. (2022). The second 250 

clade comprises the sister species P. knowlesi and P. loveridgei. The third clade comprises 251 

three closely related species: P. pughi, P. richmondensis, and P. kundagungan. The 252 

interspecific relationships between species are strongly supported (posterior probability ≥ 253 

0.99, bootstrap support = 100). 254 

https://fed.dcceew.gov.au/datasets/dc651afe7ec944d0a22e6c1f120f3a15
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 255 
Figure 2. Maximum likelihood phylogeny of northern Philoria frogs. Values represent 256 

bootstrap support at each node. 257 

 258 
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Analysis of population genetic structure  259 

 260 

The population genetic structure analysis identified between 1-3 clusters for each Philoria 261 

species. For P. knowlesi and P. richmondensis, the optimal genetic cluster number (K) was 1 262 

(Figure 3). 263 

 264 

 265 
Figure 3. Distribution maps and population genetic structure for P. knowlesi (red) and P. 266 

richmondensis (yellow). Location abbreviations are available in Appendix S2. The striped 267 

areas on the map show areas burnt in the 2019/20 megafires. 268 
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National Park (KUN.P1), while the second cluster comprises the rest of the species range in 272 

the southern end of the Main Range National Park, Koreelah National Park, Mount Clunie 273 

National Park, and Tooloom National Park (KUN.P2) (Figure 4c). For P. loveridgei, the 274 

genetic clusters comprise sampling sites from the eastern side of the Border Ranges National 275 

Park, Mount Warning National Park, and Nightcap National Park (LOV.P2), and sampling 276 

site on the northern side of the Border Ranges National Park, Lamington National Park, and 277 

Springbrook National Park (LOV.P1) (Figure 4c). For both species, some admixture exists 278 

between the genetic clusters at the edge of their ranges. 279 

 280 

 281 
Figure 4. Population genetic structure (a, b) and the distribution maps (c) for P. 282 

kundagungan (orange) and P. loveridgei (blue). Location abbreviations are available in 283 

Appendix S2. The striped areas on the map show areas burnt in the 2019/20 megafires. 284 

 285 
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We identified one genetic cluster in P. pughi and three in P. sphagnicolus (Figure 5). For P. 286 

sphagnicolus, these three genetic clusters include samples from Mount Hyland Nature 287 

Reserve, Dorrigo National Park, New England National Park (SPH.P1); samples from 288 

Werrikimbe National Park, Mount Boss State Forest (SPH.P2); and samples from Boorganna 289 

Nature Reserve, Killabakh Nature Reserve, and Dingo State Forest (SPH.P3). Admixture 290 

occurs between adjacent clusters at the edges of the distribution range of each subpopulation. 291 

 292 

 293 
Figure 5. Distribution maps (a) and population genetic structure (b) for P. pughi (pale 294 

yellow) and P. sphagnicolus (shades of blue). Location abbreviations are available in 295 

Appendix S2. The striped areas on the map show areas burnt in the 2019/20 megafires. 296 
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limited gene flow among geographically separated populations, likely reflecting historical 301 

isolation and restricted dispersal across unsuitable habitats. 302 

 303 
 304 
Figure 6. Pairwise FST and Nei’s genetic distance among P. kundagungan, P. loveridgei and 305 

P. sphagnicolus subpopulations. Values are presented as a heatmap, with the range shown in 306 

the upper right. The blue colour represents the FST, and the red colour represents the Nei’s 307 

distance. 308 

 309 

Genetic diversity  310 

 311 

Genetic diversity varied among the six Philoria species studied here (Table 1). Both P. pughi 312 

and P. richmondensis had a relatively high FIS value (FIS > 0.23). For P. kundagungan, the 313 

southern genetic cluster (P. kundagungan P2) had more private alleles and higher allelic 314 

richness than the northern genetic cluster (P. kundagungan. P1). The southern cluster (P. 315 

kundagungan P2) had a high FIS value (FIS = 0.3210), and the northern cluster (P. 316 

kundagungan P1) had a negative FIS value. The western cluster of P. loveridgei (P1) had a 317 

higher number of private alleles and allelic richness than the eastern cluster (P. loveridgei 318 

P2), but there was no significant difference in FIS (p-value = 0.6955). The northern cluster (P. 319 

sphagnicolus P1) had a higher number of private alleles and allelic richness than the other 320 

two clusters. The southern cluster (P. sphagnicolus P3) had the lowest FIS value (FIS = 321 
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0.1096), while the middle cluster (P. sphagnicolus P2) had the highest FIS value (FIS = 322 

0.1972) within the species. 323 

 324 
 325 
Table 1. Population genetic diversity summary statistics: number of private alleles (Np), 326 
allelic richness (AR), observed heterozygosity (HO), expected heterozygosity (HE), and 327 
inbreeding coefficient (FIS). Private alleles can only be reported for species with more than 328 
one population. Standard errors are given in parentheses. 329 
 330 
Species/cluster N NP AR HO HE FIS 

P. knowlesi 15 - 2.0000 
(0.0000) 

0.3494 
(0.0029) 

0.4336 
(0.0018) 

0.1837 
(0.0071) 

 
P. kundagungan 
   P. kundagungan 
P1 11 633 1.7296 

(0.0063) 
0.4312 
(0.0036) 

0.3825 
(0.0024) 

-0.1061 
(0.0051) 

   P. kundagungan 
P2 12 1186 1.8468 

(0.0050) 
0.2451 
(0.0022) 

0.3909 
(0.0022) 

0.3210 
(0.0055) 

 
P. loveridgei 

   P. loveridgei P1 16 322 1.9591 
(0.0029) 

0.3023 
(0.0026) 

0.3456 
(0.0024) 

0.1087 
(0.0051) 

   P. loveridgei P2 13 66 1.8821 
(0.0057) 

0.3010 
(0.0030) 

0.3471 
(0.0027) 

0.1117 
(0.0059) 

 
P. pughi 11 - 2.0000 

(0.0000) 
0.3656 
(0.0047) 

0.4807 
(0.0015) 

0.2308 
(0.0105) 

 
P. richmondensis 11 - 2.0000 

(0.0000) 
0.3677 
(0.0042) 

0.4858 
(0.0013) 

0.2365 
(0.0091) 

 
P. sphagnicolus 
   P. sphagnicolus 
P1 10 1474 1.6900 

(0.0070) 
0.3563 
(0.0034) 

0.4195 
(0.0023) 

0.1296 
(0.0067) 

   P. sphagnicolus 
P2 14 475 1.4681 

(0.0073) 
0.2494 
(0.0036) 

0.3203 
(0.0030) 

0.1972 
(0.0076) 

   P. sphagnicolus 
P3 13 289 1.2755 

(0.0068) 
0.3524 
(0.0061) 

0.3985 
(0.0038) 

0.1096 
(0.0117) 

 331 
The potential impacts of megafires on genetic diversity 332 

 333 

The 2019-20 megafires had different potential impacts on genetic diversity for the four 334 

Philoria species that had both burnt and unburnt populations (Table 2). In general, the 335 

proportion of individuals occupying burnt locations was higher than those from unburnt 336 

locations (Figure 3, 4, 5, Table 2). Correspondingly, individuals from burnt locations tended 337 
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to have more private alleles and greater allelic richness than those from unburnt locations 338 

(Table 2).  339 

 340 
Table 2. Genetic diversity among burnt and unburnt regions of Philoria species* impacted by 341 
the 2019-2020 megafires 342 
 343 
Genetic cluster N NP AR 

 
P. knowlesi 
  Burnt 13 773 1.4237 (0.0023) 
  Unburnt 
 2 0 1.2219 (0.0079) 

P. kundagungan 
  Burnt 14 762 1.9217 (0.0026) 
  Unburnt 
 9 100 1.8190 (0.0054) 

P. richmondensis 
  Burnt 8 340 1.7726 (0.0057) 
  Unburnt 
 3 1 1.5236 (0.0133) 

P. sphagnicolus 
  Burnt 29 1273 1.6917 (0.0051) 

  Unburnt 8 262 1.6622 (0.0070) 
 

N number of individuals, Np number of private alleles, AR allelic richness (standard error) 344 
*Philoria pughi not included as all sequenced individuals were impacted by the fires, while 345 
P. loveridgei was not included as no populations were impacted. 346 
 347 
Discussion 348 

 349 

Mountaintop species often show strong signatures of allopatric speciation, driven by 350 

historical geographic isolation as populations become confined to high-altitude habitats 351 

(Catchen et al. 2013). Such isolation can result in significant genetic differentiation between 352 

populations on separate mountaintops, with limited or no gene flow occurring across 353 

unsuitable lowland habitats. This pattern is common in montane species with poor dispersal 354 

abilities (Bell et al. 2010; Velo-Antón et al. 2013; Mahony et al. 2021; Mahony & Donnellan 355 

2022). As climate change continues, the inability of these species to maintain gene flow 356 

across increasingly fragmented landscapes has crucial conservation implications. Populations 357 

that have experienced declines are unlikely to be rescued by dispersal by individuals from 358 

neighbouring mountaintops. This lack of gene flow exacerbates the risk of inbreeding and 359 
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genetic drift (Furlan et al. 2012) and reduces the potential for recolonisation (Driscoll 1997), 360 

making these species particularly vulnerable to extinction. For taxa such as Philoria that have 361 

diversified through allopatric speciation on mountaintops, population supplementation after 362 

declines and managing genetic diversity across isolated populations will be vital to reduce 363 

their risk of extinction in the face of environmental change (Sheean et al. 2012; Kissel et al. 364 

2014). 365 

 366 

Our results based on genomic data are consistent with the hypothesis that allopatric 367 

speciation drove diversification in Philoria species as they retracted to rainforests at higher 368 

elevations (Hollis 2004; Bolitho et al. 2019). Our phylogenetic analyses found no overlap in 369 

the geographic ranges of any species (Fig. 1, 3,4,5) and strongly support the monophyly of 370 

the six Philoria species we analysed here, with P. sphagnicolus being the sister taxa to the 371 

five extant northern species. Sister species are always geographically proximate, supporting 372 

the hypothesis that habitat contraction over millions of years led to allopatric speciation, 373 

likely due to poor dispersal ability in combination with the retraction of wet forests (Morgan 374 

et al. 2008; Byrne et al. 2011; Chapple et al. 2011).   375 

 376 

Our analyses of within-species population genetic structure showed that populations are 377 

geographically separated by lowland valleys that create breaks in rainforest habitat, especially 378 

for P. kundagungan and P. sphagnicolus (Fig 4,5; Byrne et al., 2011; Chapple et al., 2011). 379 

Conservation managers focussing on Philoria kundagungan, P. loveridgei, and P. 380 

sphagnicolus should treat each genetic cluster (subpopulation) as a management unit (MU) 381 

given the apparent lack of gene flow between rainforest blocks. The other three Philoria 382 

species analysed here should be considered as one MU for conservation actions. Initiatives 383 

such as captive breeding (Fraser 2008; Ralls & Ballou 2013; Harley et al. 2018), should be 384 

considered for each management unit to maintain or increase genetic diversity, ideally 385 

supported by structured decision-making to evaluate the relative costs and benefits of ex-situ 386 

and in-situ actions (Rout et al. 2023). 387 

 388 

Our results support the hypothesis that topography and habitat play an ongoing role in driving 389 

the population structure of Philoria species due to poor dispersal through unsuitable lowland 390 

open forest. Population genetics studies of other montane species living in the Gondwana 391 
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rainforests (especially frogs) have also shown that topography and habitat are crucial drivers 392 

of population structure (Mahony & Donnellan, 2022; Mahony et al., 2021). However, the 393 

movement ecology of Philoria species, and the habitats they use during the non-breeding 394 

season, is a critical knowledge gap (Heard et al. 2023). Studies on the Victorian species P. 395 

frosti have shown that males and females disperse small distances (< 85 metres) from 396 

breeding sites (Hollis 2004). Observations by the authors in the field (DN & MM) indicate 397 

use of rainforest habitat outside breeding areas and possible movement between headwaters 398 

within a rainforest fragment. However, it is likely that the northern species have limited 399 

dispersal between rainforest fragments, which requires testing by appropriate field studies. 400 

Philoria species likely require specific temperatures and high humidity for survival (Anstis 401 

2018; Heard et al. 2023), thus the hotter and drier valleys between mountain-top habitats may 402 

prevent their dispersal. Consequently, overcoming dispersal limitations for declining 403 

populations will be key to species persistence, and genetic rescue may be a suitable option 404 

(Willi et al. 2022). 405 

 406 

As most species occur as small, isolated populations, they are at risk of further decline due to 407 

habitat degradation, leading to elevated inbreeding, genetic drift, and an increased risk of 408 

extinction (Hedrick & Kalinowski 2000; Fahrig 2003; Kramer et al. 2008; Pavlova et al. 409 

2017; Wang et al. 2017). Reduced genetic diversity can lessen the capacity to adapt to 410 

environmental change and lead to species extinction (Barrett & Schluter, 2008; Frankham, 411 

2005). We found that all subpopulations of P. kundagungan, P. pughi, P. richmondensis, and 412 

the middle subpopulation of P. sphagnicolus (P. sphagnicolus P2) had comparatively low 413 

genetic diversity and/or comparatively high levels of inbreeding relative to other populations. 414 

Hence as these populations have an elevated risk of extinction, management actions that 415 

increase their genetic diversity and reduce inbreeding depression should be a priority, such as 416 

biobanking (Howell et al. 2021) and translocations (Ewen et al. 2012; Sheean et al. 2012). In 417 

parallel, actions that can increase population sizes, such as habitat restoration (Beranek et al. 418 

2020) or head-starting (Mendelson III & Altig 2016) would be similarly beneficial. 419 

 420 

The identification of populations with the highest genetic diversity and lowest inbreeding 421 

(hereafter ‘high-value populations’) is key to maintaining species over the longer term (Booy 422 

et al. 2000; Frankham 2005; Hughes et al. 2008). High-value populations should be primary 423 
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targets for threat management, including protective fire buffer management, disease 424 

management, and invasive species control such as feral pig management (Acevedo-425 

Whitehouse 2009; Moskwa et al. 2016; Gerber et al. 2018). For the six Philoria species 426 

(Table 1), the entire ranges of P. knowlesi, P. pughi, and P. richmondensis should be 427 

considered high-value populations. The southern subpopulation of P. kundagungan (P. 428 

kundagungan P2) is the highest value within the species, noting that the diversity in the Main 429 

Range portion of this population is much higher than the most southern sites such as 430 

Tooloom. The western subpopulation of P. loveridgei (P. loveridgei P1), and the northern 431 

subpopulation of P. sphagnicolus (P. sphagnicolus P1). 432 

 433 

When fires cause population declines, the resulting loss of genetic diversity can have lasting 434 

impacts on species' resilience and adaptive potential, and therefore understanding fire impact 435 

relative to pre-existing diversity is vital. Heard et al. (2023) assessed the impacts of the 436 

megafires on Philoria by quantifying the extent of habitat affected and assessing changes in 437 

the patterns and abundance of calling males. Heard et al.’s study found that 30% and 12% of 438 

the potential habitats of P. kundagungan and P. richmondensis were impacted by the 439 

megafires. For P. kundagungan, site occupancy and the number of calling males after 440 

megafires decreased by 19% and 40%, respectively, compared to before the megafires. In 441 

contrast, the effects of the megafires on P. richmondensis were less pronounced. The post-fire 442 

site occupancy and the number of calling males reduced by 10% and 14%, respectively, 443 

compared to pre-fire, but the effect of the megafires was less apparent due to the low 444 

numbers of males detected in the preceding drought (D. Newall, unpublished observation). 445 

More recently, Beranek et al. (2023) reported that the 2019/20 megafires had a very 446 

significant negative impact on P. pughi, which drastically reduced the number of occupied 447 

sites and the average probable occupancy levels. 448 

 449 

These findings of consistent declines post fire mean that actions to improve population 450 

persistence should be implemented, which is supported by our new understanding of how 451 

genetic diversity may have also been impacted. Our comparison of pre-fire genetic diversity 452 

in burnt and unburnt habitats (Table 2) shows that for all species except P. loveridgei, 453 

megafires burned areas that had high genetic diversity before the fires. Fire impacts are likely 454 

to have significantly lowered the genetic diversity of species identified as a single genetic 455 
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population (P. knowlesi, P. richmondensis, and P. pughi). Fortuitously for species with more 456 

genetic structure (P. kundagungan and P. sphagnicolus), the “high value” subpopulations 457 

were least affected by the fires. However, it is important to note that our understanding the 458 

impacts of the 2019-20 megafires on the genetic diversity of Philoria is rudimentary, as we 459 

lacked post-fire tissue samples. Collection of these within the first 6 year would be beneficial, 460 

given current understanding of generation time. In addition, changes in the genetic diversity 461 

of populations following fire are not expected to arise immediately (Legge et al. 2020), as 462 

changes in diversity take one or more generations to accrue. 463 

 464 

Conclusion  465 

 466 

The ecological niche of Philoria species is narrow and contracting due to climate change 467 

(Bolitho & Newell 2022; Mahony et al. 2022). More dire predictions from ecological niche 468 

models show that the current ranges of P. kundagungan and P. richmondensis would shrink 469 

by 64% and 50% in the future (2055) under a low-warming scenario and by 91% and 85% 470 

under a high-warming scenario (Bolitho & Newell 2022). The occurrence of stochastic 471 

catastrophic events such as the megafires, primed by a proceeding extensive drought, overlain 472 

on the shallower decline trajectory due to climate change, has major ramifications for this 473 

revictual lineage of frogs (Heard and Bolitho et al. 2023). Genetic management is essential in 474 

the context of escalating threats, and we encourage managers to use this new information on 475 

genetic diversity, genetic heath and contracting niches to implement targeted conservation 476 

plans that can help Philoria species persist in the wild. 477 
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Table S1. Sample information. All samples are from the Australian Biological Tissue 
Collection (ABTC). Location coordinates have been rounded to hide sensitive information. 
Sample ID Species Latitude Longitude Locality code 
ABTC26286 P. knowlesi -28.32 152.87 BRA (NSW) 
ABTC26287 P. knowlesi -28.32 152.87 BRA (NSW) 
ABTC97186 P. knowlesi -28.26 152.63 MBA (QLD) 
ABTC97198 P. knowlesi -28.30 152.68 MBE (QLD) 
ABTC97199 P. knowlesi -28.30 152.68 MBE (QLD) 
ABTC97200 P. knowlesi -28.30 152.68 MBE (QLD) 
ABTC97201 P. knowlesi -28.30 152.68 MBE (QLD) 
ABTC97202 P. knowlesi -28.29 152.60 MBC (QLD) 
ABTC97203 P. knowlesi -28.29 152.60 MBC (QLD) 
ABTC97204 P. knowlesi -28.29 152.60 MBC (QLD) 
ABTC127637 P. knowlesi -28.27 152.61 MBB (QLD) 
ABTC127638 P. knowlesi -28.31 152.62 MBD (QLD) 
ABTC127639 P. knowlesi -28.31 152.62 MBD (QLD) 
ABTC127640 P. knowlesi -28.31 152.62 MBD (QLD) 
ABTC127641 P. knowlesi -28.31 152.62 MBD (QLD) 

ABTC14079 P. 
kundagungan -28.32 152.51 MCL (NSW) 

ABTC16851 P. 
kundagungan -28.35 152.40 KOB (NSW) 

ABTC16852 P. 
kundagungan -28.35 152.40 KOB (NSW) 

ABTC16982 P. 
kundagungan -28.35 152.40 KOB (NSW) 

ABTC25173 P. 
kundagungan -28.22 152.43 MSA (QLD) 

ABTC25292 P. 
kundagungan -28.22 152.46 MSB (QLD) 

ABTC25293 P. 
kundagungan -28.22 152.46 MSB (QLD) 

ABTC25339 P. 
kundagungan -28.32 152.44 KOA (NSW) 

ABTC25342 P. 
kundagungan -28.50 152.40 TOB (NSW) 

ABTC25371 P. 
kundagungan -28.05 152.39 MRN (QLD) 



ABTC25372 P. 
kundagungan -28.05 152.39 MRN (QLD) 

ABTC25373 P. 
kundagungan -28.05 152.39 MRN (QLD) 

ABTC25374 P. 
kundagungan -28.05 152.39 MRN (QLD) 

ABTC25375 P. 
kundagungan -28.05 152.39 MRN (QLD) 

ABTC25377 P. 
kundagungan -28.05 152.39 MRN (QLD) 

ABTC25378 P. 
kundagungan -28.05 152.39 MRN (QLD) 

ABTC25379 P. 
kundagungan -28.05 152.39 MRN (QLD) 

ABTC25380 P. 
kundagungan -28.05 152.39 MRN (QLD) 

ABTC25383 P. 
kundagungan -28.05 152.39 MRN (QLD) 

ABTC25385 P. 
kundagungan -28.05 152.39 MRN (QLD) 

ABTC92273 P. 
kundagungan -28.46 152.44 TOA (NSW) 

ABTC92274 P. 
kundagungan -28.46 152.44 TOA (NSW) 

ABTC92276 P. 
kundagungan -28.46 152.44 TOA (NSW) 

ABTC24922 P. loveridgei -28.40 153.03 MWN (NSW) 
ABTC24923 P. loveridgei -28.40 153.03 MWN (NSW) 
ABTC24926 P. loveridgei -28.40 153.03 MWN (NSW) 
ABTC24927 P. loveridgei -28.40 153.03 BRB (NSW) 
ABTC25313 P. loveridgei -28.26 153.17 BRB (NSW) 
ABTC82617 P. loveridgei -28.54 153.29 BRB (NSW) 
ABTC90393 P. loveridgei -28.39 153.06 BRB (NSW) 
ABTC90394 P. loveridgei -28.57 153.37 BRB (NSW) 
ABTC90396 P. loveridgei -28.57 153.37 BRB (NSW) 
ABTC90512 P. loveridgei -28.40 153.03 BRB (NSW) 
ABTC90513 P. loveridgei -28.40 153.03 BRB (NSW) 
ABTC90514 P. loveridgei -28.40 153.03 BRB (NSW) 
ABTC90515 P. loveridgei -28.40 153.03 BRB (NSW) 
ABTC90516 P. loveridgei -28.40 153.03 NC (NSW) 
ABTC90517 P. loveridgei -28.40 153.03 NCB (NSW) 
ABTC92281 P. loveridgei -28.39 153.06 NCB (NSW) 
ABTC110135 P. loveridgei -28.23 153.28 SBA (QLD) 
ABTC140563 P. loveridgei -28.38 153.13 LMT (QLD) 
ABTC140564 P. loveridgei -28.38 153.13 BRD (NSW) 
ABTC140565 P. loveridgei -28.38 153.13 BRD (NSW) 
ABTC140567 P. loveridgei -28.38 153.13 BRD (NSW) 



ABTC144835 P. loveridgei -28.40 153.28 BRD (NSW) 
ABTC144836 P. loveridgei -28.40 153.28 BRC (NSW) 
ABTC144837 P. loveridgei -28.40 153.28 BRC (NSW) 
ABTC144838 P. loveridgei -28.40 153.28 BRC (NSW) 
ABTC144839 P. loveridgei -28.40 153.28 BRC (NSW) 
ABTC144840 P. loveridgei -28.40 153.28 MWN (NSW) 
ABTC150900 P. loveridgei -28.38 153.07 MWN (NSW) 
ABTC150901 P. loveridgei -28.38 153.07 MWN (NSW) 
ABTC12227 P. pughi -29.22 152.42 BL (NSW) 
ABTC12229 P. pughi -29.22 152.42 BL (NSW) 
ABTC16983 P. pughi -29.33 152.17 LS (NSW) 
ABTC25206 P. pughi -29.35 152.10 LS (NSW) 
ABTC25209 P. pughi -29.35 152.10 DC (NSW) 
ABTC25210 P. pughi -29.35 152.10 DC (NSW) 
ABTC25211 P. pughi -29.35 152.10 DC (NSW) 
ABTC25220 P. pughi -29.33 152.17 DC (NSW) 
ABTC25362 P. pughi -29.35 152.10 DC (NSW) 
ABTC25367 P. pughi -29.47 152.32 WP (NSW) 
ABTC25369 P. pughi -29.47 152.32 WP (NSW) 

ABTC25223 P. 
richmondensis -28.50 152.80 TON (NSW) 

ABTC25224 P. 
richmondensis -28.70 152.72 RRA (NSW) 

ABTC25226 P. 
richmondensis -28.50 152.70 RRB (NSW) 

ABTC25311 P. 
richmondensis -28.70 152.50 YBA (NSW) 

ABTC25350 P. 
richmondensis -28.70 152.50 YBA (NSW) 

ABTC25351 P. 
richmondensis -28.70 152.50 YBA (NSW) 

ABTC25352 P. 
richmondensis -28.70 152.50 YBA (NSW) 

ABTC25353 P. 
richmondensis -28.70 152.50 YBA (NSW) 

ABTC25354 P. 
richmondensis -28.70 152.50 YBA (NSW) 

ABTC25355 P. 
richmondensis -28.70 152.50 YBA (NSW) 

ABTC25356 P. 
richmondensis -28.70 152.50 YBA (NSW) 

ABTC12745 P. 
sphagnicolus -31.18 152.33 KF (NSW) 

ABTC12746 P. 
sphagnicolus -31.18 152.33 KF (NSW) 

ABTC12757 P. 
sphagnicolus -31.18 152.33 KF (NSW) 



ABTC12758 P. 
sphagnicolus -31.18 152.33 KF (NSW) 

ABTC12759 P. 
sphagnicolus -31.18 152.33 KF (NSW) 

ABTC12760 P. 
sphagnicolus -31.18 152.33 KF (NSW) 

ABTC12761 P. 
sphagnicolus -31.19 152.37 MB (NSW) 

ABTC12762 P. 
sphagnicolus -31.19 152.37 MB (NSW) 

ABTC12763 P. 
sphagnicolus -31.19 152.37 MB (NSW) 

ABTC12764 P. 
sphagnicolus -31.19 152.37 MB (NSW) 

ABTC12766 P. 
sphagnicolus -31.23 152.17 CT (NSW) 

ABTC12767 P. 
sphagnicolus -31.23 152.17 CT (NSW) 

ABTC12768 P. 
sphagnicolus -31.23 152.17 CT (NSW) 

ABTC12769 P. 
sphagnicolus -31.23 152.17 CT (NSW) 

ABTC24918 P. 
sphagnicolus -30.49 152.41 NE (NSW) 

ABTC25185 P. 
sphagnicolus -30.38 152.73 DR (NSW) 

ABTC25189 P. 
sphagnicolus -30.49 152.41 NE (NSW) 

ABTC25282 P. 
sphagnicolus -31.65 152.42 KB (NSW) 

ABTC25283 P. 
sphagnicolus -31.65 152.42 KB (NSW) 

ABTC25284 P. 
sphagnicolus -31.65 152.42 KB (NSW) 

ABTC25285 P. 
sphagnicolus -31.65 152.42 KB (NSW) 

ABTC25295 P. 
sphagnicolus -30.18 152.42 MH (NSW) 

ABTC25296 P. 
sphagnicolus -30.18 152.42 MH (NSW) 

ABTC25346 P. 
sphagnicolus -31.67 152.14 DT (NSW) 

ABTC25347 P. 
sphagnicolus -31.67 152.14 DT (NSW) 

ABTC25348 P. 
sphagnicolus -31.67 152.14 DT (NSW) 

ABTC25386 P. 
sphagnicolus -31.61 152.41 BG (NSW) 

ABTC25387 P. 
sphagnicolus -31.61 152.41 BG (NSW) 



ABTC25388 P. 
sphagnicolus -31.61 152.41 BG (NSW) 

ABTC25389 P. 
sphagnicolus -31.61 152.41 BG (NSW) 

ABTC25390 P. 
sphagnicolus -31.61 152.41 BG (NSW) 

ABTC25595 P. 
sphagnicolus -30.38 152.73 DR (NSW) 

ABTC25596 P. 
sphagnicolus -30.38 152.73 DR (NSW) 

ABTC25603 P. 
sphagnicolus -30.37 152.73 DR (NSW) 

ABTC25604 P. 
sphagnicolus -30.37 152.73 DR (NSW) 

ABTC25605 P. 
sphagnicolus -30.38 152.73 DR (NSW) 

ABTC25832 P. 
sphagnicolus -31.62 152.17 EB (NSW) 

 
Table S2. 
Parameter Setting 

Genotyping Quality 25 

Minimum and maximum average locus read depth Min=15, Max=85 

Minimum average SNP read count 4 

Maximum frequency of heterozygosity 0.6 

Max difference in read depth between REF and SNP 

alleles 

0.6 

Individuals call rate 0.6 

Proportion of populations not in HWE 0.1 

Reproducibility 98 

MAF 0.005 

Individuals call rate 0.9 

Loci call rate 0.9 

MAF 3 / individuals’ number 

 

Table S3. Abbreviations and full names for subpopulations of each species. 

Abbreviation Full name 

BG Boorganna Nature Reserve 

BL Bililimbra State Forest 

BRA Border Ranges National Park Group A 



BRB Border Ranges National Park Group B 

BRC Border Ranges National Park Group C 

BRD Border Ranges National Park Group D 

CT Cobcroft Trail, Werrikimbe National Park 

DC Dingo Creek Flora Reserve 

DR Dorrigo National Park 

DT Dingo Tops State Forest 

EB Bulga SF near Blue Knob Forest Road (Ellenborough River at 

Pole Bridge Rd crossing)  

KB Killabakh Nature Reserve 

KF King Fern Falls, Werrikimbe National Park 

KOA Koreelah National Park Group A 

KOB Koreelah National Park Group B 

LMT Lamington National Park 

LS Forest Land State Forest 

MB Mt Boss State Forest 

MBA Mount Barney National Park Group A 

MBB Mount Barney National Park Group B 

MBC Mount Barney National Park Group C 

MBD Mount Barney National Park Group D 

MBE Mount Barney National Park Group E 

MCL Mount Clunie National Park 

MH Mount Hyland Nature Reserve 

MRN Main Range National Park North Group 

MSA Mount Superbus Group A 

MSB Mount Superbus Group B 

MWN Mount Warning National Park 

NCA Nightcap National Park Group A 

NCB Nightcap National Park Group A 

NE New England National Park 

RRA Richmond Range National Park Group A 

RRB Richmond Range National Park Group B 

SBA Springbrook National Park Group A 



TOA Tooloom National Park Group A 

TOB Tooloom National Park Group B 

TON Toonumbar National Park 

WP Washpool National Park 

YBA Yabbra National Park Group A 
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