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Abstract: Providing accurate estimates of uncertainty is key for the analysis, adoption, and 

interpretation of species distribution models. In this manuscript, through the analysis of data 

from an emblematic North American cryptid, I illustrate how Conformal Prediction allows fast 

and informative uncertainty quantification. I discuss how the conformal predictions can be 

used to gain more knowledge about the importance of variables in driving presences and 

absences, and how they help assess the importance of climatic novelty when projecting the 

models under future climate change scenarios.



Introduction

The ability to predict where species may be found is a cornerstone of biogeography and macroe­

cology (Franklin 2023). Techniques from the field of applied machine learning (ML hereafter) are 

now routinely used alongside ecological approaches to train generalizable species distribution 

models (SDMs hereafter) (Beery et al. 2021). SDMs generate a binary response (corresponding to 

the prediction that the species is likely present/absent under given environmental conditions) or 

a quantitative score most often as a probability of presence or habitat suitability, indicating how 

strongly we believe that the species may be present at the location.

Proper communication of the uncertainty associated to the prediction of a SDM is important, 

since we usually seek to apply these models to look both forward and backwards in time. This 

projection if the model to different times is usually called “transfer” (Zurell et al. 2012), whereby 

a model trained under historical (baseline) conditions is applied to past/future projections of the 

same predictors. The projection of SDMs can also happen in space (Petitpierre et al. 2016), to 

predict where species may invade or be naturalized. Even when predictions are not projected, 

spatial knowledge of the uncertainty is valuable information: it can be used to identify areas 

where the model predictions are trustworthy. Current checklists on the reproductibility of SDMs 

emphasize the consequences of data uncertainty (Feng et al. 2019). Yet, predictions also have 

inherent uncertainty, which is usually not adequately communicated. This can be, for example, 

because of genuine uncertainty about (or inability to capture through the model) the actual 

response of the species to combination of predictors (Parker et al. 2024).
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A common way to capture information about the variability of SDMs is to rely on non-parametric 

bootstrapping (Valavi et al. 2021), wherein models trained on random subsets of the data are 

compared to estimate the distribution of the response under incomplete sampling. This approach 

captures more than one type of variability (Thuiller et al. 2019), and provide valuable information 

about the range of performances that can be expected from a model. Other methods are built into 

the predictor itself, as is the case for e.g. BARTs (Carlson 2020), which estimate their own uncer­

tainty. But either situation comes with drawbacks. Bootstrapping requires to train and evaluate 

the model hundreds of times, and on partial datasets, which is computationally inefficient. Using 

methods that are specific to a particular classification algorithm limits one to the classifier for 

which these methods are available, which prevents for example the use of a new algorithm with 

the same estimation of uncertainty.

In this manuscript, I illustrate how the ML technique of conformal prediction (CP) allows to 

identify instances (combinations of environmental variables) for which a trained and calibrated 

model cannot confidently make predictions (Gammerman et al. 1998). A brief introduction to CP 

is provided in this manuscript, but the topic is covered in more depth by Shafer & Vovk (2007) 

for the mathematical foundations, by Fontana et al. (2020) for a historical perspective, and by 

Angelopoulos & Bates (2023) for concrete recommendations. By way of contrast to e.g. bootstrap­

ping, CP does not necessarily involve retraining the same model many times over, but instead 

wraps the model into an additional prediction step, and returns estimates of credibility based on 

the distribution of past model predictions compared to ground-truthed data. This is an important 

difference, as conformal prediction makes no assumption about the distribution of data, but 

rather captures the uncertainty associated to the distribution of observed model outcomes (Lei & 
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Wasserman 2013). Conformal prediction provides what is essentially (for classification problems) 

a confidence interval around the presence or absence of a species in a given location. This is a 

particularly important feature, in that CP achieves this in a way that creates several analogues 

between ML prediction and fundamental concepts in frequentist statistics (Neyman 1937).

One of the reasons why CP is particularly promising for uncertainty quantification in SDMs 

is that it is a distribution-free method: it requires neither assumptions about the model nor 

prior knowledge of the outcome distribution to provide confidence intervals that are as small 

as possible while being guaranteed to contain the true value under a set risk level (Vovk et al. 

2018). This is particularly important when transferring a SDM to novel environments (Zurell 

et al. 2012), where we expect covariate shift (the joint distributions of predictors are different 

when training and predicting), a prediction context that CP is robust to (Fannjiang et al. 2022, 

Tibshirani et al. 2019).

Using occurrence data about an emblematic North American cryptid, I provide a template for 

the adoption of CP as a natural way to quantify uncertainty of species distribution models. In 

particular, I show how predictions under CP (i) identify areas where the species range is uncer­

tain, (ii) estimate uncertainty differently from bootstraping methods, (iii) can be explained using 

Shapley values analysis, and (iv) quantify the accumulated uncertainty when transferring the 

SDM to future conditions. I conclude by highlighting ways in which using CP can both simplify 

the process of training SDMs, and provide information that make their discussion and analysis 

more informative.
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Methods

Data

Occurrence data

The occurrence data used in this article are geo-referenced observations of the Sasquatch (Lozier 

et al. 2009). Although these observations are likely to be mis-categorized American black bears 

(Foxon 2024), they nevertheless share many features of the data that are used to train SDMs: high 

auto-correlation, uneven sampling effort, and clear association with several bioclimatic variables 

that is robust enough to train a predictive model. The recorded locations, as well a background 

points, are presented in Figure 1.

This dataset lacks associated records of absence. This is a characteristic shared with most appli­

cations of species distribution models, and therefore a desirable property to illustrate the use of 

conformal prediction. Through this article, I will rely on pseudo-absences (described in the next 

section) to replace true absences. Because they are treated as absences in a machine learning 

context (and, though never explicitely, also when using methods like MaxEnt), I will refer to 

observations as “presences”, to pseudo-absences as “absences”, and the classifier will therefore 

be described as making a prediction on the species “presence”.
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Pseudo-absences generation

The dataset of observations is composed only of presences. In order to establish a baseline of 

absences to train a binary classifier, there is a need to generate a number of pseudo-absences, 

which simulates locations at which the species, if not absent, has not been observed. In order to 

do so, the presence data were first spatially thinned to be limited to one for each cell, at a 5.0 

minutes of arc resolution. Cells that had no observation were potential candidates for a pseudo-

absence, and were further selected by drawing a number of them, without replacement, where the 

probability of inclusion in the sample was proportional to ℎ−1min, where ℎmin is the Haversine (great 

arc) distance to the nearest cell with an observation, measured in kilometers. In other words, cells 

that were close to an observation were unlikely to be included, and cells that were further away 

were more likely to be so. To avoid sampling pseudo-absences too close to presences, the pixels 

less than 10 kilometers away from known observations were excluded from the background 

data. This method of pseudo-absence selection is akin to “background thickening” (Vollering et 

al. 2019), which avoid selecting pseudo-absences too close to known obervations, and seeks to 

increase the importance of locations that are further from observations when picking pseudo-

absences.

The number of pseudo-absences was arbitrarily set to two times the number of presences. 

Although Barbet-Massin et al. (2012) recommend to use the same number of presences and 

pseudo-absences for classifiers, using an imbalanced dataset is not a problem: stratified k-

folds cross-validation is perfectly able to handle the moderate class imbalance we introduce 

(Szeghalmy & Fazekas 2023), and the model performance (as will be established in a later section) 
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is sufficient. Moreover, most real-world applications of classification will have to deal with 

problems with class imbalance (this is particularly likely to be true of SDM application from 

sampling data, where presences may be the minority of outcomes); it is therefore important to 

ensure that we do not establish a testing scenario that is too optimistic about the prevalence of 

presences. In all cases, class imbalances is a feature of data that must be dealt with in order to 

get the more predictive models (Benkendorf et al. 2023).

Bioclimatic data

The model was trained, validated, and applied on the 19 WorldClim2 BIOCLIM variables (Fick & 

Hijmans 2017), at a spatial resolution of 2.5 minutes of arc. Preliminary analyses using 0.5, 2.5, 5, 

and 10 minutes of arc show that the qualitative results presented hold (the results and conclusion 

Figure 1: Overview of the occurrence data (green circles) and the pseudo-absences (grey points) for the states of, 
clockwise from the bottom, California, Oregon, Washington, Idaho, and Nevada (A). The underlying 
predictor data are at a resolution of 2.5 minutes of arc, and represented in the World Geodetic System 1984 
CRS (EPSG 4326). The panels on the right column show the ROC curve (B) and PR curve (C), with the 
random classifier indicated by a dotted line. The area under the ROC curve is ≈ 96%.
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are equivalent). For the projection of the model under climate change, I only report the future 

data under the SSP245 scenario (“middle of the road”), for six GCMS: MRI-ESM2.0 (Yukimoto et al. 

2019), ACCESS-CM2 (Huneke et al. 2025), EC-Earth3-Veg (Döscher et al. 2022), CanESM5 (Swart 

et al. 2019), GFDL-ESM4 (Dunne et al. 2020), and MIROC6 (Shiogama et al. 2023). The climatic 

data were retrieved for the 2081-2100 period. The prediction for a score under future climates 

is measured as the median of the predicted values for each of the GCMs, and the prediction of 

whether this point lies within the future range of the species is done by applying majority voting 

to the six predictions.

The climatic novelty of the baseline v. future data is estimated through the Euclidean distance 

(Fitzpatrick et al. 2018), specifically by assigning as a novelty score for each pixel in the future 

the distance to its closest baseline analogue. This novelty is measured on de-meaned predictors 

with unit variance to ensure that predictors with different scales can be adequately compared. 

The method from Williams et al. (2007) is adapted by using the training bioclimatic conditions 

as the baseline, and then measuring the novelty in the contemporary data (spatial covariate shift 

in historical predictions) and the projectd data (spatio-temporal covariate shift in future predic­

tions). This variation allows to evaluate the effect of covariate shift in both the contemporary and 

future climates, as covariate shift may lead to a lessened data exchangeability, thereby decreasing 

the relevance of CP.

Species distribution model

All analyses are conducted using the SpeciesDistributionToolkit package (Poisot et al. 2025) 

for Julia 1.11.
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Model structure

The model used here is a logistic regression, with interactions terms up to a maximum degree 

of two (preliminary analyses with random forests, naive Bayes classifiers, and rotation forests 

resulted in similar predicted ranges and cross-validation performance, which suggest that the 

problem can be handled well by multiple algorithms). When trained on a vector of features 𝒙𝑖 

(with null means and unit variances), the model will return a probability 𝑝+, which correspond to 

the probability of these environmental conditions being associated to the presence of the species. 

This probability is turned into a presence/absence decision by comparing it to a threshold, as 

explained in a later section. Because this logistic regression is a deterministic classifier, the 

prediction 𝑝𝑖+ (the probability associated to the prediction of “presence” for prediction 𝑖) satisfies 

0 ≤ 𝑝𝑖+ ≤ 1, and we use 𝑝− = 1 − 𝑝+ as the probability that the species is absent from the location.

Tuning

We tune this model by (i) iteratively forward selecting the best set of predictor variables, and 

(ii) optimizing the threshold 𝜏  above which a site with a probability for the positive class 𝑝+ 

is considered to be positive (turning the prediction of presence into 𝑝+ ≥ 𝜏 ). In both cases, the 

cross-validation strategy is the same: the dataset is split in 10 random folds, 9 of which are used 

for training and one for validation. All folds are used for evaluation, providing exhaustive cross-

validation. The folds are stratified so that the relative number of present cases in the training 

set is similar to that of the entire dataset. The performance on each set, for the purpose of 

defining the set of variables to include of the threshold to use, is measured as the average of 

the Matthews Correlation Coefficient (MCC) across each of the ten folds. The MCC is the most 
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accurate representation of a binary classifier performance (Chicco & Jurman 2023), and avoids 

the pitfalls of several other validation measures.

For all steps of model training and validation, the identity of instances composing the different 

folds remains fixed. This ensure that the changes in MCC are only due to the addition of the 

variable, and not to the random sampling of a training/validation set with different properties. 

Although some authors encourage the use of spatially-stratified cross-validation (Soley-Guardia 

et al. 2024), this is not a desirable strategy for this use-case. The area in which the predictions will 

be made is entirely delimited by the bounding box of observed presences, and there is therefore 

no risk of covariate shift when shifting from validation to prediction (outside of the situation of 

temporal transfer of the SDM).

The predictors included in the model have been decided through the use of forward selection. 

This is an important step in order to perform dimensionality reduction (which generally increases 

the predictive accuracy), but also to ensure that the set of retained variables is reduced enough 

that it can be interpreted. Variables were retained as part of the final set of predictors if adding 

them increased the MCC for the model once retrained with this new variable.

One of the most efficient ways to increase the performance of binary classifiers is to change the 

decision rule leading to a positive (here, presence) prediction, so that presences are assigned when 

𝑝+ ≥ 𝜏  – a process known as moving threshold classification (Liu et al. 2013, 2016). The value of 

𝜏  is an hyper-parameter of the model, which is chosen to maximize the value of a measure of 

model performance (here the MCC) when evaluated over many different values. In this instance, 

we optimized the value of 𝜏  by picking the value out of 200 linearly spaced value between the 
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smallest and largest prediction made on the training set. The value of 𝜏  that maximizes the MCC 

during cross-validation was selected as the optimal threshold for the classifier. Note that even 

though our decision rule for the presence of the species is 𝑝+ ≥ 𝜏 , we will keep the information 

about 𝑝− as is it required for conformal prediction.

Bootstrap variability

Bagging (bootstrap aggregating) is often used as a measure of uncertainty to the underlying data 

when training SDMs (Beale & Lennon 2012). When performing bagging, the model is trained 

on samples drawn with replacement from the training set (which leaves out approx. 37% of the 

dataset). Models are then evaluated on samples that were not used as part of their training, usually 

using cross-validation (Bylander 2002) or measures of the out-of-bag error (Janitza & Hornung 

2018). Although ensemble models can result in a better predictive performance compared to 

single models (Drake 2014), this is not a guarantee (and depends on the structure of the bias/

variance trade-off for the specific model and its training set). The many models trained on the 

bagging dataset form an homogeneous ensemble, which is to say a set of models that share the 

same algorithm and hyper-parameters, and only make different predictions as the result of having 

been trained on different subsets of the full training set.

Measures of whether the different models composing the homogeneous ensemble agree can 

provide a measure of the effect of data and parameter uncertainty (Petropoulos et al. 2018), 

or what Davies et al. (2023) termed the “SDM uncertainty”. The best model identified after 

thresholding was evaluated on a hundred bootstrap samples, yielding an homogeneous ensemble 

model from which we estimate bootstrap variability (Chen et al. 2019). Because the model is kept 
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constant in this analysis, the measure of variability we will derive from the ensemble model is 

an estimate of how sensitive the estimation of the model parameters is to small perturbations 

(specifically: spatially homogeneous under-sampling) to the training data.

An introduction to conformal prediction

Conformal prediction differs from regular prediction in that, rather than a single point prediction, 

it returns sets corresponding to the ensemble of credible outcomes given an input 𝒙 representing 

environmental conditions at which we seek to make the prediction. Given the observed quantiles 

of the model output on validation data, these sets are obtained through a simple calibration step. 

Therefore, CP requires an already trained model, and is agnostic to the process through which 

this model is trained. In this section, I highlight two important features of CP: the notion of 

prediction sets (and how they are obtained), and the notion of coverage , which is a measure of 

tolerance to error.

Understanding conformal predictions

By contrast to the non-conformal SDM, the conformal classifier returns, for an input of environ­

mental predictors 𝒙 , a set 𝐶 containing the “credible outcomes” for this prediction. This set is 

termed the prediction set, and under a binary classification task (the species is either present or 

absent), there are four possible combinations for the content of prediction sets: 𝐶 = {+}, 𝐶 = {−}, 

𝐶 = {+, −}, and 𝐶 = ∅.

The first two cases are simple: if the prediction set contains a single output, the model can 

confidently make a prediction that excludes the other class. In the case of 𝐶 = {+}, for example, 
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the point prediction for the presence score 𝑝+ is high enough that the outcome of absence can 

be ruled out given the known predictions on training examples. In some cases, the prediction 

set may contain both classes, as in 𝐶 = {+, −}. Although they may not be equally likely (there is 

no guarantee that 𝑝+ ≈ 𝑝−), the scores are close enough to not confidently exclude one of the 

outcomes from the model prediction. In the specific cases of SDMs, these correspond to areas 

of true uncertainty, where the known training examples credibly support both the presence or 

absence of the species. The final situation, 𝐶 = ∅, corresponds to pathological cases where neither 

outcome can be credibly supported. Given the training data (and the distribution of presences 

and absences), the model is not able to make a prediction for this input. The increased frequency 

of such predictions is most likely a strong sign that the risk level is too high (equivalent to a too 

broad confidence interval) for the training data given to the conformal model.

These situations correspond to four different outcomes in terms of the SDM certainty about the 

distribution of the species. The most intuitive situation is 𝐶 = {+} or 𝐶 = {−}, in which case the 

conformal model predicts that the absence (resp. presence) of the species is not a credible outcome 

for the environmental conditions given as an input. Throghout this manuscript, I will refer to 

these predictions as “sure presences” and “sure absences”, as they convey the information that 

there is no reason to expect that the prediction is uncertain. The second situation, 𝐶 = {+, −}, 

corresponds to inputs for which the presence and the absence of the species are credible, and I 

will refer to them as “unsure”. The rare cases where 𝐶 = ∅ will be “undetermined” predictions.
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Obtaining conformal predictions

There are several ways to decide whether a point prediction from the model results in which 

prediction set. A core assumption of CP is that the data used for training should be exchangeable, 

or in other words, their joint probability distribution should be (close to) invariant under finite 

permutations (Aldous 1985). This will almost never be the case for data with a spatial structure; 

nevertheless, this does not rule out the use of CP for species distribution modeling, as Oliveira 

et al. (2024) show that CP is acceptably robust to lack of exchangeability. The purpose of this 

section is to establish a general overview of how conformal predictions are obtained, and some 

of the multiple variations that exist will be introduced throghout the text.

The central idea of CP is to associate a conformal score to a point prediction. This can be achieved 

by applying the softmax function to the values for 𝑝+ and 𝑝− (note that the values of 𝑝 are 

bounded, and proportional to the true event probability), giving

𝑠+ =
exp 𝑝+

exp 𝑝+ + exp(1 − 𝑝+)
, 𝑠− =

exp(1 − 𝑝+)

exp 𝑝+ + exp(1 − 𝑝+)
(1)

The conformal score associated to a prediction is 1 − 𝑠⋅, where ⋅ is the prediction (+ or −) made 

by the model. We call the distribution of conformal scores 𝒮︀ . Note that this can be done without 

using the softmax function (i.e. 𝑠+ = 𝑝+, 𝑠− = 1 − 𝑝+), but it is used here as it is best practice for 

classification (Dey et al. 2023). The use of the softmax function is appropriate here because not all 

algorithms for species distribution models will return well-calibrated, probabilities, even though 

0 ≤ 𝑝+ ≤ 1 and 𝑝− = 1 − 𝑝+.
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The next step is to identify a critical value 𝑞̂ above which a conformal score indicates that the 

prediction it describes is credible. This critical value is picked by examining the empirical quantile 

distribution of the conformal scores in the distribution 𝒮︀  calculated over 𝑛 training examples, 

and an acceptable level of risk 𝛼  (explained in depth in the next sub-section). Specifically, this is 

done by identifying the 𝑞𝑖-th quantile of the distribution of model scores, where

𝑞𝑖 =
⌈(𝑛 + 1)(1 − 𝛼)⌉

𝑛
(2)

The corresponding value of 𝑆 below which a proportion 𝑞𝑖 of values lies is 𝑞̂. In other, more 

intuitive words, the value 𝑞𝑖 indicates what proportion of wrong classification events we must 

accept before we have accumulated enough evidence to be confident about a prediction. When 

performing the prediction, we calculate the score of a new prediction according to Equation 1. 

For every possible class 𝑥 , if 𝑠𝑥 ≥ (1 − 𝑞̂), this class is retained as part of the prediction set. Note 

that some approaches to conformal prediction, some of which will be discussed in the following 

sections, keep the distribution of scores separate for each class, i.e. 𝒮︀ + − and 𝒮︀−, in which case 

the quantiles are also class-specific rather than global.

The value of 𝑞̂ can be obtained either through using a holdout set for training (Split Conformal 

Prediction), using adaptive prediction sets (Angelopoulos & Bates 2023), by retraining the model 

in a way aking to Leave-One-Out cross-validation (Full Conformal Prediction), through the use 

of quantile regression (Romano et al. 2019), or through taking the median of several estimates of 

𝑞̂ after cross-validation (Vovk et al. 2018).
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To summarize, the output of the conformal classifier is, in a sense, a point estimate of the credible 

outcomes of a model, using the value estimated for 𝑝+ as well as knowledge about which of these 

were associated to the correct label in the training data. A location is defined as included in the 

range is the positive outcome is included within the prediction set returned by the conformal 

classifier, and as excluded from the range when it is not. Because the conformal classifier can 

identify that both outcomes are credible based on the training data (while giving them different 

weights), predictions in which both the positive and negative outcomes are included in the 

prediction set can be seen as “uncertain” at this given risk level.

How frequently a specific prediction is uncertain is termed the inefficiency of the classifier, 

which is defined as the average cardinality of all prediction sets. The inefficiency is bounded 

upwards by the number of classes (two for binary classification); when the inefficiency is ≈ 1, the 

conformal classifier behaves (essentially) like deterministic classifier, by returning a single class 

for each instance. An inefficiency close to unity is not desirable: smaller sets can hide our actual 

uncertainty (Sadinle et al. 2018). Because the conformal models wraps the logisitc regression 

model, we can further divide the “unsure” predictions as a function of whether they would be 

within the range as predicted by the SDM, which I will call “unsure presences”; the other unsure 

predictions are referred to as “unsure absences”.

The coverage level

CP allows users to set a desired error rate, 𝛼 , which appeared in Equation 2. Intuitively, what CP 

does, is inform the user on whether the prediction set contains the true value with probability 

1 − 𝛼 , which allows to directly interpret this value as a true confidence interval. This error rate 
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is usually referred to as the marginal coverage, in that it captures the probability of success 

marginalized over the known validation points. Because the estimate of uncertainty involves the 

original model, it is important to apply CP on a model with adequate performance.

coverage is a well-defined, classical property of confidence intervals in statistics

Chaning the risk level 𝛼  leads to different estimates of how commonly multiple classes will 

be accepted as a credible outcome. Using a low level of risk (𝛼 ≈ 0) yields usually leads to all 

outcomes being credible (𝑞̂ ≈ 1), at the cost of a very high uncertainty. When values of 𝛼  get 

too large (𝑞̂ ≈ 0), no class can be confidently predicted, and the model will eventually always 

return 𝐶 = ∅. Although this later situation is more difficult to make sense of intuitively, a value 

of inefficiency that gets smaller than unity should be interpreted as a model that accumulates 

more uncertainty (at a given risk level) than the data can support (Romano et al. 2020). Conformal 

prediction can therefore inform us on the acceptable risk levels we can operate under given a 

trained predictive model.

In the rest of this analysis, I will set 𝛼 = 0.05. As noted by Angelopoulos & Bates (2023), this 

corresponds to estimating whether a specific prediction falls within, or outside of, the 95% 

confidence interval across all predictions, which is a convenient callback to frequentist statistics’ 

usual risk tolerance. Recall that the CP prediction sets are estimated based on the model output, 

and therefore even when aiming for full coverage, there may be non-ambiguous combinations 

of environmental predictors.
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Important variants on CP that are relevant for SDMs

As mentioned previously, conformal prediction is a general framework, which has been imple­

mented in a variety of ways. Some of these are more immediately relevant to SDMS, and in this 

short section I will introduce two: Mondrian-CP, and risk-aware CP.

A core feature of occurrence data (whether based on documented or simulated absence data) is 

that they suffer from class imbalance, wherein the proportion of presences tends to be lower 

than the proportion of absences. As this imbalance gets extreme, having a single threshold for 

the inclusion of a class in the prediction set ceases to be equitable. A way to handle this issue 

is suggested by Mondrian-CP (Boström et al. 2021), where the scores are accumulated to class-

specific distributions, here 𝒮︀+ and 𝒮︀−, and the number of calibration instances in these two 

classes are used to estimate a class-specific threshold (quantiles are, in other words, estimated for 

each separate distribution). Importantly, this approach has been shown to respect the coverage 

guarantees for each class. (Sun et al. 2017) have establish that Mondrian-CP can be used in a 

cross-conformal context; therefore, in this manuscript, I will rely on cross-validated Mondrian-

CP cutoffs for the inclusion of either the positive or the negative cases in the credible set.

Depending on the purpose for which the SDM is produced, the uncertain areas can be treated 

differently. As Prescott et al. (2025) argue, when dealing with invasive species, it may be more 

reasonable to interpret SDMs by erring on the side of caution, which here would mean consid­

ering that unsure presence area (outside the range of the non-conformal prediction, but where 

the positive case is part of the credible set) should be considered part of the species’s range. On 

the other hand, when SDMs are meant to guide conservation actions that are costly or should 
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be focused on areas of high certainty of suitability for the target species (Pěknicová & Berchová-

Bímová 2016), it may make sense to ignore the unsure presences. Note that recent developments 

in CP, such as conformal risk control, allow to penalize the loss function used to build the credible 

set to reflect the consequences of different types of mispredictions (Angelopoulos et al. 2025).

Results

Performance of the baseline model

In panels B and C of Figure 1, we report the ROC and PR curves for the model. As evidenced 

by both these diagnostic tools, the model achieves a very high predictive accuracy. In Table 1, 

we report additional measures of performance for the training and validation set of the model 

(so as to ensure that the model is not performing better on training data), as well as a measure 

of the performance of the ensemble, to show that it can make valid predictions in addition to 

Table 1: Overview of measures of model performance for the validation and training sets of the SDM, as well as 
the same measures for the ensemble model (measured on the out-of-bag models only). The values of 𝜅 and 
the true-skill statistic are generally comparable to the MCC, but are included as they are commonly 
reported in the SDM litterature (Allouche et al. 2006). The high values of the negative and positive predictive 
values indicate that the model is suitable to detect both presences and absences. NPV and PPV are, 
respectively, the negative and positive predictive values, which indicate the ability of the classifier to make 
reliable predictions for the negative and positive outcomes.

Measure Validation Training Ensemble

MCC 0.75 0.76 0.76

NPV 0.93 0.93 0.94

PPV 0.82 0.83 0.82

𝜅 0.75 0.76 0.76

TSS 0.74 0.75 0.76

Accuracy 0.91 0.91 0.91
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quantifying variability. These results confirm that the model is able to identify areas that are 

suitable to the species, and can be used for CP.

Before applying CP, it is useful to examine the output of the SDM in space. The predictions of 

the model for the entire region are given in Figure 2, alongside information about the model 

variability. Areas of lowest variability (according to the IQR based on non-parametric boostrap 

results from the ensemble) seem to be associated with the absence of the species, with the 

variability mostly increasing within the predicted range. Note that this bagging model is used 

only to estimate variability due to lack of observation data, and not to estimate the species range.

Conformal prediction of the species range

Before discussing the spatial output of running the conformal model, it is worth considering 

why the thresholding step as visualized in Figure  2 is not really providing us with a set of 

Figure 2: Overview of the probability 𝑝+ returned by the model (A), and the inter-quantile range of the non-
parameteric bootstrap model predictions (B). The range, i.e. the limit of cells for which 𝑝+ ≥ 𝜏 , is indicated 
by a solid red line; I maintain this convention for all subsequent figures. Note that the scale of the variability 
is logarithmic, as the model shows good performance and therefore has low variability overall.
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certain presences and absences. When optimizing the threshold 𝜏  above which a prediction 𝑝+ 

from the non-conformal model is determined to be a presence, we inherently establish a sort of 

certain presences and certain absences, specifically by ignoring the possibility that there can be 

uncertain predictions. Indeed, the space covered by positive predictions is usually interpreted as 

the (potential) distribution of the species. But this prediction conveys a false sense of certainty, 

that has to do with the very nature of the threshold we optimize. By definition, the threshold is the 

value that finds the best balance between the false/true positive/negative cases on the validation 

data for a given measure of model optimality this is in fact why the optimal threshold is the point 

closest to the corners of the ROC and PR curves indicating a perfect classifier (Balayla 2020). 

When a prediction 𝑝+ gets closer to the threshold, a small perturbation to the environmental 

conditions locally could bring it on the other side of the threshold, and therefore flip the predicted 

class using the non-conformal classifier. Around the threshold is where we expect uncertainty 

to be the greatest.

To bring these considerations into a spatial context: we expect the areas where the score for the 

present class are closer to the threshold (the limits of the predicted range of the species) to be 

the most uncertain. Importantly, this is true both for areas that are inside the range (for which 

𝑝+ is just above the threshold) and for areas that are outside of it (for which 𝑝+ is just below 

the threshold). CP is perfectly suited to solving this issue, by identifying the areas where one 

class is predicted, but the other class is also credible. In this section, we will project the areas 

with uncertain predictions, and compare the uncertainty quantified by the conformal model to 

the uncertainty derived from the ensemble model.
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Figure 3: Overview of areas where the presence of the species is certain according to the CP model under a risk 
level 𝛼 = 0.05 (A). The certain areas are in dark green, and the uncertain areas, wherein both presence and 
absence are credible, are in dark grey. (B) Surface covered by the sure absence and total range (including the 
superficy of the unsure area) for different risk levels (expressed as the desired confidence, 1 − 𝛼). Note that 
for 𝛼 ≈ 0.1, the total predicted range starts being lower than the range predicted by the SDM, and the 
uncertain range collapses. (C) Distribution of variability from Figure 2B by type of CP model outcome under 
𝛼 = 0.05.

In Figure  3, we show that this prediction indeed stands: the range as predicted by the SDM 

(fig. 3A) falls within the range of unsure predictions. We also see that lowering the risk level 

𝛼  leads to a contraction of the area (in km2) considered to be credibly associated to only 

the presence of the species (𝐶 = {+}), while the range that is ambiguous (𝐶 = {+, −}) increases 

(Figure 3B). As far as ecologists are concerned, the areas in which the prediction set only has a 

score for the absence of the species are the easiest to make sense of: they correspond to regions 

where the model is certain (under the specified risk level) that the species is absent. All other areas 

(assuming that there are no predictions for which the prediction set is empty, which I discuss in 

the next section) are potentially part of the range of the species: some certainly (would have been 

included in the non-conformal prediction), some uncertainly (would not have been included in 

the non-conformal prediction).
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Relationship between variability and uncertainty

Note that the relationship between the certainty associated to CP, and the variability under the 

ensemble model presented in Figure 2B is nuanced: in fig. 3C, it appears that although areas 

identified as unsure using CP tend to have higher variability, there is considerable overlap 

between the categories. Intriguingly, the overlap between areas that are uncertain according to 

the conformal classifier, and areas that are uncertain according to the bootstrap model, is imper­

fect. There are a number of points classified as sure presences for which the IQR is very high, i.e. 

points whose certainty is not affected by undersampling the training data. Notably, the results 

in fig. 3C show that it is not possible to find a cutoff in the measure of bootstrap variability that 

would identify areas of model uncertainty. This suggests that the classification of predictions as 

certain/uncertain according to the conformal prediction is in part reflecting genuine uncertainty 

in the underlying data, but also contributing novel information about the fact that some instances 

are more difficult to call.

These results can be better understood by contrasting what “uncertain” means in the context of 

CP, and how it differs from the uncertainty in the ensemble model. The uncertainty derived from 

the ensemble model represents whether many models trained on small perturbations of the full 

training dataset would agree on a specific prediction task, represented by an array of environ­

mental predictors. Therefore, the uncertainty from the ensemble originates in the estimation of 

the parameters, and its sensitivity to being able to access the full information within the training 

data. Uncertainty in the conformal classifier is coming from comparing a specific model predic­

tion for a known input to all other predictions in the training (calibration) data, thereby allowing 
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to estimate the model prediction scores leading to possibly the prediction of both the presence 

(or absence) outcome. Therefore, the uncertainty from the conformal predictors accounts for all 

the predictions the model can make, and accounts for the variability across predictions within a 

fully known dataset.

Despite differences in the type of uncertainty captured by bootstrap v. CP, it remains noteworthy 

that there is an association between the two. Bootstrap uncertainty simulates the effect of 

knowing a little less about the species occurrences, and therefore high bootstrap uncertainty 

areas would be good candidates to collect additional presence (or true presence) data. By contrast, 

CP is more likely to identify areas of model uncertainty, where the presence or absence of the 

species is genuinely more difficult to decide, and where therefore uncertainty may be reasoned 

about biologically. It may not be unexpected that even when the bootstrap variability decreases, 

because we have collected enough information about the system, there would remain some CP 

uncertainty because the presence of a species may, in some habitats or under some environmental 

conditions, be more intrinsically uncertain.

Identification of undetermined areas

In Figure 3B, we see that there is a risk level above which the total predicted range starts to get 

lower than the range predicted by the SDM. We can explain this behavior through the lens of the 

number of undetermined predictions, i.e. the number of inputs for which the CP model returns 

𝐶 = ∅.

In fig. 4A, we see that above 𝛼 ≈ 0.1, the inefficiency of the classifier starts to fall under 1 - this 

indicates that on average, the model is returning fewer than one output for each prediction. In 
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a sense, this creates an upper limit to the risk we can accept: the model trained on this dataset 

does not support conformal prediction for larger risk levels. In fig. 4B, we see that this change 

of behavior in the model is indeed resulting in an increase in the range for which the model 

makes no prediction, which gets larger when the risk level is too high. The spatial distribution of 

undetermined areas is shows in fig. 4C for 𝛼 = 0.2: these areas are concentrated around the range 

limit as identified by the SDM. This suggests that using a risk level that it too high would result 

to no conformal predictions being made for the areas where our need to accurately quantify 

uncertainty are the most important, and calls for a cautious investigation of the appropriate 

risk level.

Figure 4: Inefficiency (average number of classes in the prediction set) for various levels of 𝛼  (A); above 𝛼 ≈ 0.1, 
the conformal prediction starts returning empty prediction sets. This results in an increase in the spatial area 
for which no prediction can be made (B). For 𝛼 = 0.2, these areas are distributed around the limit of the 
predicted range, showing that the areas in which uncertainty quantification are most important cannot be 
predicted.
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Model explanation

In this section, I perform an analysis of Shapley values of the conformal predictor, in order to 

(i) assess the importance of variables and (ii) provide explainable results about the relationships 

between predictors and response. I rely on the common Monte-Carlo approximation of Shapley 

values (Roth 1988, Touati et al. 2021). Monte-Carlo Shapley values represent, for each prediction, 

how much the 𝑖th variable contributed to moving the prediction away from the average predic­

tion. The Shapley value associated to variable 𝑖 is 𝜑𝑖 ∈ [−1, 1], which measures how much this 

variable modified the average prediction for this class. Shapley values have a number of desir­

able properties regarding the explanation of prediction of responses for environmental studies 

(Wadoux et al. 2023), including their additivity: for any given prediction, 𝑝 = ̂𝑝 + ∑
variables
𝑖 𝜑𝑖. 

Because of this additive property, the importance of variables across many predictions is usually 

measured as the average of | 𝜑 |, where both positive (the class is more likely) and negative 

(the class is less likely) are counted. This measure of variable importance represents the relative 

impact that each variable had on the process of moving all predictions away from the average 

prediction and towards its actual value. Because Shapley values are both additive and indepen­

dent, they can be measured and aggregated for any arbitrary stratification of the data (which 

allows reporting them conditional on the uncertainty status of the prediction).

As the predictions of the conformal model can be split by whether they are certain or uncertain, 

they offer a unique opportunity to delve into the mechanisms that generate this uncertainty. 

Namely, if the relative importance of variables is different across these classes of predictions, this 

is strongly suggestive of the fact that there are certain environmental conditions (represented by 
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Figure 5: Overview of the effect of the most important predictor (A); areas with high values indicate that the 
value of BIO13 at this location make the presence of the species more likely. These values are associated to 
different prediction certainties (B), with predictions within the unsure range being centered around 0 (i.e. 
not moving the needle on the average prediction one way or another). Nevertheless, the contribution of the 
variables in different uncertainty categories are different (C), suggesting that Shapley values can help create 
explanations of where uncertainty originates. The proportion of certain/uncertain predictions as a response 
to changing values of BIO3 is presented in Figure S1.

combination of values for each variables) that create or reduce uncertainty. Furthermore, because 

we can split the certain predictions into a presence and absence class, this is a unique opportunity 

to investigate whether the factors leading to a species being present or absent are the same. An 

example of the spatial contribution of a variable is given in Figure 5A.

We find that, for the most important variable (i.e. the one with the largest ∑|𝜑|), the contribution 

of this variable tracks the status of the prediction: it tends to be negative when the absence is 

certain, positive when the presence is certain, and around zero when the prediction is unsure 

(fig.  5B). This is a fairly remarkable result, in that it ties Shapley values (a tool to help with 

ML models interpretation) to CP (a technique to accurately convey uncertainty). In Figure 5C, I 

present the relative contribution of all selected variables split by the status of the prediction; this 

reveals that the Shapley values for sure presences and unsure areas are distributed in different 
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ways. Notably, BIO15 is far more important in areas of high model uncertainty than in areas 

of either sure presences or absences. This suggests that the division of the prediction according 

to CP status can provide information about which sets of environmental conditions are driving 

the uncertainty, thereby providing useful information to guide future sampling or model inter­

pretation.

Conformal prediction under climate projection

Certain and uncertain range shifts

In a recent contribution, Smith & Levine (2025) suggest that because of issues around the use 

of thresholds, projections of SDMs under climate change scenarios may benefit from a more 

continuous perspective. In this section, I present a comparison of the conformal prediction of the 

range under a climate change scenario (SSP370. 2081-2100), to illustrate how the future conformal 

range can convey information about the certainty of some types of range shift. These results are 

presented in Figure 6.

Based on the comparison between the baseline (fig. 3A) and projected (fig. 6A) ranges, we can 

establish identify areas where the species range is conserved ({+} → {+}), is lost ({+} → {−}), 

becomes uncertain ({+} → {−, +}, {−} → {−, +}), or was uncertain but becomes certain ({+, −} →

{−}, {−, +} → {+}). By mapping these situations, we can identify large areas that are confidently 

lost towards the Southern edge of the species’s range, with very limited areas of either possible or 

sure gain, strongly suggesting that this species would undergo range contraction. Note that the 

area corresponding to ambiguous transitions is relatively large, which provides a good under­
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Figure 6: Overview of the conformal prediction of the range for the future climate data, equivalent to fig. 3A 
(panel A). Sankey diagram for the transitions between absent, unsure, and present predictions for the 
current (left) and future (right) bioclimatic variables (panel B). The colors in panels A and B are the same.

standing of the possible spatial variation (and uncertainty) to be expected under the considered 

climate change models and scenario.

Uncertainty and bioclimatic novelty

Zurell et al. (2012) highlight the importance of fully considering uncertainty when transferring 

the model to novel climate data: there is a chance that the future climate conditions will not 

have occurred in the training dataset, and therefore our confidence in the model outcome should 

be lowered. This covariate shift is well documented to decrease the performance of models 

(Mesgaran et al. 2014), and CP offers an opportunity to shine a different light on this phenomenon. 

Understanding covariate shift in the context of CP is particularly crucial given that entirely novel 

climatic conditions are likely to become the norm (Mahony et al. 2017), which in turn will drive 

the emergence of a novel biosphere globally (Kerr et al. 2025, Ordonez et al. 2024).

529
530
531

532

533

534

535

536

537

538

539

540

541

542

30 of 44



Yet although novelty is expected to emerge through climate change, it also emerges for current 

climate data, because the training dataset is a subset of all the data on which the model is applied. 

For this reason, Figure 7 compares how different future and current climates are to the bioclimatic 

data in the training set, and describe the variation of this novelty across different types of range 

shifts identified in Figure 6. The study area shows higher novelty in future data, but does not 

show that the novelty is higher in areas that become uncertain in the future. This is an interesting 

observation, as it suggests that the response of species distribution to novelty changes may be 

more complex than “higer novelty leads to more uncertainty”. Indeed, the highest novelties were 

observed in areas where the species was epxected to conserve its range.

There are additional techniques to handle covariate shift in conformal prediction (Barber et al. 

2023). In addition, Allen et al. (2025) suggest that in-sample calibration (using the training data) is 

enough to get the coverage guarantees that are required for conformal prediction. Furthermore, 

Balinsky & Balinsky (2025) show that the training dataset can be re-used to calibrate the model, 

without a loss of performance of CP. These results suggest that CP may be more robust to 

covariate shift (and therefore, appropriate to use to project under future climates) than expected.

Conclusion

Conformal prediction, like most SDM methods, is not quite delivering a true estimate of the 

probability of presence (Phillips & Elith 2013). Nevertheless, it brings valuable information, in the 

form of a quantified measure of whether a prediction comes with uncertainty (are both presence 

and absence in the prediction set?) in a way that is directly comparable with the non-conformal 
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Figure 7: Climate novelty measured as Euclidean distance to the closest contemporary or future analogue (left 
map); note that the colors and their explanation are given in the bivariate legend. The boxplots on the right 
correspond to the difference (novelty value) for current conditions (red) and future conditions (blue) for the 
different types of distribution changes presented in Figure 6.

prediction. “Class overlap”, where both presences and absences are observed under the same 

values of the predictions, decreases the predictive performance of models (Valavi et al. 2022) — 

CP is naturally suited at handling this, by assigning the area where overlap occurs to uncertain 

predictions.

A useful categorization of uncertainty is to differentiate between its aleatoric and epistemic 

component. Mansfield & Christensen (2025), for climate prediction models, suggest that aleatoric 

uncertainty stems from the variability in input data, whereas epistemic uncertainty stems from 

an unability to identify the parameters that unambiguously map an input to a model prediction. 

The same idea has been suggetsed for ecological dynamics models (Reimer et al. 2022). Sale et al. 

(2025) recently suggested that CP could capture both forms of uncertainty, although primarily 

because the disentanglement of epistemic v. aleatoric uncertainties is a difficult task, especially 
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under climate change (Kujala et al. 2013). Under this perspective, CP could serve as a mapping 

of the aggregate uncertainty for a given prediction problem.

Increasing the relevance of CP to species distribution modeling

Davis et al. (2024) previously suggested using CP to approximate a confidence interval around 

a probability of species presence, which considers species prediction as, fundamentally, a 

regression problem. As SDMs are more traditionally viewed as classification problems, a proper 

accounting of the method for CP for classification is required in order to understand what 

future research efforts should focus on. This is particularly important as alternative frameworks 

around CP, like Adaptive Conformal Inference (Szabadváry & Löfström 2026), are emerging: the 

ontologic status of SDM as a machine learning practice must be clear.

Although the change in climatic conditions has been measured through climate velocity (Brito-

Morales et al. 2018), measures of climate novelty are likely to be more informative for the 

interpretation of CP. Exchangeability of the data is a core assumption of CP, and although some 

recent evidence suggests that CP is relatively robust to violations of this assumption (they have 

been discussed in earlier sections of this manuscript), a very high novelty is likely to result in 

locally non-exchangeable data: the model would be applied (and its uncertainty quantified) on 

data points that are outside of the (joint) distribution of variables in the training set. Beyond 

climatic novelty, measurement of potential covariate shift between the training dataset and both 

the current and future climate conditions, may provide a clearer understanding of where and 

when predictions are likely to be more uncertain.
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CP as a tool for effective and transparent communication

Transparent communication of uncertainty, meaning that it is both spatially explicit, quantified, 

and expressed under a risk set by the user, is important: we do not expect a fully trained model 

to always be certain, as some areas are genuinely more difficult to predict. For example, small 

organisms are more inherently stochastic (Soininen et al. 2013) any form of stochastic event will 

drive species distribution even when there is strong environmental signal (Mohd et al. 2016) these 

stochastic events can even manifest in areas that are close to the species’ environmental optimum 

(Dallas et al. 2020). For these reasons, CP can produce interpretable estimates of uncertainty in 

species distribution models, and does not require the adoption of additional modeling tools or 

paradigms as it functions on an already trained model.

Because this technique is computationally efficient and works on pre-trained models, it opens 

up the opportunity for more systematic uncertainty quantification in SDMs. CP, in short, can 

deliver the “maps of ignorance” that Rocchini et al. (2011) argued for: how difficult is it to make 

a prediction for the range at a given risk level is, in and of itself, an important information to 

frame the reliability of the results. Finally, CP can provide guidance on the feedback loop between 

SDM training and field validation (Johnson et al. 2023) — areas where the range is certain are 

a much lower priority for sampling. CP contributes to dispel what Messeri & Crockett (2024) 

called the “illusion of understanding”, which is often associated with ML models: it generates an 

understanding of the uncertainty from observations of a pre-trained model, and expresses this 

uncertainty both in absolute (is the “presence” event in the prediction set?) and relative (is the 

point estimate of the score for presence larger than for absence?) terms.
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Figure S1: Effect of changing the value of the BIO3 variable, on the prediction, as measured by inflated partial 
responses (Fiorentino et al. 2025). The partial responses have been measured on a random sample of a 1000 
draws, and for each draw, the prediction has been classified with the conformal predictor at a risk level 𝛼 =
0.05. The proportion of each outcomes for the classification is presented as a function of the variable value. 
This analysis illustrates how conformal prediction can be used to identify range of predictor variables that 
are most likely to be associated to uncertain predictions.
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