
Conformal Prediction quantifies the uncertainty of Species Distribu-
tion Models

Timothée Poisot 1

Abstract: Providing accurate estimates of uncertainty is key for the analysis, adoption, and interpretation of
species distribution models. In this manuscript, through the analysis of data from an emblematic North Ameri-
can cryptid, I illustrate how Conformal Prediction allows fast and informative uncertainty quantification. I discuss
how the conformal predictions can be used to gain more knowledge about the importance of variables in driv-
ing presences and absences, and how they help assess the importance of climatic novelty when doing future
predictions.



Introduction1

The ability to predict where species may be found is a cornerstone of biogeography and macroecol-2

ogy (Elith, 2019). Techniques from the field of applied machine learning (ML hereafter) are now rou-3

tinely used alongside ecological approaches to train generalizable species distribution models (SDMs4

hereafter) (Beery et al., 2021). SDMs generate, by increased order of refinement, a binary response5

(predicted presence/absence of the species, alternatively framed as predicted suitability/unsuitability6

of local habitat), a probability of habitat suitability, and a distribution of this probability (which can be,7

in its simplest expression, a measure of variance around the prediction).8

Proper communication of the uncertainty associated to the prediction of a SDM is important, since we9

usually seek to apply these models to look both forward and backwards in time (Franklin, 2023) – this10

process is usually called “transfer” (Zurell et al., 2012), in that themodel trained under extant condition11

is transferred to past/future values of the same predictors. Even when predictions are not projected12

in time, spatial knowledge of the uncertainty is valuable information as it provides more information13

about where the model outcomes are trustworthy. Current checklists on the reproductibility of SDMs14

emphasize the consequences of data uncertainty (Feng et al., 2019). Yet, predictions also have inher-15

ent uncertainty, which is usually not adequately communicated; this can be, for example, because16

of genuine uncertainty about (or inability to capture through the model) the actual response of the17

species to combination of predictors (Parker et al., 2024).18

A common way to capture information about the variability of SDMs is to rely on non-parametric boot-19

strapping (Valavi, Guillera-Arroita, et al., 2021), wherein models trained on subsets of the data are20

compared to estimate the distribution of the response under incomplete sampling. This approach21

captures more than one type of variability (Thuiller et al., 2019), and provide valuable information22

about the range of performances that can be expected from a model. Other methods are built into23

the predictor itself, as is the case for e.g. BARTs (Carlson, 2020), which estimate their own uncertainty.24

But either situation comes with drawbacks. Bootstrapping requires to train and evaluate the model25

hundreds of times, and on partial datasets, which is computationally inefficient. Using built-in meth-26

ods limits one to the classifier for which these methods are available, which prevents for example the27

use of a new algorithm with the same estimation of uncertainty.28

In this manuscript, I illustrate how the ML technique of conformal prediction (Lei & Wasserman, 2013;29

Papadopoulos et al., 2002) allows to identify instances (combinations of environmental variables) for30

which a trained and calibrated model cannot confidently make predictions. By way of contrast to e.g.31
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bootstrapping, it does not involve retraining the same model many times over, but instead wraps the1

model into an additional prediction step, and returns estimates of credibility based on the distribution2

of model predictions. This is an important difference, as the variability measured through conformal3

prediction (CP hererafter; a brief introduction is given later in thismanuscript) is inherent to themodel,4

and is not a measure of variability coming through the distribution of data. Conformal prediction5

provides what is essentially (for classification problems) a confidence interval around the presence or6

absence of a species in a given location, which is weighted according to how likely this outcome is. This7

is a particularly important feature, as it ties machine learning back to some fundamental concepts in8

frequentist statistics (Neyman, 1937).9

One of the reasons why CP is particularly promising for uncertainty quantification in SDMs is that it is a10

distribution-freemethod: it requires neither assumptions about themodel nor prior knowledge of the11

outcome distribution to provide confidence intervals of arbitrarily small coverage that are guaranteed12

to contain the true value (Vovk et al., 2018). This is particularly important when transferring a SDM13

to novel environments (Zurell et al., 2012), where we expect covariate shift (the joint distributions of14

predictors are different when training and predicting), a prediction task that CP is robust to (Fannjiang15

et al., 2022; Tibshirani et al., 2019).16

Using occurrence data about an emblematic North American cryptid, I show how predictions under17

CP (i) identify areas where the species range is uncertain, (ii) estimate uncertainty differently from18

bootstraping methods, (iii) can be explained using Shapley values analysis, and (iv) quantify the accu-19

mulated uncertainty when transferring the SDM to future conditions. I conclude by highlighting ways20

in which using CP can both simplify the process of training SDMs, and provide information that make21

their discussion and analysis more informative.22

Dataset23

Occurrence data24

The occurrence data used in this article are geo-referenced observations of the Sasquatch (Lozier et25

al., 2009). Although these observations are likely to be mis-categorized American black bears (Foxon,26

2024), they nevertheless share many features of the data that are used to train SDMs: high auto-27

correlation, uneven sampling effort, and clear association with several bioclimatic variables that is28

enough to train a predictive model.29
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Pseudo-absences generation1

The dataset of observations is composed only of presences. In order to establish a baseline of ab-2

sences to train a binary classifier, there is a need to generate a number of pseudo-absences, which3

simulates locations at which the species, if not absent, has not been observed. In order to do so,4

the presence data were first spatially thinned to be limited to one for each cell, at a 5.0 minutes of5

arc resolution. Cells that had no observation were potential candidates for a pseudo-absence, and6

were further selected by drawing a number of them, without replacement, where the probability of7

inclusion in the sample was proportional to ℎ−1
min, where ℎmin is the Haversine (great arc) distance to8

the nearest cell with an observation, measured in meters. In other words, cells that were close to an9

observation were unlikely to be included, and cells that were further away were more likely to be so.10

The number of pseudo-absences was arbitrarily set to three times the number of presences. Although11

Barbet-Massin et al. (2012) recommend to use the same number of presences and pseudo-absences12

for classifiers, using an imbalanced dataset is not a problem: stratified k-folds cross-validation is per-13

fectly able to handle themoderate class imbalance we introduce (Szeghalmy & Fazekas, 2023), and the14

model performance (as will be established in a later section) is sufficient. Moreover, most real-world15

applications of classification will have to deal with problems with class imbalance (this is particularly16

likely to be true of SDM application from sampling data, where presences may be the minority of17

outcomes); it is therefore important to ensure that we do not establish a testing scenario that is too18

optimistic about the prevalence of presences. In all cases, class imbalances is a feature of data that19

must be dealt with in order to get the more predictive models (Benkendorf et al., 2023).20

Bioclimatic data21

Themodelwas trained, validated, and applied on the 19WorldClim2BIOCLIMvariables (Fick&Hijmans,22

2017), at a spatial resolution of 5minutes of arc. This data resolution is coarser thanmany applications,23

but this choice has been made in order to speed up the computation. Preliminary analyses using24

2.5 minutes of arc, and 30 seconds of arc, show that the qualitative results presented hold (but the25

computation times for the most demanding steps, like Shapley values analysis, increases by several26

orders of magnitude).27
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Training of the non-conformal model1

Conformal Prediction requires a well-trainedmodel to serve as a baseline before it can be applied. For2

this reason, in this first section, we go into some detail into the training and validation of a suitable3

model, and further derive a first approximation of its uncertainty by relying on bagging to create a ho-4

mogeneous ensemble. The model we use is a Boosted Regression Tree (BRT). BRTs are highly flexible,5

make few assumptions about the data, efficiently model non-linear relationship between variables,6

and use an ensemble of shallow trees to avoid overfitting. Indeed, BRTs are excellent classifiers for7

species distributionmodels (Elith et al., 2008). When trained on a vector of features x, a BRT will return8

a vector of predictions p = {𝑝⊕, 𝑝⊖}, which correspond to the probability of these environmental con-9

ditions being associated to, respectively, the presence and the absence of the species. Because the10

BRT as we initially train it is a deterministic classifier, 𝑝⊕ + 𝑝⊖ = 1, and 0 ≤ 𝑝⊕, 𝑝⊖ ≤ 1. These11

assumptions are not true when using conformal prediction, which estimates the confidence in the12

presence and absence as two distinct features. The outcome of a BRT prediction p can be turned into13

a binary response (corresponding to the presence of a species) through 𝑝⊕ ≥ 𝑝⊖, which is equivalent14

to 𝑝⊕ ≥ 0.5.15

[Figure 1 about here.]16

We optimize the initial model by (i) iteratively forward selecting the best set of predictor variables,17

and (ii) optimizing the threshold 𝜏 above which a site with a probability for the positive class 𝑝⊕ is18

considered to be positive (turning the prediction of presence into 𝑝⊕ ≥ 𝜏 ). In both cases, the cross-19

validation strategy is the same: the dataset is split in 10 random folds, 9 of which are used for training20

and one for evaluation. All folds are used for evaluation, providing exhaustive cross-validation. The21

folds are stratified so that the relative number of present cases in the training set is similar to that of22

the entire dataset. The performance on each set, for the purpose of defining the set of variables to23

include of the threshold to use, is measured as the average of the Matthews Correlation Coefficient24

(MCC) across each of the ten folds. The MCC is the most accurate representation of a binary classifier25

performance (Chicco & Jurman, 2023), and avoids the pitfalls of several other validation measures.26

For all steps of model training and validation, the identity of instances composing the different folds27

remains fixed. This ensure that the changes in MCC are only due to the addition of the variable, and28

not to the random sampling of a training/validation set with different properties. Although some29

authors encourage the use of spatially-stratified cross-validation (Soley-Guardia et al., 2024), this is30

not a desirable strategy for this use-case. The area in which the predictions will be made is entirely31

4



delimited by the bounding box of observed presences, and there is therefore no risk of covariate shift1

when shifting from validation to prediction (outside of the situation of temporal transfer of the SDM).2

Because BRTs establish their baseline prediction (the first tree) as the prevalence of presences in the3

training dataset (Valavi, Guillera-Arroita, et al., 2021), we used stratified ten-fold cross-validation, in4

which the ten folds all have a the same number of instances, with correct representation of the relative5

frequency of presences and absences.6

Variable selection7

The predictors included in the model have been decided through the use of forward selection. This is8

an important step in order to perform dimensionality reduction (which generally increases the predic-9

tive accuracy), but also to ensure that the set of retained variables is reduced enough that it can be10

interpreted. Variables where retained as part of the final set of predictors if adding them increased11

the MCC for the model once retrained with this new variable.12

An initial attempt to cross-validate themodel using all variables resulted in aMCC that was close to the13

model using an optimal set of predictors. Nevertheless, minimizing the number of inputs to a model14

is generally a good idea. First, it makes the assessment of the contribution of variables far more15

efficient and informative; second, it decreases the risk of covariate shift when predicting (by lowering16

the number of covariates); finally, it makes the training more efficient, by having less variables to split17

during the training of the BRTs (while maintaining the number of trees, leading to a better fit).18

Thresholding19

One of the most efficient ways to increase the performance of binary classifiers is to change the deci-20

sion rule leading to a positive (here, presence) prediction, so that presences are assignedwhen𝑝⊕ ≥ 𝜏21

– a process known as moving threshold classification (Liu et al., 2013, 2015). The value of 𝜏 is an hyper-22

parameter of the model, which is chosen to maximize the value of a measure of model performance23

(here the MCC) when evaluated over many different values. In this instance, we optimized the value of24

𝜏 by cross-validation 30meta-models (models that only differ in their hyper-parameters), with different25

values chosen through Latin hypercube sampling (McKay et al., 1979). The value of 𝜏 that maximizes26

the MCC was selected as the optimal threshold for the BRT.27
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Estimation of bootstrap variability1

Bagging (bootstrap aggregating) is often used as a measure of uncertainty to the underlying data2

when training SDMs (Beale & Lennon, 2012). When performing bagging, the model is trained on sam-3

ples drawn with replacement from the training set (which leaves out approx. 37% of the dataset).4

Trees are then evaluated on samples that were not used as part of their training, usually using cross-5

validation (Bylander, 2002) or measures of the out-of-bag error (Janitza & Hornung, 2018). Although6

ensemblemodels can get to a better predictive performance compared to singlemodels (Drake, 2014),7

this is not a guarantee (and depends on the structure of the bias/variance trade-off for the specific8

model and its training set). The many models trained on the bagging dataset form an homogeneous9

ensemble, which is to say a set of models that share the same algorithm and hyper-parameters, and10

only make different predictions as the result of having been trained on different subsets of the full11

training set.12

Measures of whether the different models composing the homogeneous ensemble agree can provide13

a measure of the effect of data and parameter uncertainty (Petropoulos et al., 2018), or what Davies14

et al. (2023) termed the “SDM uncertainty”. The best model identified after thresholding was eval-15

uated on a hundred bootstrap samples, yielding an homogeneous ensemble model from which we16

estimate bootstrap variability (Chen et al., 2019). Because the model is kept constant in this analysis,17

the measure of variability we will derive from the ensemble model is an estimate of how sensitive18

the estimation of the model parameters is to small perturbations (specifically spatially homogeneous19

under-sampling) to the training data.20

Performance of the baseline model21

The optimal threshold found through Latin hypercube sampling is 𝜏 ≈ 0.35; although this is quite far22

away from the untuned threshold of 1/2, the quantitative effect on the behavior of the model, i.e. the23

effect on the predictions as measured by the MCC, is quite small. The MCC after the threshold opti-24

mization is only increased by 0.01, and the MCC of the ensemble model is lower than the thresholded25

BRT (though not by a lot, and not enough to preclude the use of this model to evaluate uncertainty).26

The prediction made by the BRT, as well as the range at the optimal threshold, are given in Figure 1.27
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Table 1: Comparison of the performance of the BRT (trained and cross-validated on the same folds) be-
fore and after optimizing the threshold. The out-of-bag performance of the ensemble model (trained
on 100 bootstrap samples) is also reported. All three models are roughly equivalent in terms of their
predictive ability. The value considered ideal for each measure is bolded. The MCC is used as the
criteria to evaluate the best model for variable selection and thresholding.

Measure BRT BRT with threshold Ensemble

True positive rate 0.731 0.763 0.783

True negative rate 0.928 0.909 0.909

False positive rate 0.072 0.091 0.091

False negative rate 0.269 0.215 0.217

F score 0.751 0.763 0.761

Balanced accuracy 0.829 0.847 0.846

MCC 0.672 0.683 0.679

Training of the conformal model1

The trained model from Figure 1 can be used for conformal prediction. Conformal prediction differs2

from the regular prediction in that it creates sets (or, for quantitative responses, intervals) given an3

input value. Given the observed quantiles of the model output on the validation data, these sets are4

obtained through a simple calibration step. Therefore, CP can be applied on an already trainedmodel,5

and is agnostic to the process through which this model is trained. In this section, I highlight two6

important features of CP: the notion of credible sets, and the coverage statistic, which is a measure of7

tolerance to error. An in-depth introduction to CP is found in Angelopoulos & Bates (2023).8

Understanding conformal predictions9

By contrast to the non-conformal SDM, the conformal classifier returns, for an input of environmental10

predictors x, a set 𝐶 containing the “credible outcomes” for this prediction. This set is termed the11

credible set, and there are three scenarios for its membership. First, if both the presence and absence12

are credible for this prediction, the credible setwill be𝐶 = { ̂𝑝⊕, ̂𝑝⊖}. Note that because the credibility13

of either outcomes is expressed relatively to the estimation of their distribution, there is no guarantee14

that ̂𝑝⊕ = 1 − ̂𝑝⊖. Second, the credible set can have a single outcome in it, either 𝐶 = { ̂𝑝⊕} or15

𝐶 = { ̂𝑝⊖}. In this case, one of the outcomes is credible, but the other is not. Finally, there is a chance16

that 𝐶 = ∅, in which case the conformal model has not enough evidence to include either outcome17
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credibly.1

These situations correspond to four different outcomes in terms of the SDM certainty about the dis-2

tribution of the species. The most intuitive situation is 𝐶 = { ̂𝑝⊕} or 𝐶 = { ̂𝑝⊖}, in which case the3

conformal model predicts that the absence (resp. presence) of the species is not a credible outcome4

for the environmental conditions given as an input. We term these predictions “sure presences” and5

“sure absences”, as for a given value of the coverage statistic 𝛼, there is no reason to expect that the6

prediction is uncertain. The second situation, 𝐶 = { ̂𝑝⊕, ̂𝑝⊖}, corresponds to inputs for which the7

presence and the absence of the species are credible (they may not be equally credible, as the score8

for one may be larger than the score for the other), and we term these predictions “unsure”. The fi-9

nal situation corresponds to 𝐶 = ∅, which means that neither absence or presence can be credibly10

predicted – given the training data (and the distribution of presences and absences), the model is not11

able to make a prediction for this input. The multiplication of such predictions is most likely a strong12

sign that the risk level is too high (the confidence interval is too broad) for the training data given to13

the conformal model.14

To summarize, the output of the conformal classifier is, in a sense, a point-specific stand-in for the15

application of a threshold. A location is defined as included in the range is the positive outcome is16

included within the credible set returned by the conformal classifier, and as excluded from the range17

when it is not. Because the conformal classifier can identify that both outcomes are credible based18

on the training data (while giving them different weights), predictions in which both the positive and19

negative outcomes are included in the credible set can be seen as “uncertain” at this given risk level.20

How frequently a specific prediction is uncertain is termed the inefficiency of the classifier, which is21

defined as the average cardinality of all credible sets. The inefficiency is bounded upwards by the22

number of classes (two for binary classification); when the inefficiency is ≈ 1, the conformal classifier23

behaves (essentially) as a deterministic classifier, by returning a single class for each instance. An24

inefficiency close to unity is not desirable: smaller sets can hide our actual uncertainty (Sadinle et25

al., 2018). Because the conformal models wraps the BRT model, we can further divide the “unsure”26

predictions as a function of whether they would be within the range as predicted by the BRT (i.e. 𝐶 =27

{ ̂𝑝⊕, ̂𝑝⊖}, 𝑝⊕ ≥ 𝜏 ), which we call “unsure presences”; the other unsure predictions are referred to as28

“unsure absences”.29
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Understanding the effect of the coverage level1

CP allows users to set a desired error rate, 𝛼: the conformal prediction is that the credible set contains2

the true value with probability 1−𝛼, which allows to directly interpret this value as a confidence inter-3

val. This error rate is usually referred to as themarginal coverage, in that it captures the probability of4

success marginalized over the known validation points. Because the estimate of uncertainty involves5

the original model, it is important to apply CP on a model with adequate performance.6

In Figure 2 we show how changing the risk level (𝛼) leads to different estimates of the range size of7

the species. Using a low level of risk (𝛼 ≈ 0) yields the largest possible range, but at the cost of a very8

high uncertainty - this is evidenced by the value of inefficiency getting closer to 2 (the maximum value,9

as the outcomes of the classification are either positive or negative). For values larger than 𝛼 ≈ 0.12,10

there is a situation in which the inefficiency of the conformal prediction (which is to say, the average11

number of outcomes in the credible set) is less than one; this corresponds to a situation where some12

instances are impossible to assign to either outcome. Although this situation is more difficult to make13

sense of intuitively, a value of inefficiency that gets further away from unity should be interpreted as14

a model that accumulates more uncertainty (at a given risk level) than the data can support (Romano15

et al., 2020).16

[Figure 2 about here.]17

In the rest of this analysis, we set 𝛼 = 0.05. As noted by Angelopoulos & Bates (2023), this cor-18

responds to estimating whether a specific prediction falls within, or outside of, the 95% confidence19

interval across all predictions, which is a convenient callback to frequentist statistics’ usual risk toler-20

ance. From Figure 2, this level of risk would represent an inefficiency of about 1.2, meaning that 20%21

of the predictions would have both presence and absence in their credible set. Note that even when22

setting the risk at 𝛼 = 0.0, the inefficiency does not climb up to 2 (the theoretical maximum); there23

would be a number of pixels (about 15%) that only have either presence or absence in their credible24

set. Recall that the CP credible sets are estimated based on the model output, and therefore even25

when aiming for full coverage, there are non-ambiguous combinations of environmental predictors.26

Analysis of the predicted species range27

Before discussing the spatial output of running the conformal model, it is worth considering why the28

thresholding step applied in Figure 1 is not really providing us with a set of certain presences and29

absences. When optimizing the threshold 𝜏 above which a prediction 𝑝⊕ from the non-conformal30
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model is determined to be a presence, we establish a sort of certain presences and certain absences;1

indeed, the space covered by positive predictions is usually interpreted as the (potential) distribution of2

the species. But this prediction conveys a false sense of certainty, that has to dowith the very nature of3

the thresholdwe optimize. By definition, the threshold is the value that finds the best balance between4

the false/true positive/negative cases on the validation data; this is in fact why the optimal threshold5

is the point closest to the corners of the ROC and PR curves indicating a perfect classifier (Balayla,6

2020). When a prediction 𝑝⊕ gets closer to the threshold, a small perturbation to the environmental7

conditions locally could bring it on the other side of the threshold, and therefore flip the predicted8

class using the non-conformal classifier. Around the threshold is where we expect uncertainty to be9

the greatest.10

To bring these considerations into a spatial context: we expect the areas where the score for the11

present class are closer to the threshold (the limits of the predicted range of the species) to be the12

most uncertain. Importantly, this is true both for areas that are inside the range (for which 𝑝⊕ is just13

above the threshold) and for areas that are outside of it (for which 𝑝⊕ is just below the threshold).14

CP is perfectly suited to solving this issue, by identifying the areas where one class is predicted, but15

the other class is also credible. In this section, we will project the areas with uncertain predictions,16

and compare the uncertainty quantified by the conformal model to the uncertainty derived from the17

ensemble model.18

Identification of areas with uncertainty19

As far as ecologists are concerned, the areas in which the credible set only has a score for the absence20

of the species are the easiest to make sense of: they correspond to regions where the model is certain21

(under the specified risk level) that the species is absent. All other areas (assuming that there are22

no predictions for which the credible set is empty) are potentially part of the range of the species:23

some certainly, some uncertainly. In Figure 3, we present the result of the conformal prediction under24

𝛼 = 0.05, by showing the class attributed to the present class ( ̂𝑝⊕), as well the type of prediction: sure25

presence, unsure presence, unsure absence, and sure absence. This information can be conveyed in26

a number of ways. For example, what is the threshold 𝛼 for which a pixel is included into the range of27

a species, either certainly or uncertainly? This question is not explored here, but shows the possible28

versatility of CP.29

[Figure 3 about here.]30
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Uncertain areas are different from bootstrap estimates of variability1

In Figure 4, we present a map of the uncertainty as estimated through the variance of the 100 models2

used in the homogeneous ensemble. This measure of uncertainty represents the potential effect of3

sampling the training data; it is, as expected, higher in areas that are not very close to either 0 or 14

in Figure 1. Intriguingly, the overlap between areas that are uncertain according to the conformal5

classifier, and areas that are uncertain according to the bootstrap model, is imperfect. Although there6

are, predictably, a large number of points in uncertain areas that have a very high bootstrap variance,7

there are also a number of points for which the variance is ≈ 0, i.e. points whose uncertainty is not a8

consequence of undersampling the training data.9

[Figure 4 about here.]10

Nevertheless, CP captures some of the underlying model uncertainty: in Figure 4, predictions that are11

uncertain but within the range predicted by the BRT had an over-representation of very low (≈ 0)12

uncertainty, whereas predictions that are uncertain but likely out of range had an over-representation13

of high (≈ 1) uncertainty. This suggests that the classification of predictions as certain/uncertain14

according to the conformal prediction is in part reflecting genuine uncertainty in the underlying data,15

but also contributing novel information about the fact that some instances are more difficult to call.16

These results can be better understood by contrasting what “uncertain” means in the context of CP,17

and how it differs from the uncertainty in the ensemble model. The uncertainty derived from the18

ensemble model represents whether many models trained on small perturbations of the full training19

dataset would agree on a specific prediction task, represented by an array of environmental predictors.20

Therefore, the uncertainty from the ensemble originates in the estimation of the parameters, and its21

sensitivity to being able to access the full information within the training data. Uncertainty in the con-22

formal classifier is coming from comparing the prediction to all other predictions under an estimation23

of the distributions for the conditions leading to the prediction of the presence (or absence) outcome.24

Therefore, the uncertainty from the conformal predictors accounts for all the predictions the model25

can make, and accounts for the variability across predictions within a fully accessible dataset.26

Model explanation27

In this section, we perform an analysis of Shapley values of the conformal predictor, in order to (i)28

assess the importance of variables and (ii) provide explainable results about the relationships between29

predictors and response. Although initially a game-theoretic concept, we rely on the common Monte-30
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Carlo approximation (Roth, 1988; TOUATI et al., 2021). Monte-Carlo Shapley values represent, for each1

prediction, how much the 𝑖th variable contributed to moving the prediction away from the average2

prediction. The Shapley value associated to variable 𝑖 is 𝜙𝑖 ∈ [−1, 1], which measures how much3

this variable modified the average prediction for this class. Shapley values have a number of desirable4

properties regarding the explanation of prediction of responses for environmental studies (Wadoux5

et al., 2023), including their additivity: for any given prediction, 𝑝 = ̄𝑝 + ∑variables
𝑖 𝜙𝑖. Because of6

this additive property, the importance of variables across many predictions is usually measured as the7

average of ‖𝜙‖, where both positive (the class is more likely) and negative (the class is less likely) are8

counted. Thismeasure of variable importance represents the relative impact that each variable had on9

the process of moving all predictions away from the average prediction. Because Shapley values are10

both additive and independent, they can be measured and aggregated for any arbitrary stratification11

of the data (which allows reporting them conditional on the uncertainty status of the prediction).12

As the predictions of the conformal model can be split by whether they are certain or uncertain, they13

offer a unique opportunity to delve into the mechanisms that generate this uncertainty. Namely, if14

the relative importance of variables is different across these classes of predictions, this is strongly15

suggestive of the fact that there are certain environmental conditions (represented by combination16

of values for each variables) that create or reduce uncertainty. Furthermore, because we can split17

the certain predictions into a presence and absence class, this is a unique opportunity to generate18

whether the factors leading to a species being present or absent are the same. In Figure 5, we show19

the importance of the selected variables for all predictions, but also sub-divide the relative importance20

of these variables for classes of prediction certainty.21

We find that the certain absences follow the same variable importance as the full prediction (which22

is expected as the range of this species is a small part of the total study area, therefore absences23

contribute disproportionately to the total predictions). None of the other classes did so, with, notably,24

the uncertain presences and absences havingmarkedly different variable importancewhen compared25

to the certain prediction and to one another. For example, the BIO10 variable (mean temperature of26

warmest quarter) was much more important for predictions classified as uncertain absences.27

[Figure 5 about here.]28

Model projection29

Zurell et al. (2012) highlight the importance of uncertainty when transferring the model to novel cli-30

mate data: there is a chance that the future climate condition will not have occurred in the training31

12



dataset, and therefore our confidence in the model outcome may be lowered. This covariate shift is1

well documented to decrease the performance of models (Mesgaran et al., 2014), and CP offers an2

opportunity to quantify this phenomenon.3

Using the data from the CanESM5 model (Swart et al., 2019) under the SSP370 scenario for the year4

2090, it is possible to split the landscape as a function of (i) climatic novelty defined as values of the5

bioclimatic variables not observed in the training data and (ii) status of the range for the species. These6

results are presented in the table below:7

Climatic novelty Sure absence Unsure Sure presence

Yes 50.46% 48.36% 1.16%

No 54.54% 37.27% 8.17%

(difference) 4.07% 11.09% 7.01%

These results show that on average, the areas with climatic novelty had more uncertain outcomes,8

which is in line with ecological expectations.9

Conclusion10

Conformal prediction, like most SDM methods, is not quite delivering a true estimate of the probabil-11

ity of presence (Phillips & Elith, 2013). Nevertheless, it brings valuable information, in the form of a12

quantified measure of whether a prediction comes with uncertainty (are both presence and absence13

in the credible set?) in a way that is directly comparable with the non-conformal prediction. “Class14

overlap”, where both presences and absences are observed under the same values of the predictions,15

decreases the predictive performance of models (Valavi, Elith, et al., 2021) – CP is naturally suited at16

handling this, by assigning the area where overlap occurs to uncertain predictions.17

Transparent communication of uncertainty, meaning, it is both spatially explicit, quantified, and ex-18

pressed under a risk set by the user, is important: we do not expect a fully trained model to always be19

certain, as some areas are genuinely more difficult to predict. For example, small organisms are more20

inherently stochastic (Soininen et al., 2013); any form of stochastic event will drive species distribution21

in the general case (Mohd et al., 2016); these stochastic events can appear even in areas that are close22

to the species’ environmental optimum (Dallas et al., 2020).23

CP contributes to dispel what Messeri & Crockett (2024) called the “illusion of understanding”, which is24

13



often associated with MLmodels: it generates an understanding of the uncertainty from observations1

of a pre-trained model, and expresses this uncertainty both in absolute (is the “presence” event in2

the credible set?) and relative (is the conformal score for presence larger than for absence?) terms.3

Because this technique is computationally efficient and works on pre-trained models, it opens up the4

opportunity for more systematic uncertainty quantification (Zurell et al., 2020) in SDMs. CP, in short,5

can deliver the “maps of ignorance” that Rocchini et al. (2011) argued for: how difficult is it to make a6

prediction for the range at a given risk level is, in and of itself, an important information to frame the7

reliability of the results. Finally, CP can provide guidance on the feedback loop between SDM training8

and field validation (Johnson et al., 2023) – areas where the range is certain are a much lower priority9

for sampling. Looking back at Figure 1, the uncertain areas are much smaller than the certain ones,10

which provides actionable guidance for field-based validation.11
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Figure 1: Overview of the prediction from the baseline Boosted Regression Tree (BRT) model, using
the set of forward-selected variables. The left panels shows the score assigned to the positive class
(presence), and the right panel shows (in black) the range, defined as 𝑝⊕ ≥ 𝜏 , where 𝜏 is the threshold
that maximizes the Matthews Correlation Coefficient (MCC).
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Figure 2: Effects of changing the value of 𝛼 on the size of the range (left panel, split by uncertainty
category) and conformal classifier performance (right column, top panel is inefficiency and bottom
panel is coverage).
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Figure 3: Prediction made by the conformal classifier at a risk level 𝛼 = 0.05. The left panel indicates
score associated with the presence at this location. The left panels shows areas in gray where the
negative class is associated in the credible set (the “uncertain” part of the range), and areas in black
where the negative class is not part of the credible set (the “certain” part of the range). Changing the
value of 𝛼 would change the boundaries of the certain/uncertain range.
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Figure 4: Variability in the predictions made by the thresholded BRT, based on the variance of 100
replicates of the bagging model (left). Splitting the values of uncertainties according to the type of
conformal prediction (right) reveals that although certain presence/absence predictions are associ-
ated to low variance, the pixels classified as uncertain do not necessarily skew towards high bootstrap
uncertainty.
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Figure 5: Relative variable importance (measured as the average absolute value of all Shapley values)
to explain the conformal prediction (𝛼 = 0.05) for the entire range (left), for the part of the range
where absence is not part of the credible set (middle), and for the part of the range where it is (right).
For the last two panels, the dots associated to each variable are the importance of this variable across
the entire range. Note that the importance of variables is not accounting for the areas where the
absence of the species is certain (i.e. presence is not part of the credible set). The difference in relative
variable importance in the certain/uncertain area suggests that the conformal model is picking up on
different relationships between predictors and response in areas of high vs. low certainty.
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