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Abstract 13 

Meta-analyses are powerful synthesis tools that are popular in ecology and evolution due to the 14 

rapidly growing literature of this field. Although the usefulness of meta-analyses depends on 15 

their reliability, such as the precision of individual and mean effect sizes, attempts to reproduce 16 

meta-analyses’ results remain rare in ecology and evolution. Here, we assess the reliability of 17 

41 meta-analyses on sexual signals by evaluating the reproducibility and replicability of their 18 

results. We attempted to (1) reproduce meta-analyses’ mean effect sizes using the datasets they 19 

provided, (2) reproduce meta-analyses’ effect sizes by re-extracting 5,703 effect sizes from 246 20 

empirical studies they used as sources, (3) assess the extent of relevant data missed by original 21 

meta-analyses, and (4) replicate meta-analyses’ mean effect sizes after incorporating re-22 

extracted and relevant missing data. We found many discrepancies between meta-analyses’ 23 

reported results and those generated by our analyses for all reproducibility and replicability 24 

attempts. Nonetheless, we argue that the meta-analyses we evaluated are largely reproducible 25 



and replicable because the differences we found were small in magnitude, leaving the original 26 

interpretation of these meta-analyses’ results unchanged. Still, we highlight issues we observed 27 

in these meta-analyses that affected their reliability, providing recommendations to ameliorate 28 

them. 29 

 30 
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 33 

Introduction 34 

The literature of ecology and evolution, like of other fields of study, is expanding rapidly [1,2]. 35 

Consequently, synthesising this growing body of work becomes increasingly necessary to 36 

identify patterns across individual studies. Meta-analyses, which are perceived as the gold 37 

standard for evidence synthesis, can contribute to this endeavour because they aim to detect 38 

and retrieve all relevant studies on a given topic, extract data from these studies, and quantify 39 

an average effect of interest using the extracted data [3,4]. Nonetheless, many challenges arise 40 

during the execution of meta-analytical studies, requiring researchers to be vigilant to ensure 41 

their reliability. 42 

Foremost, meta-analyses need to be transparent, which means that they must provide 43 

details on decisions and resources regarding all steps of their implementation (e.g. searches, 44 

screening, data extraction, analysis code, etc). Yet, recent appraisals of the secondary literature 45 

in ecology and evolution show that meta-analyses in this field are often poorly transparent [5–46 

7]. Reporting guidelines, such as MOOSE [8] and PRISMA [6,9], were developed to address 47 

transparency issues in evidence syntheses. Researchers who adhere to these guidelines can thus 48 

enhance the quality of their meta-analyses. Still, transparency represents only the first step for 49 

high-quality syntheses as providing information does not guarantee its reliability. For instance, 50 



researchers can make mistakes when describing their methods, provide faulty code for their 51 

analyses, or even forge data, impairing the reproducibility and replicability of their findings. 52 

Therefore, it is imperative to evaluate studies beyond transparency.  53 

Meta-analyses possess the advantage of having sources of information that are readily 54 

accessible (i.e. individual studies from which data are extracted). This means that meta-55 

analyses can be more easily evaluated than other approaches regarding reproducibility and 56 

replicability aspects. More specifically, meta-analytical studies that report their decision 57 

criteria (i.e. studies and data considered valid for inclusion) and their effect sizes with 58 

information on their sources (i.e. studies they were extracted from) should allow evaluations 59 

regarding the reproducibility of their dataset and their results. However, to our knowledge, only 60 

computational reproducibility of meta-analyses (i.e. reproducibility of their code) has been 61 

examined in ecology and evolution [10]. By contrast, reproducibility attempts of data 62 

extraction and general results have only been conducted in other fields of study (but see [11]; 63 

e.g. medicine [12]; psychology [13]). Furthermore, other elements connected to the reliability 64 

of meta-analyses, such as their efficacy in detecting relevant studies, remain virtually 65 

unexplored. 66 

Here, using 41 meta-analyses related to sexual signals [14–54], we conduct the largest 67 

reproducibility and replicability effort for meta-analyses ever done in terms of number of re-68 

extracted primary studies and effect sizes (5,703 data points from 246 empirical studies, 69 

representing almost a fifth of all primary studies in our dataset). We evaluate multiple reliability 70 

aspects related to distinct implementation stages of these meta-analyses (Figure S1). First, we 71 

re-analyse the dataset provided by these meta-analyses, comparing the mean effect sizes we 72 

obtained with those reported in them. Second, we extract data from their original sources (i.e. 73 

individual studies) and compare these extracted data points with the ones reported in these 74 

meta-analyses. Third, we assess how many data points from the original sources that we 75 



verified should have been extracted and included in these meta-analyses’ datasets but were not 76 

(i.e. “missed” data). Fourth, because these meta-analyses ask similar questions involving sexual 77 

signals, we estimate the minimum number of studies that contained relevant data but were not 78 

listed as sources in these meta-analyses (i.e. undetected studies). Fifth, we assess the extent that 79 

the results of these meta-analyses change when re-extracted data (along with missed data and 80 

undetected studies) is analysed in place of originally reported data. 81 

 82 

Methods 83 

This manuscript is part of a larger research project that uses data from specific meta-analyses 84 

(see subsections below). Our methodology, summarised in Figure S1, was described in our pre-85 

registration [55], and we adhered to it as much as possible (see changes in Supplementary 86 

information S1). We report author contributions using MeRIT guidelines [56] and the CRediT 87 

statement [57]. 88 

 89 

Reported dataset 90 

A recent systematic map identified the existence of 151 meta-analyses on topics related to 91 

sexual selection [7], 59 of them focusing on questions associated with “pre-copulatory sexual 92 

traits” (i.e. sexual signals) [7]. In November 2023, PP selected 44 meta-analyses from this set, 93 

specifically the ones examining the relationship between sexual signals and distinct conditions, 94 

fitness proxies, or individual traits (hereby proxies; see Table S1). PP also included another 95 

meta-analysis examining the relationship between ornament expression and parasite load [14], 96 

which was published after searches were conducted in [7]. This resulted in a total of 45 eligible 97 

meta-analyses to fulfil our objectives [14–54,58–61]. 98 

PP gathered the data reported by these meta-analyses from their tables, appendices, 99 

supplementary files, and occasionally from direct correspondence with their authors. We could 100 



not obtain data for four eligible meta-analyses as their data were unreported [59–61] or poorly 101 

described [58]. Altogether, the remaining 41 meta-analyses from which PP extracted data [14–102 

54] yielded 6,773 data points (see Analyses section). 103 

PP filtered the collated dataset for most analyses conducted here (see Analyses section 104 

and Supplementary information S2). This was done because not all data collected from meta-105 

analyses were relevant to objectives of other parts of the larger research project (e.g. meta-106 

meta-analysis of sexual signals; see [55]). Following this filtering process, the number of data 107 

points in the collated dataset decreased to 5,496. 108 

 109 

Re-extractions 110 

Many meta-analyses included in the collated dataset extracted data from the same empirical 111 

studies. More specifically, after filtering, PP detected that a quarter of empirical studies in the 112 

dataset (318 out of 1272) were used as sources by at least two different meta-analyses (hereby 113 

duplicates, Figure S1). PP selected a subset of these duplicates for data re-extraction to reduce 114 

sampling effort (generating a greater sample size of data points for each meta-analysis 115 

assessed), prioritising certain empirical studies (see details in Supplementary information S3). 116 

In total, this process produced a set of 249 empirical studies for re-extraction. However, we 117 

could not access the full-text of three of these studies, so our sample of studies for re-extraction 118 

was reduced to 246 (hereby verified empirical studies; [62–307]). 119 

 We extracted all data on the relationship between sexual signals and proxies from 120 

verified empirical studies (see details in Supplementary information S2), blinded to which 121 

exact data points were extracted for each of the meta-analyses that included a given study. More 122 

specifically, PP extracted data from 59.3% of the selected empirical studies, while SN, YY, 123 

AM, RCMR, and ML respectively extracted data from other 15.5%, 7.7%, 6.5%, 5.7%, and 124 

5.3% studies. PP then cross-checked all data extractions done by other authors (40.7% of 125 



studies). Importantly, authors never re-extracted data from empirical studies they participated 126 

in. However, we cannot rule out that we experienced some unconscious bias when dealing with 127 

the meta-analyses of co-authors. We extracted data required to calculate effect sizes from text, 128 

tables, supplementary material, and figures (using the package metaDigitise 1.0.1 [308]). When 129 

empirical studies reported similar results in various forms, we prioritised extractions in the 130 

following order: (1) raw data (calculating estimates directly) from sources other than figures, 131 

(2) raw estimates (i.e. means and correlation coefficients) from sources other than figures, (3) 132 

raw data or raw estimates from figures, (4) other estimates (e.g. t, β, χ2) regardless of their 133 

origin. Nonetheless, we first prioritised data sources that showed more details. For instance, if 134 

a correlation was given for all individuals in-text but a scatter plot showed the same data with 135 

dots separated by age or sex, we collected data from the latter. In total, we extracted 5,703 valid 136 

data points. We note that we do not claim that our re-extracted data points are more or less 137 

correct than the data originally reported by meta-analyses, yet we do expect them to converge, 138 

meaning that mismatches should be taken seriously given our transparent procedures.  139 

 140 

Matching reported data with re-extracted data 141 

PP carefully examined the inclusion criteria reported in meta-analyses to verify which re-142 

extracted data points should have been included by them. However, PP found several issues 143 

with these inclusion criteria. First, the proxies and sexual signals that meta-analyses included 144 

were often vague or ambiguous. For instance, Dougherty [15] was interested in behavioural 145 

sexual signals but their dataset also included extended phenotypes (e.g. domes built by crabs). 146 

Even though these extended phenotypes can be considered behavioural products, it was unclear 147 

whether other similar structures (e.g. bowers, ornamented nests) were deemed valid for 148 

inclusion by Dougherty [15]. Second, we detected apparent inclusion criteria patterns in 149 

datasets of some meta-analyses’ that were not mentioned in-text. For example, Nakagawa et al. 150 



[36] stated that they included data on reproductive success but the only reproductive success 151 

measure in their dataset was the number of fledglings, even though the studies they used for 152 

effect size extraction also contained other measures (e.g. number of eggs, number of 153 

hatchlings). Third, some meta-analyses outwardly contradicted their own information. For 154 

example, Weaver et al. [52] stated that they included standardised colour metrics (hue, chroma 155 

or composite measures of those) for carotenoid-based colours in adult birds, describing specific 156 

proxies in their table 2. Yet, they seemed to have included data points in which (1) the sexual 157 

signal was the size of a colourful plumage (e.g. patch size), (2) individuals were juveniles 158 

(including when data points were separated by age), and (3) proxies other than the ones reported 159 

in-text were used (e.g. offspring size). We summarised all meta-analyses’ originally reported 160 

inclusion criteria, the ambiguities, omissions, and contradictions we detected in them, and how 161 

we dealt with these issues for matching purposes in Supplementary information S4. 162 

We then attempted to match data points reported in meta-analyses with the ones we re-163 

extracted from empirical sources. PP mainly used the description of sexual signals and proxies 164 

of each data point to match them with re-extracted data. When multiple data points from the 165 

same empirical study had similar descriptions, we also used sample size and other additional 166 

information (e.g. statistics reported, if given) for matching purposes.  167 

There were three possibilities for each matching attempt. First, when both original and 168 

re-extracted data points had a similar description, PP linked them by labelling the latter with 169 

the ID of the former (i.e. successfully matched them). Yet, it was common to find multiple data 170 

points in our re-extracted dataset that matched one or many data points from the originally 171 

reported dataset (or vice-versa), so this matching was not necessarily exact (see examples in 172 

Supplementary information S5). Second, there were cases in which we could not find original 173 

data points with an equivalent description to relevant re-extracted ones. We assumed that these 174 

data were missed or undetected by meta-analyses’ authors. This allowed us to obtain two 175 



aspects related to reliability: (1) the number of relevant data points that were absent in meta-176 

analyses’ datasets despite being present in empirical studies reported as sources (hereby 177 

missing data) and (2) the number of empirical studies that contained relevant data points that 178 

should have been used as sources but were not (hereby undetected studies). To clarify the latter, 179 

consider a hypothetical meta-analysis that investigated the relationship between X and Y, 180 

reporting data from 10 empirical papers. We then notice two other studies containing relevant 181 

data (relationship between X and Y) that were used as data sources by other meta-analyses in 182 

our dataset but not the hypothetical one, even though the data from these two empirical studies 183 

fit the inclusion criteria reported by the hypothetical meta-analysis. We thus deem that the 184 

hypothetical meta-analysis failed to detect at least two relevant articles. Third, there were cases 185 

in which data points were shown in meta-analyses’ reported datasets but were absent in our re-186 

extractions. We re-checked all of these latter cases: although some data points were not 187 

extracted by us because of our criteria (e.g. invalid proxy) or because we considered them 188 

repeated data, most of them could simply not be found in empirical studies (see details in Table 189 

S2). This could have happened if meta-analyses’ authors contacted empirical authors and were 190 

thus able to obtain more data than what was shown in the empirical articles (unpublished data). 191 

Alternatively, meta-analyses’ authors may have made mistakes during data extraction, even 192 

though we cannot ascertain when this was truly the case. 193 

After PP finalised the matching process, AM, ML, RCMR, SN, and YY cross-checked 194 

matching decisions for five different empirical studies each. This resulted in matching 195 

decisions for approximately 10% of all verified studies being cross-checked, somewhat 196 

attesting the reliability of our process.  197 

 198 

Effect sizes 199 



Originally reported data points were given as the following effect size types: Cohen’s d [18,20], 200 

logarithm of response ratio (logRR) [28], and Fisher’s Zr or correlation coefficients (r) 201 

(remaining meta-analytical studies). One meta-analysis in particular [38] only provided p-202 

values and sample sizes, so PP calculated effect sizes from this information. We transformed 203 

effect sizes reported to Zr for all analyses except the replication of general results (see Analyses 204 

section). We also calculated Zr (along with its sampling variance) from all re-extracted data 205 

points. Additionally, effect sizes reported by Koch et al. [28] did not reflect the raw data that 206 

they provided (means and standard deviations), so PP re-calculated their effect sizes. All 207 

equations for calculation and conversion of effect sizes are given in the Supplementary 208 

information S6, while the direction rationale applied to effect sizes is detailed in Supplementary 209 

information S7. 210 

 211 

Analyses 212 

First, we attempted to replicate meta-analyses’ reported mean effect sizes using their original 213 

datasets. To do so, we conducted a meta-analytical model for each meta-analytical study using 214 

all of their reported effect sizes together (i.e. global model, sensu [7]). However, for meta-215 

analytical studies that only performed subgroup analyses, we only re-analysed the largest or 216 

first reported subgroup. For instance, Nolazco et al. [37] only analysed the relationship between 217 

plumage colour and proxies for each sex separately, so we re-analysed only their data related 218 

to females. Effect sizes for these replication analyses were of the same type as results reported 219 

by meta-analyses (see Effect sizes section). Meta-analytical models for all of our analyses 220 

contained multiple random factors (see end of this section) but, for this replication analysis, we 221 

also included an additional random factor if provided by authors. For example, both Robinson 222 

& Creanza [42] and Sánchez-Tójar et al. [45] used population ID as an additional random factor 223 

in their models. Yet, we were unable to include these additional random factors in meta-analytic 224 



models when these variables were not provided by authors with the rest of the data (e.g. 225 

experiment ID in [15] and population ID in [46]) or when they were redundant (population ID 226 

was different for every source in [16]). Moreover, two meta-analytical studies from our collated 227 

dataset were excluded from this specific analysis: Parker et al. [38] did not provide a confidence 228 

interval for their mean effect size and only data points of interest were extracted from Thornhill 229 

et al. [51] (i.e. their dataset was not fully extracted). We also tested for signs of publication bias 230 

(small-study effect) in re-analysed datasets by adding the inverse of the effective sample size 231 

as a moderator in meta-analytical models (alternative Egger’s regression) [309]. 232 

Second, we attempted to replicate part of individual effect sizes reported in meta-233 

analyses. To do so, we compared originally reported effect sizes with the ones we re-extracted 234 

using linear models with only exactly matched data (i.e. reported data point matched to a single 235 

re-extracted data point, see Supplementary information S5). In these linear models, the 236 

intercept was forced to be zero, originally reported effect sizes were the response variable, and 237 

re-extracted effect sizes were the predictor variable. We evaluated whether the 95% confidence 238 

interval of the estimated slope in each linear model included the value 1, which would represent 239 

that reported and re-extracted effect sizes are very similar. We could not compare originally 240 

reported effect sizes with re-extracted effect sizes from 11 meta-analyses because they 241 

contained less than six exactly matched data points (the arbitrary threshold we established for 242 

this analysis), so we only reported results related to the remaining 30 meta-analyses in our 243 

dataset. 244 

Third, we assessed meta-analyses’ reproducibility by comparing the results of four 245 

slightly distinct meta-analytical models for each meta-analytical study. In model 1, we analysed 246 

the filtered dataset, which contained only reported effect sizes. In model 2, we used the same 247 

data as in model 1 but we replaced reported effect sizes that came from verified studies with 248 

their equivalent re-extracted effect sizes (i.e. the ones that matched in description). In model 3, 249 



we used the same data as in model 2 but we also added other relevant re-extracted data points 250 

from verified studies that were originally missed by meta-analyses’ authors (i.e. missed data). 251 

In model 4, we used the same data as in model 3 but we also added all relevant effect sizes 252 

from undetected studies. Differently from our analysis attempting to replicate mean effect sizes 253 

(first described in this section), we conducted global models for all meta-analytical studies, 254 

even those that had done only subgroup analyses. We note that the datasets used for most meta-255 

analyses remained similar across the four models described above because we did not re-extract 256 

data from all empirical studies reported as sources (Figure S2). For example, Dougherty [15] 257 

extracted data from 197 empirical studies, but we verified only 15 of these studies. This means 258 

that results from these distinct models were unlikely to change for meta-analyses with 259 

proportionally few verified sources. Thus, we additionally conducted the same four models 260 

described above using only data from verified studies (instead of using data from both verified 261 

and unverified studies) for meta-analyses with at least 15 verified sources (N = 15). 262 

Furthermore, we also evaluated whether the inclusion of missing data and undetected studies 263 

changed the generalisability of results by examining the σ (a measure of heterogeneity) from 264 

each random factor in meta-analytical models. 265 

When applicable, we compared estimates from meta-analytic models both qualitatively 266 

and quantitatively. We first ascertained whether an estimate was positive, negative, or not 267 

different from zero (if its 95% CI overlapped zero), so that estimates with distinct 268 

classifications represented a qualitative difference. By contrast, a quantitative difference 269 

occurred when the absolute difference between two estimates produced a z-score of more than 270 

1.96 (i.e. statistically significant, two-tailed α = 0.05), calculated as: 271 

𝑧𝑧 =
𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑋𝑋𝑟𝑟𝑟𝑟−𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

�𝑠𝑠𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2 + 𝑠𝑠𝑒𝑒𝑟𝑟𝑟𝑟−𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2 − 2𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑒𝑒𝑟𝑟𝑟𝑟−𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
 272 



where X represents the estimated mean effect size, se represents its standard error, and 273 

r represents the correlation coefficient between these two groups (set as 0.8 for all main results 274 

as we assume this correlation is high but not perfect; but see Figures S5, S6, and S7 for results 275 

using alternative methods). Although we showed all mean effect sizes generated in the last set 276 

of analyses, where we conducted up to four models per meta-analysis, we only discuss 277 

comparisons between the first and last models for simplicity. 278 

We conducted all analyses described above in R 4.4.0 [310]. Multilevel meta-analytical 279 

models were fitted using the rma.rv function from the package metafor 4.6-0 [311]. All meta-280 

analytical models fitted contained empirical study ID, species ID (non-phylogenetic effect), 281 

and phylogenetic relatedness as a random factor in meta-analytical models [312]. However, we 282 

removed phylogenetic relatedness from meta-analytical models related to certain articles 283 

[18,24,31,32], otherwise some of them would not converge. Phylogenetic trees were built using 284 

the packages ape 5.8 [313] and rotl 3.1.0 [314], which uses data from [315]. 285 

 286 

Results 287 

Reproducibility of mean effect sizes 288 

We found qualitative differences in 15.4% (6 out of 39) of the comparisons between mean 289 

effect sizes reported by meta-analyses and mean effect sizes resulting from re-analyses of those 290 

meta-analyses’ reported datasets (Figure 1). More specifically, five of these meta-analyses 291 

reported a mean effect size not different from zero but its re-analysed counterpart was positive, 292 

while the opposite happened for another meta-analysis. We also detected quantitative 293 

differences between originally reported and re-analysed mean effect sizes in approximately a 294 

tenth of comparisons made (4 out of 39), although none of them were qualitative differences 295 

(Figure 1). Despite this, the absolute difference in magnitude between originally reported and 296 

re-analysed mean effect sizes was always lower than 0.2, even for cases with detected 297 



qualitative or quantitative differences (Figure 2). We also found that effect sizes were positively 298 

predicted by effective sample size (i.e. evidence of publication bias) in 23.1% (9 out of 39) of 299 

meta-analyses. Two-thirds of these meta-analyses (6 out of 9) diligently reported that they 300 

detected publication bias [23,24,26,27,39,49], while the remaining third did not assess 301 

publication bias whatsoever [17,20,54] (Table S3). 302 

 303 



 304 

Figure 1. Originally reported and re-analysed mean effect sizes of 39 meta-analyses. 305 

Qualitative differences represent a change in interpretation between pairs (positive vs. not 306 



different from zero or vice-versa), while quantitative differences represent statistical 307 

differences (absolute z-score greater than 1.96). 308 

 309 

 310 

Figure 2. Comparison between mean effect sizes originally reported by meta-analyses and 311 

mean effect sizes resulting from the re-analysis of the reported dataset of the same meta-312 

analyses. The dashed line highlights a perfect correspondence between variables, while dotted 313 

lines highlight a difference of 0.2 and -0.2 between reported and re-analysed mean effect sizes. 314 

 315 

Reproducibility of individual effect sizes 316 

We found that effect sizes originally reported by meta-analyses were, on average, statistically 317 

identical to their equivalent re-extracted ones in less than half (14 out of 30) of the meta-318 

analyses evaluated (Figure 3, Table S4). For the remaining meta-analyses, the slope from linear 319 

regressions between reported and re-extracted effect sizes was always lower than 1 (x̄±SE = 320 



0.55±0.07), showing that reported effect sizes tended to be smaller or in the opposite direction 321 

than re-extracted ones in these cases. 322 

 323 



 324 

Figure 3. Relationship between effect sizes originally reported by meta-analyses and effect 325 

sizes re-extracted from empirical studies. Solid lines represent a linear regression between 326 

reported and re-extracted effect sizes (with the intercept forced to zero), while shaded areas 327 

represent their 95% confidence interval. Red lines indicate slopes that significantly differ from 328 

1. Dashed lines highlight a perfect relationship between reported and re-extracted effect sizes. 329 

 330 

Missing data and undetected studies 331 

We found that meta-analyses missed (i.e. failed to extract and report), on average, 16±2.6% 332 

(x̄±SE) of relevant effect sizes from empirical studies they used as sources for data extraction 333 

(Figure 4A). Additionally, we found that meta-analyses were unsuccessful in detecting, on 334 

average, at least 10% of empirical studies they should have included as data sources (Figure 335 

4B). Furthermore, we found no association between the number of missing effect sizes and the 336 

minimum proportion of undetected studies across meta-analyses (Figure 4C). 337 



 338 

Figure 4. Proportion of missed effect sizes from all relevant effect sizes re-extracted from 339 

verified empirical studies (A), proportion of undetected studies from the minimum number of 340 



empirical studies that each meta-analysis should have included (B), and the relationship 341 

between these variables (C). Vertical red lines in panels A and B represent the average 342 

proportion of missed effect sizes from all relevant re-extracted effect sizes and the minimum 343 

proportion of undetected studies, respectively. The red line in panel C represents the fit of linear 344 

regression between variables with its 95% confidence interval as the shaded area. 345 

 346 

Replicability of results 347 

Using data from both verified and unverified empirical studies, we found that mean effect sizes 348 

from analyses of originally reported datasets and those from analyses incorporating all relevant 349 

re-extracted data (matched, missed data, and undetected studies) were qualitative and 350 

quantitatively distinct for 12.2% (5 out of 41) and 9.7% (4 out of 41) of meta-analyses, 351 

respectively (both types of differences occurred for one meta-analysis; Figure 5, but see Figure 352 

S6). Similar comparisons using only data from verified empirical studies increased the 353 

occurrence of both qualitative differences (20%, 3 out of 15) and quantitative differences 354 

(26.7%, 4 out of 15; Figure 6, but see Figure S7). Nonetheless, differences in magnitude 355 

between mean effect sizes were often small (Figure S3). Furthermore, heterogeneity varied 356 

only slightly among fitted models (with perhaps one exception; Figure S4). 357 



 358 

Figure 5. Mean effect sizes from up to four distinct meta-analytical models for each of 41 meta-359 

analyses, using data from all empirical studies (both verified and unverified by us, see details 360 



in-text). Dotted lines highlight zero. Comparisons were made between the first and the last 361 

result shown within each subplot, with qualitative differences representing a change in 362 

interpretation (positive vs. not different from zero or vice-versa) and quantitative differences 363 

representing statistical differences (absolute z-score greater than 1.96). 364 

 365 

 366 

Figure 6. Mean effect sizes from up to four distinct meta-analytical models for each of 15 meta-367 

analyses, using only data from empirical studies that we verified (see details in-text). Dotted 368 

lines highlight zero. Comparisons were made between the first and the last result shown within 369 

each subplot, with qualitative differences representing a change in interpretation (positive vs. 370 

not different from zero or vice-versa) and quantitative differences representing statistical 371 

differences (absolute z-score greater than 1.96). 372 

 373 

Discussion 374 



As the very first case study in ecology and evolution, we assessed multiple aspects related to 375 

the reliability of meta-analyses that focus on the relationship between sexual signals and 376 

various proxies. First, we were able to precisely replicate meta-analyses’ reported mean effect 377 

sizes in most but not all cases. Second, we found that effect sizes reported by meta-analyses 378 

and those we re-extracted did not overlap in multiple cases. Third, we observed that some 379 

relevant data, both from included and undetected studies, were missing from certain meta-380 

analyses. Fourth, incorporating such missed relevant data into further analyses, in addition to 381 

replacing reported data from verified empirical studies with re-extracted data, sometimes 382 

produced distinct meta-analytical results. However, the discrepancies we found tended to be 383 

small in magnitude and rarely generated distinct interpretations from the ones originally 384 

reported. Thus, we argue that the meta-analyses we evaluated are fairly reliable, although this 385 

is subjective to the degree of accuracy expected. Below we discuss the impacts of our findings 386 

and provide recommendations to further improve the reliability of meta-analyses in ecology 387 

and evolution. 388 

 Most of our results are based on comparisons between mean effect sizes (Figures 2, 5, 389 

and 6) using categorical interpretations (i.e. negative, not different from zero, or positive; 390 

indicating qualitative differences) and statistical calculations (indicating quantitative 391 

differences). We detected qualitative differences in only a handful of these comparisons, most 392 

of them resulting from differences in width of mean effect sizes’ confidence intervals rather 393 

than in their value. Similarly, we detected few quantitative differences when comparing mean 394 

effect sizes that ideally would have remained identical across analyses. Still, these 395 

discrepancies are only relevant if they impact the interpretation of results from original meta-396 

analyses. Ecology and evolution researchers rarely mention the magnitude of mean effect sizes 397 

from meta-analyses, focusing their attention on the existence or absence of effects or 398 

relationships (Pollo et al. in prep.). This means that quantitative differences alone would 399 



probably be unimportant for most researchers (unless hypotheses rely on effect size 400 

comparisons, as in [316]), while qualitative differences would affect how results are perceived. 401 

However, even though interpreting results based on the inclusion of zero by confidence 402 

intervals is a common practice, it can generate misleading conclusions [317]. For instance, the 403 

lower confidence bound for the mean effect size of Sánchez-Tójar et al. [45] was reported as -404 

0.01 but was slightly above zero in all our analyses, while the magnitude of this study’s mean 405 

effect size was reported as 0.2 and ranged from 0.19 to 0.21 in our analyses (Figures 2 and 5). 406 

Therefore, we conclude that results from Sánchez-Tójar et al. [45], as well those from meta-407 

analyses with similar minute discrepancies, should be deemed replicable despite being different 408 

to the ones we obtained when comparing the inclusion of zero by confidence intervals. 409 

Importantly, statistical definitions of replicability and reproducibility are highly debatable, 410 

meaning that conclusions based on result comparisons become inevitably subjective to a certain 411 

degree [318,319]. 412 

 Some effect sizes reported in meta-analyses were very different from the ones we re-413 

extracted (Figure 3). A portion of these discrepancies could be explained by using distinct effect 414 

size calculations and/or from extracting data from distinct sources within empirical studies (e.g. 415 

raw data from a figure vs. statistics reported in-text). Yet, we noticed that numerous effect sizes 416 

reported were similar in value but opposite in direction to the ones we re-extracted. Although 417 

this did not strongly affect differences among estimated mean effect sizes, effect sizes with the 418 

wrong direction can be particularly dangerous as they should be more impactful than simply 419 

imprecise ones, at least for large effect sizes. Furthermore, errors in data extraction or effect 420 

size calculation can especially affect meta-regressions, which are often performed with subsets 421 

of meta-analytical datasets. This emphasises the importance in meta-analyses of (1) 422 

establishing a coherent rationale to ascertain direction of effect sizes, (2) reporting 423 

directionality decisions in detail, and (3) remaining vigilant during data extraction. 424 



Additionally, we recommend cross-checking data extractions (i.e. independent verification of 425 

the data by someone that did not extract them) to increase the chances of spotting and correcting 426 

mistakes, including those related to the direction of effect sizes. 427 

We observed that not all relevant data from verified empirical studies were used by 428 

meta-analyses (Figure 4). Although we cannot ascertain how or why meta-analyses’ authors 429 

missed relevant data from studies they extracted data from, the reason that some empirical 430 

studies remained undetected might be more easily explained. While it is possible that meta-431 

analyses could have employed suboptimal searches, empirical studies commonly neglect to 432 

inform their entire scope and results in their title, abstract, and key words, which are used to 433 

retrieve and screen studies [320]. Thus, even though authors of meta-analyses should follow 434 

certain guidelines to build effective searches (e.g. [321]), meta-analysts may unfortunately miss 435 

relevant studies despite their best efforts. Conversely, authors of empirical studies should be 436 

mindful of how search engines work, crafting their title, abstract, and keywords to enhance the 437 

findability of their work [320,322]. 438 

The goal of our study was to evaluate the reliability of meta-analyses beyond 439 

transparency, yet our results might be affected by transparency issues found in the meta-440 

analyses we assessed. First, matching reported and re-extracted data points proved to be a 441 

difficult task because meta-analyses usually lack details on their extracted data. For instance, 442 

the sexual signal and proxy for each data point was only vaguely described in most meta-443 

analyses. Furthermore, no meta-analysis in our dataset reported the location of the extracted 444 

data within empirical studies (e.g. which page, table, figure, etc). Second, meta-analyses were 445 

often poorly transparent with their inclusion criteria. We tried to comprehend vague 446 

information, incorporate omitted criteria, and ignore contradictions when matching re-447 

extracted to reported datasets (see Supplementary information S4). Nonetheless, our decisions 448 

might have affected the amount of missing data and of undetected studies by each meta-449 



analysis. Ultimately, this could have influenced our findings related to the reproducibility of 450 

mean effect sizes. 451 

 In addition to the recommendations we already mentioned (e.g. cross-checking of data 452 

extracted), we urge meta-analysts to provide all possible details on the data they collect. For 453 

instance, mentioning which exact measurements were sought are necessary instead of simply 454 

mentioning umbrella terms (e.g. condition-dependence by [24]). The location of the 455 

information is also crucial: readers should not have to examine datasets to find important 456 

details. Instead, summarised details should be in the manuscript or, less preferably, in the 457 

supplementary material, but always in a readable format (figures, simplified tables, in-text, not 458 

in spreadsheets). Furthermore, we reiterate recommendations by Ivimey-Cook et al. [5], such 459 

as providing the within-text source for each data point extracted and the equations used to 460 

calculate effect sizes (along with assumptions and transformations utilised). We summarise our 461 

recommendations in Table S5. 462 
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  1425 

Supplementary tables 1426 

Table S1. Proxies (i.e. variables related to condition-dependency, fitness, and other traits) 1427 

considered valid in our study related to bearers of a sexual signal. N represents the number of 1428 

meta-analytical studies in our dataset including each of these proxies. Underlined proxies are 1429 

predicted to have a negative relationship with sexual signal expression, while others are 1430 

predicted to have a positive relationship with sexual signal expression. 1431 

Proxy Sub proxy Examples 

  
Attractiveness 

Attractiveness or mating 
success 
(N = 15) 

Copulation success, harem size, success in mate choice trials, 
divorce, pairing success or status 

 
Benefits to 
sexual signal 
bearers or to 
mates 

Latency 
(N = 9) 

Latency to arrive at breeding site, latency to nest, latency to pair, 
latency to mate, latency to breed, latency to lay eggs, latency for 
eggs to hatch, latency for offspring to fledge 

Offspring quality or 
viability 
(N = 9) 

Antioxidants or hormones in yolk, offspring growth rate, offspring 
attractiveness, offspring reproductive success, proportion of eggs 
hatched, fledging success, offspring size 

Parental care 
(N = 7) Feeding rate, incubation frequency 

Paternity Within and extra-pair paternity, cuckoldry occurrence 



(N = 10) 
Reproductive success 
(N = 12) 

Clutch size, breeding success, number of fledglings, total offspring 
sired 

Territory 
(N = 2) Territory quality or size 

 
 
 
Individual 
condition 
 
 
  

Body  
condition 
 (N = 11) 

Carotenoid, protein, or lipid amount in plasma or in feathers, 
unspecified body condition, feather quality, subcutaneous fat score, 
residual mass, pectoral score  

External condition 
(N = 7) 

Increase in brood size or reproductive effort, decrease in brood size 
or reproductive effort, habitat quality, mother’s condition, date 
when reared, diet supplementation, dietary deprivation, nutritional 
stress 

Immune or antioxidant 
capacity 
(N = 10) 

Antibody response, glucocorticoids, haematocrit, heterophil-to-
lymphocyte ratio, oxidative damage, white blood cells 

Parasite resistance 
(N = 10) 

Abundance of parasites, infection with a pathogen, pathogen 
richness, parasite removal 

Survival 
(N = 9) Days alive, seen or re-captured after a given period 

Other  
individual  
traits 

Age 
(N = 8) Age, ontogenetic stage (e.g. adult vs. juveniles) 

Aggression or social 
dominance 
(N = 7) 

Performed aggression, received aggression, dominance, fights 
initiated, social rank, nest defence, distance from intruder, territory 
tenure 

Asymmetry 
(N = 3) Fluctuating asymmetry  

Body size 
(N = 8) Body (or part of it) mass, length, width, depth, area, or volume 

Brain size 
(N = 1) Length, mass, area, or volume of the brain (or part of it) 

Heterozygosity 
(N = 2) Multilocus heterozygosity, inbreeding 

Hormones 
(N = 2) 

Androgens, estradiol, fertility phase, ovarian function, 
progesterone, testosterone 

Individual experience 
(N = 1) 

Direct or indirect experience with individuals of the opposite sex 
(e.g. mated vs. unmated) 

Sexual signal 
(N = 4) Another trait considered a sexual signal 

Traits related to sperm 
competition 
(N = 1) 

Quantity of seminal fluid, sperm size, sperm viability, testes size 

  1432 

Table S2. Data points reported by meta-analyses that could not be re-extracted (N = 200). 1433 

Reported IDs refer to the unique identifier for each reported data point across meta-analyses 1434 

(see dataset). 1435 

Meta-analysis Reported IDs Justification 

Dougherty 2021 106, 107 

Reported data point indicates that both proxy and sexual 
signal (courtship behaviour) are from the male, but the latter 
was performed by the female (thus a measure of preference by 
females) 



Dougherty et al. 
2023 5028, 5046 Not found in the primary study: data were collected but were 

not reported 

Dougherty et al. 
2023 5064 

Reported data point indicates that both proxy and sexual 
signal (courtship behaviour) are from the male, but the latter 
was performed by the female (thus a measure of preference by 
females) 

Dougherty et al. 
2023 5056, 5207 Considered repeated data: “brightness” is the average of other 

colour measures already reported 
Evans et al. 
2010 521, 522, 523 Not found in the primary study 

Garamszegi & 
Eens 2004 

4783, 4784, 4785, 4786, 
4787, 4788, 4789, 4790, 
4791 

Not found in the primary study: data were collected but were 
not reported 

Gontard-Danek 
& Moller 1999 648 Not found in the primary study: data were collected but were 

not reported 

Griffith et al. 
2006 727, 731 

Considered repeated data: reported data point refers to a 
principal component measure as sexual signal that uses more 
granular data (hue, brightness, chroma) 

Guindre-Parker 
& Love 2014 6780 Unable to extract this data point: slope without standard error 

Hegyi et al. 
2015 805, 807 Unable to extract this data point: slope without standard error 

Hegyi et al. 
2015 810 Not found in the primary study: data were collected but were 

not reported 

Hernandez et al. 
2021 4321 

Not found in the primary study: data point seems to be related 
to arrival date instead of attractiveness and it is only 
approximately reported 

Jennions et al. 
2001 870 Not found in the primary study: only information given is on 

offspring survival not on survival of the sexual signal bearer 
Mautz et al. 
2013 969 Unable to extract this data point: Wald's Chi-Square without 

p-value 

Mautz et al. 
2013 994, 1009, 1014 

Considered as repeated data: absolute number of live sperm is 
similar to data already given (number of sperm and percent of 
live sperm) 

Meunier et al. 
2011 1287, 1298, 1321 Not found in the primary study 

Moller & 
Alatalo 1999 1423 Not found in the primary study: offspring size reported but 

not offspring survival 
Moller & 
Jennions 2001 1512 Not found in the primary study: asymmetry not even 

mentioned 
Moller & 
Jennions 2001 1599 Not found in the primary study: only relative parental care 

reported, thus not valid for extraction 
Moller & 
Thornhill 1998 6696 Unable to extract this data point: Chi-Square from test with 

predictor variable with more than one level 
Moller & 
Thornhill 1998 6728 Reported data point appears to refer to territory centrality, 

which we did not consider a measure of attractiveness 
Moller & 
Thornhill 1998 6697 Not found in the primary study 

Moore et al. 
2016 1666, 1669 Not found in the primary study: data were collected but were 

not reported 
Moore et al. 
2016 1730, 1731 Not found in the primary study: data were collected but were 

not reported 

Nakagawa et al. 
2007 1804, 1805, 1806 

Not found in the primary study: data appear to be related to 
the relationship between body index and dominance, not 
between bib size and body index as reported 

Nakagawa et al. 
2007 1801 Not found in the primary study: data were collected but were 

not reported 



Nolazco et al. 
2022 2805 Considered invalid for extraction: intra-copulation rate as 

proxy 

Nolazco et al. 
2022 

2813, 2814, 2815, 2816, 
2817, 2818, 2819, 2820, 
2821 

Unable to extract this data point: slope without standard error 

Nolazco et al. 
2022 1991, 2222, 2503, 2504 Unable to extract this data point: slope without standard error 

Nolazco et al. 
2022 2091 Not found in the primary study 

Nolazco et al. 
2022 2337 Not found in the primary study 

Nolazco et al. 
2022 2287 Not found in the primary study: data were collected but were 

not reported 
Nolazco et al. 
2022 1853, 2363 Not found in the primary study: data were collected but were 

not reported 

Parker 2013 6220, 6221 
Data point referred to response between cage a and cage b, 
which were random regarding sexual signal and thus without 
biological meaning 

Parker 2013 5945, 5946 Unable to extract this data point: F-value from test with 
predictor variable with more than one level 

Parker 2013 5460, 5461, 5462 Not found in the primary study 

Parker 2013 5573, 5574, 5575, 5576 Data point related to the interaction between testosterone and 
age on sexual signal, not only age 

Parker 2013 5590, 5591, 5592 Data point related to the interaction between age and sexual 
signal on testosterone, not only sexual signal 

Parker 2013 5594, 5595, 5596 Data point related to the interaction between age and sexual 
signal on corticosterone, not only sexual signal 

Parker 2013 6127, 6128 Not enough details on diet and specimens used to be extracted 

Parker 2013 

6419, 6420, 6422, 6423, 
6424, 6440, 6441, 6442, 
6458, 6459, 6461, 6462, 
6463, 6478, 6479, 6481 

Data point related to the interaction between sex and diet on 
sexual signal, not only diet 

Parker 2013 6085 Considered invalid for extraction: moult duration as proxy 
Parker et al. 
2006 2841, 2842 Unable to extract this data point: U-value without p-value 

Parker et al. 
2006 

2868, 2869, 2870, 2871, 
2872, 2874, 2875, 2877, 
2878 

Not found in the primary study: data were collected but were 
not reported 

Prokop et al. 
2012 

3096, 3097, 3098, 3099, 
3100, 3101, 3102, 3103, 
3104, 3105, 3106, 3107 

Considered invalid for extraction: genetic correlation 

Robinson & 
Creanza 2019 3227 Not found in the primary study: data were collected but were 

not reported 
Robinson & 
Creanza 2019 3228 Unable to extract this data point: F-value from test with 

predictor variable with more than one level 
Romano et al. 
2017a 3397, 3399, 3401, 3403 Data point related to maternal care and male sexual signals, 

not female sexual signal 
Romano et al. 
2017a 3610, 3611, 3615, 3616 Not found in the primary study 

Romano et al. 
2017a 

3480, 3481, 3485, 3488, 
3489 Unable to extract this data point: slope without standard error 

Romano et al. 
2017a 3472, 3474 Unable to extract this data point: F-value from test with 

predictor variable with more than one level 
Romano et al. 
2017a 3478 Unable to extract this data point: Chi-Square from test with 

predictor variable with more than one level 
Romano et al. 
2017a 3529 Not found in the primary study: asymmetry not even 

mentioned 



Romano et al. 
2017a 3525, 3526, 3527, 3528 Unable to extract this data point: slope without standard error 

Romano et al. 
2017a 3469 Considered as repeated data: same information was extracted 

from subgroups 
Romano et al. 
2017a 

3494, 3495, 3498, 3499, 
3500 

Unable to extract this data point: F-value from test with 
predictor variable with more than one level 

Romano et al. 
2017a 3519, 3520 Not found in the primary study 

Romano et al. 
2017a 3638, 3639 Not found in the primary study: data were collected but were 

not reported 
Santos et al. 
2011 3832 Not found in the primary study: only territory size and quality 

were shown but not aggressive interactions 
Santos et al. 
2011 3895 Not found in the primary study: territory defence was reported 

but not territory establishment 
Simons & 
Verhulst 2011 3906 Not found in the primary study: only information on 

attractiveness given is related to diet not sexual signal 

Simons et al. 
2012 3997 

Not found in the primary study: effect of tac only reported in 
relationship to treatments, no relationship between this 
measure and sexual signals 

Simons et al. 
2012 3965 Not found in the primary study: no mention whatsoever of 

PHA response assay in it 

Simons et al. 
2012 

3920, 3929, 3983, 4058, 
4059 

Not found in the primary study: experiment involved 
removing parasites from one group and comparing with a 
control, all other proxies were related to this setting not to 
sexual signals 

Simons et al. 
2012 3956 Not found in the primary study: only plumage colour reported 

Soma & 
Garamszegi 
2011 

6547 Unable to extract this data point: F-value from test with 
predictor variable with more than one level 

Street et al. 2016 4108, 4114, 4120, 4122, 
4124, 4126 

Not found in the primary study: data were collected but were 
not reported 

Thornhill & 
Moller 1998 6666 Unable to extract this data point: Chi-Square from test with 

predictor variable with more than one level 
Thornhill & 
Moller 1998 6669 Not found in the primary study: data were collected but were 

not reported 
Thornhill & 
Moller 1998 6667, 6668 Not found in the primary study 

Weaver et al. 
2018 4526, 4531 Considered as repeated data: same information was extracted 

from subgroups 
Weaver et al. 
2018 4529 Considered invalid for extraction: proxy is from both males 

and females while sexual signal is only from males 

White 2020 4555 Not found in the primary study: data were collected but were 
not reported 

White 2020 4685, 4686, 4687, 4688, 
4689 

Not found in the primary study: species reported in meta-
analysis is not even mentioned 

White 2020 4690, 4691 Not found in the primary study: no parasite is mentioned 

Yasukawa et al. 
2010 4750, 4751 

The primary study provided the difference in sexual signal 
between recaptured and non-recaptured individuals, which 
was considered a measure of survival in this meta-analysis. 
Yet, we disagree with this interpretation as the authors of the 
primary study do not suggest this is the case and the time 
between capture and recapture was short 

Yasukawa et al. 
2010 

4721, 4722, 4723, 4740, 
4741 

Not found in the primary study: other measures of aggression 
given, but not dominance rank 

 1436 



Table S3. Evaluation of publication bias (small-study effect) of meta-analyses reported results. 1437 

We considered that publication bias was detected (i.e. TRUE, shaded rows) when the slope 1438 

95% confidence interval was positive. 1439 

Meta-analysis Slope Standard 
error 

95% CI 
upper 
bound 

95% CI 
lower 
bound 

Publication 
bias 
detected 

Publication 
bias reported 

Dougherty 2021 0.046 0.024 -0.001 0.092 FALSE undetected 
Dougherty et al. 2023 0.003 0.026 -0.048 0.054 FALSE undetected 
Evans et al. 2010 0.048 0.060 -0.070 0.166 FALSE not assessed 
Fiske et al. 1998 0.176 0.081 0.017 0.335 TRUE not assessed 
Garamszegi & Eens 2004 0.029 0.073 -0.114 0.171 FALSE undetected 
Garamszegi & Moller 
2004 -0.186 0.257 -0.690 0.318 FALSE not assessed 

Garamszegi 2005 -0.017 0.151 -0.314 0.279 FALSE not assessed 
Garamszegi et al. 2007 0.605 0.247 0.122 1.089 TRUE not assessed 
Gontard-Danek & Moller 
1999 0.138 0.097 -0.052 0.328 FALSE undetected 

Griffith et al. 2006 0.121 0.049 0.025 0.217 TRUE detected 
Guindre-Parker & Love 
2014 0.164 0.053 0.060 0.269 TRUE detected 

Hegyi et al. 2015 -0.005 0.035 -0.073 0.064 FALSE undetected 
Hernandez et al. 2021 0.085 0.039 0.008 0.161 TRUE detected 
Jennions et al. 2001 0.093 0.033 0.027 0.158 TRUE detected 
Koch et al. 2016 -0.160 0.156 -0.465 0.145 FALSE undetected 
Mautz et al. 2013 -0.098 0.038 -0.173 -0.023 FALSE undetected 
McLean et al. 2012 -0.093 0.108 -0.305 0.119 FALSE not assessed 
Meunier et al. 2011 0.078 0.053 -0.025 0.181 FALSE undetected 
Moller & Alatalo 1999 0.054 0.091 -0.125 0.233 FALSE not assessed 
Moller & Jennions 2001 0.078 0.105 -0.127 0.283 FALSE undetected 
Moller & Thornhill 1998 -0.083 0.060 -0.199 0.034 FALSE not assessed 
Moore et al. 2016 0.006 0.043 -0.077 0.090 FALSE undetected 
Nakagawa et al. 2007 0.106 0.148 -0.184 0.396 FALSE undetected 
Nolazco et al. 2022 0.034 0.018 -0.003 0.070 FALSE undetected 
Parker 2013 0.097 0.035 0.029 0.165 TRUE detected 
Parker et al. 2006 0.202 0.127 -0.048 0.451 FALSE detected 
Prokop et al. 2012 -0.010 0.059 -0.126 0.106 FALSE undetected 
Robinson & Creanza 2019 0.091 0.055 -0.017 0.198 FALSE undetected 
Romano et al. 2017a 0.011 0.019 -0.026 0.048 FALSE undetected 
Romano et al. 2017b 0.043 0.054 -0.063 0.148 FALSE undetected 
Sanchez-Tojar et al. 2018 -0.067 0.102 -0.267 0.133 FALSE undetected 
Santos et al. 2011 0.067 0.039 -0.009 0.142 FALSE undetected 
Simons & Verhulst 2011 -0.038 0.160 -0.353 0.276 FALSE undetected 
Simons et al. 2012 0.052 0.036 -0.020 0.123 FALSE undetected 
Soma & Garamszegi 2011 0.190 0.038 0.115 0.264 TRUE detected 
Street et al. 2016 -0.150 0.156 -0.456 0.157 FALSE not assessed 
Weaver et al. 2018 0.035 0.025 -0.014 0.084 FALSE undetected 
White 2020 0.055 0.033 -0.010 0.120 FALSE undetected 
Yasukawa et al. 2010 0.165 0.074 0.021 0.309 TRUE not assessed 

 1440 

 1441 



Table S4. Slopes from linear regressions between originally reported effect sizes by meta-1442 

analyses and effect sizes that were re-extracted from their sources (but only those that exactly 1443 

matched their description). Shaded rows highlight slopes whose 95% confidence interval does 1444 

not include 1. 1445 

Meta-analysis Slope Standard 
error 

95% CI upper 
bound 

95% CI lower 
bound 

Dougherty 2021 0.976 0.101 1.193 0.759 
Dougherty et al. 2023 0.956 0.037 1.029 0.883 
Fiske et al. 1998 0.254 0.150 0.620 -0.112 
Garamszegi & Eens 2004 1.008 0.019 1.047 0.970 
Garamszegi & Moller 2004 0.642 0.138 0.981 0.304 
Gontard-Danek & Moller 1999 0.828 0.218 1.388 0.268 
Griffith et al. 2006 0.696 0.119 0.939 0.453 
Hegyi et al. 2015 0.720 0.050 0.839 0.601 
Hernandez et al. 2021 0.022 0.132 0.285 -0.241 
Jennions et al. 2001 1.026 0.315 1.720 0.332 
Mautz et al. 2013 0.619 0.119 0.859 0.380 
McLean et al. 2012 0.778 0.055 0.906 0.651 
Meunier et al. 2011 0.743 0.248 1.274 0.212 
Moller & Jennions 2001 0.311 0.117 0.569 0.053 
Moore et al. 2016 0.371 0.311 1.171 -0.429 
Nakagawa et al. 2007 0.907 0.043 0.994 0.819 
Nolazco et al. 2022 0.755 0.031 0.816 0.693 
Parker & Ligon 2003 1.047 0.108 1.311 0.783 
Parker 2013 0.460 0.061 0.581 0.339 
Parker et al. 2006 0.984 0.011 1.007 0.962 
Robinson & Creanza 2019 0.876 0.082 1.043 0.709 
Romano et al. 2017a 0.316 0.056 0.428 0.204 
Romano et al. 2017b 0.996 0.018 1.036 0.955 
Sanchez-Tojar et al. 2018 0.868 0.355 1.736 0.001 
Santos et al. 2011 0.800 0.152 1.127 0.472 
Simons et al. 2012 0.729 0.087 0.907 0.552 
Soma & Garamszegi 2011 0.977 0.041 1.059 0.895 
Street et al. 2016 0.123 0.077 0.286 -0.041 
Weaver et al. 2018 0.663 0.069 0.800 0.527 
White 2020 0.760 0.082 0.929 0.592 

 1446 

Table S5. Recommendations for meta-analytical research projects. 1447 

Item Recommendation(s) 

Data of interest 
• Detail all criteria and data as much as possible instead of mentioning 

umbrella terms 
• Provide data details in a readable format, not only within the dataset 

Direction and extraction of 
effect sizes 

• Establish a coherent rationale to ascertain direction of effect sizes, 
fully reporting it in the manuscript 

• Double-check extracted data (done by a researcher other than the data 
extractor) 



• Provide the within-text location of data extracted 
• Provide equations used to calculate effect sizes, along with 

assumptions and data transformations utilised 

 1448 

  1449 



Supplementary figures 1450 

 1451 

Figure S1. Summarised workflow used in our study, with four main aims. *Examples of effect 1452 

sizes that were not reported in a meta-analysis because the empirical study containing it was 1453 

not originally detected (i.e. undetected studies). †Examples of effect sizes that were not 1454 

originally reported by a meta-analysis even though the empirical study was listed as a source 1455 

for other effect sizes (i.e. missed data). 1456 

 1457 



 1458 

Figure S2. Proportion of empirical studies that we verified (i.e. from which we re-extracted 1459 

data) from the number of empirical studies reported as sources by each meta-analysis. The 1460 

number of empirical studies we verified out of the number of empirical studies reported as 1461 

sources by each meta-analysis is shown within bars. The dotted line highlights when half of 1462 

the empirical studies were verified.  1463 

 1464 



 1465 

Figure S3. Comparison between mean effect sizes resulting from analyses using the dataset 1466 

originally reported by meta-analyses and those resulting from analyses incorporating all 1467 

relevant re-extracted data (matched, missed, and undetected). Data from both verified and 1468 

unverified empirical studies are analysed in A, while only data from verified studies are used 1469 

in B. Dashed lines highlight perfect correspondences between variables, while dotted lines 1470 

highlight a difference of 0.2 and -0.2 between variables. 1471 

 1472 



 1473 

Figure S4. Comparison between sigmas (from each random factor) resulting from analyses 1474 

using the dataset originally reported by meta-analyses and those resulting from analyses 1475 

incorporating all relevant re-extracted data (matched, missed, and undetected). Data from both 1476 

verified and unverified studies are analysed in A, while only data from verified empirical 1477 

studies are used in B. Dashed lines highlight perfect correspondences between variables, while 1478 

dotted lines highlight a difference of 0.2 and -0.2 between variables. 1479 

 1480 



 1481 

Figure S5. Originally reported and re-analysed mean effect sizes of 39 meta-analyses. 1482 

Colourful points indicate quantitative pairwise differences with absolute z-score greater than 1483 



1.96 (using different values for r) and/or when the 95% confidence interval of the re-analysed 1484 

mean effect size did not include the value of the reported mean effect size (“CI comparison”). 1485 

 1486 



 1487 

Figure S6. Mean effect sizes from up to four distinct meta-analytical models for each of 41 1488 

meta-analyses, using data from all empirical studies (both verified and unverified by us, see 1489 



details in-text). Dotted lines highlight zero. Colourful points indicate quantitative pairwise 1490 

differences (between the first and the last result shown within each subplot) with absolute z-1491 

score greater than 1.96 (using different values for r) and/or when the 95% confidence interval 1492 

of the re-analysed mean effect size did not include the value of the reported mean effect size 1493 

(“CI comparison”). 1494 

 1495 

 1496 

Figure S7. Mean effect sizes from up to four distinct meta-analytical models for each of 15 1497 

meta-analyses, using data from verified empirical studies (see details in-text). Dotted lines 1498 

highlight zero. Colourful points indicate quantitative pairwise differences (between the first 1499 

and the last result shown within each subplot) with absolute z-score greater than 1.96 (using 1500 

different values for r) and/or when the 95% confidence interval of the re-analysed mean effect 1501 

size did not include the value of the reported mean effect size (“CI comparison”). 1502 

 1503 



Supplementary information S1. Changes from the pre-registration 1504 

We replaced terms used in our pre-registration regarding our goals (e.g. “precision”, 1505 

“completeness”, “detectability”) with other terms (e.g. number of undetected studies) to 1506 

improve the clarity of our manuscript. Furthermore, we created different proxy categories (e.g. 1507 

“heterozygosity”, “hormones”, “territory”) and reorganised proxies’ master categories to 1508 

improve clarity and better show their diversity (see Table S1). 1509 

 1510 

Supplementary information S2. Data of interest 1511 

First, for the purpose of our study, we interpret ornaments and sexual signals as “non-ordinary 1512 

and non-weapon traits potentially used for mate attraction”. This vague definition is intended 1513 

to match the rationale observed in the literature, in which conspicuous and/or sexually 1514 

dimorphic traits are often subjectively designated as sexual signals (see also the discussion in 1515 

[7]). In practice, this means that we included all traits considered as sexual signals by meta-1516 

analyses’ authors, except for obvious weapons (i.e. antlers, spurs, and horns), ordinary traits 1517 

(i.e. body size; body parts without referring to it as a sexual trait, e.g. [323]), lek related 1518 

measures (e.g. lek attendance, distance from lek centre, etc.; see [17]) colour bands put on 1519 

animals by researchers (see [324]), and comparisons between “attractive” vs. “unattractive” 1520 

based on mate preferences without a direct measurement of a sexual signal (e.g. [325,326]). In 1521 

addition, we only considered asymmetry as a sexual signal when it was related to a trait that 1522 

itself was considered a sexual signal. The only extended phenotypes we considered as valid 1523 

sexual signals were measures of structures to attract mates (e.g. bowers, nests). This means that 1524 

data related to leks (e.g. lek attendance, distance to centre of the lek) and territory quality were 1525 

not considered sexual signals. Second, we are interested in how sexual signals relate to distinct 1526 

conditions, fitness proxies, and individual traits (Table S1). However, we excluded effect sizes 1527 

related to traits of focal individuals’ mates (e.g. parental care provided by mate), assortative 1528 



mating, heritability (i.e. proportion of phenotypic variance explained by genetic variance), and 1529 

offspring sex ratio because we deemed these estimates may not be linked to benefits to or reflect 1530 

patterns of sexual signal bearers. Third, we excluded effect sizes related to humans to avoid 1531 

confounding our cultural influences with biological aspects of non-human animals (see also 1532 

[7]). Fourth, we excluded effect sizes with (exact) zero values from three meta-analyses that 1533 

purposefully included non-significant results as such [14,15,39], unless we were able to match 1534 

them with at least one re-extracted data point (see Re-extractions section). 1535 

 1536 

Supplementary information S3. Priority and selection of empirical studies for data re-1537 

extraction 1538 

We classified empirical studies (used as sources for data extraction in meta-analyses) according 1539 

to the following categories. We first classified all empirical studies listed as sources for at least 1540 

three meta-analyses as “high priority” (n = 82). Then, we classified the remaining duplicates 1541 

(i.e. empirical studies that were used exactly by two meta-analyses) as: (1) “low priority” when 1542 

empirical studies whose all effect sizes were identical (both in their description and in their 1543 

value) across meta-analyses (n = 19); (2) “medium priority” when empirical studies contained 1544 

effect sizes regarding different traits and measurements (e.g. distinct sexual signals or fitness 1545 

proxies) across meta-analyses (n = 79); (3) “high priority” when empirical studies generated 1546 

similarly described effect sizes (e.g. same sexual signal and fitness proxy) but with different 1547 

(and thus contradicting) values or sample sizes across meta-analyses (n = 136). We primarily 1548 

targeted high priority duplicates (n = 218) for effect size re-extraction, although not all meta-1549 

analyses contained these duplicates (e.g. [18,50]). We thus established a minimum of five 1550 

empirical studies for re-extraction of effect sizes per meta-analysis, adding medium priority 1551 

duplicates (n = 12) and non-duplicated empirical studies (n = 19) when necessary to meet this 1552 

quota. 1553 



 1554 

Supplementary information S4. Meta-analyses’ inclusion criteria 1555 

Below, we provide excerpts from the meta-analyses in our dataset related to their data of 1556 

interest and inclusion criteria. We also provide the issues we detected for each meta-analysis 1557 

(if any). 1558 

 1559 

Dougherty (2021) 1560 

Originally reported 1561 

“I focused on sexual signalling behaviour, including long-range attraction signals and short-1562 

range courtship signals. I excluded measures of investment in non-behavioural signals, such as 1563 

ornaments or advertising colours, although I did not exclude display behaviours that involved 1564 

such ornaments. I excluded intrasexual signals or signals for which a primary intrasexual 1565 

function could not be ruled out. However, I acknowledge that all sexual signals probably 1566 

function intrasexually to some extent. I also included several lekking species for which displays 1567 

probably signal to potential mates and rivals because I consider the primary function of leks to 1568 

be mate assessment. I included studies examining both male and female sexual signalling. I 1569 

included acoustic, visual, olfactory (pheromone) and tactile display behaviours. I focused on 1570 

behavioural traits that reflect the motivation to signal (for example, courtship latency) or 1571 

energetic investment in signalling (such as signalling duration, rate and some measures of 1572 

intensity). For acoustic signals, I included measures of call loudness, except when related to 1573 

body size (because call loudness may be constrained by the size of the sound-producing 1574 

organs). I excluded measures of signal complexity because this does not necessarily relate to 1575 

overall energetic investment per se. For acoustic signals, I excluded measurements of call 1576 

pitch/frequency and fine-scale temporal components of a call. For pheromones, I excluded 1577 

measurements of pheromone composition but included measures of time spent releasing 1578 



pheromone and pheromone titre if measured outside the body (I excluded measures of 1579 

pheromone titre in dissected glands or bodies). 1580 

I included studies examining how sexual signalling behaviour related to age. I included 1581 

studies in this category if all individuals were sexually mature and age was not confounded 1582 

with body size. Importantly, age is often confounded by mated status, especially for wild 1583 

individuals and this may influence the motivation to signal independently of age. Therefore, I 1584 

only considered studies examining age-related signalling in virgins. This was necessary 1585 

because few studies record both age and mated status in a way that allows their independent 1586 

effects to be estimated. [...] I included studies examining how sexual signalling behaviour 1587 

related to other measures of attractiveness. In these studies, attractiveness was determined in 1588 

relation to behavioural or morphological traits which were suggested to signal mate quality 1589 

(either genetic quality or current condition) or have been shown to be used in mate choice. I 1590 

included studies relating signalling behaviour to: (1) song quality, (2) ornament size, (3) 1591 

ornament or body colouration or brightness, (4) morphological asymmetry, (5) inbreeding, (6) 1592 

territory or nest quality and (7) social rank. Individuals were assumed to be attractive if they 1593 

exhibited high-quality song, large ornaments, bright or intense colouration, were outbred, with 1594 

low asymmetry, of a high social rank and had high-quality territories or nests. I included tests 1595 

of social rank only when signalling was recorded in the absence of rivals; this is important 1596 

because high-ranking individuals may suppress the behaviour of subordinates. 1597 

This category included studies relating signalling to body length, weight or some proxy 1598 

length measurement (for example, leg length, wing length and pronotum width). 1599 

I included studies examining how sexual signalling behaviour related to several 1600 

measures of condition: (1) diet or food level, (2) the relationship between body size and weight, 1601 

(3) direct measurements of body lipid content or plasma metabolite level and (4) environmental 1602 

conditions that could alter physiological stress in the short-term (oxygen, carbon dioxide and 1603 



water acidity in aquatic environments). I used several indirect, morphological measures of 1604 

condition, although I note that several common measures have been criticised. I assume that 1605 

individuals were in poor condition if they were relatively light for a given body size, with low 1606 

lipid stores, or had experienced low food levels, poor-quality diets or stressful environments. I 1607 

excluded studies examining how signalling behaviour related to physiological markers of 1608 

stress, as stress responses are typically short-lived and may have a complex relationship with 1609 

condition. 1610 

I included studies comparing signalling between virgins and once-mated individuals. I 1611 

excluded tests related to the number of matings above one or other forms of mating experience 1612 

(that is, the phenotype of previous mating partners). 1613 

I included studies examining how sexual signalling behaviour related to parasite load. 1614 

This category included studies measuring the presence or number of external (lice, mites and 1615 

crustaceans) or internal (acanthocephalans, nematodes, platyhelminthes, alveolates, fungi, 1616 

bacteria and viruses) parasites. I included sexually transmitted parasites, even in cases where 1617 

host behavioural changes were suggested to be due to parasite manipulation. I excluded studies 1618 

relating behaviour to the presence of endosymbionts in insects, as they may have parasitic or 1619 

mutualistic effects on their hosts. Finally, I also excluded studies examining the effect of 1620 

controlled immune challenges on host behaviour; for example, by introducing sterile pellets or 1621 

inactivated pathogens into the host. This is because any consequences for host condition are 1622 

indirect in such cases, caused by upregulation of the host immune system and are typically 1623 

short-lived.” 1624 

 1625 

Issues 1626 

1) The dataset contains sexual signals that are behavioural products (i.e. extended phenotype; 1627 

e.g. number of pillars built, domes built, and building rate in different species of crabs). The 1628 



manuscript does not mention this or other extended phenotypes. We thus considered data on 1629 

extended phenotype as valid sexual signals for matching purposes.  1630 

2) The manuscript does not mention brood size manipulation as a valid proxy even though 1631 

several data points related to this proxy are in the reported dataset. We thus considered brood 1632 

size manipulation as a valid proxy for matching purposes. 1633 

 1634 

Dougherty et al. (2023) 1635 

Originally reported 1636 

“To be included in the analysis, a study had to (a) present data for sexually mature individuals 1637 

of a non-human animal species, (b) report within-species variation in a morphological, 1638 

behavioural, or extended ornament, (c) report some measure of parasite load for the same host 1639 

individuals, and (d) provide sufficient statistical information for an effect size to be calculated. 1640 

While parasite-mediated sexual selection hypotheses tend to focus on elaborate male 1641 

morphological ornaments, such as plumage or bright skin patches, we expand the scope of our 1642 

data set by (a) considering display behaviours and extended ornaments such as the bowers of 1643 

bowerbirds because these potentially honestly indicate courter condition or quality and (b) 1644 

considering female ornamentation because mating preferences in relation to partner condition 1645 

and quality are seen in both sexes.” 1646 

 1647 

Issues 1648 

1) Many aspects from acoustic signals (e.g. repertoire size, song switching rate) seemed to have 1649 

been excluded without mentioning this in-text, which we interpreted as a hidden criterion. 1650 

2) The dataset contains details only for some sexual signals, while others remain unclear (e.g. 1651 

"colour" without specifying body part or how it was measured). 1652 

 1653 



Evans et al. (2010) 1654 

Originally reported 1655 

“We conducted a search of peer-reviewed journals to identify studies that examined ventral 1656 

plumage reflectance in free-living great tit populations and also contacted known researchers 1657 

directly to ask them to contribute data. [...] The data in the meta-analysis included measures 1658 

derived from spectrometry, colorimetry, digital photography, and colour tiles, and were based 1659 

on measures of live birds and of sampled feathers. As a result of the limited number of studies 1660 

represented, we did not test for systematic differences with respect to methodology. We did not 1661 

impose restrictions on the colour measures that would be included in our meta-analysis; rather, 1662 

we invited researchers to use colour measures of their choice. [...] To examine the overall extent 1663 

of sex- and age-dependent colour expression, we compiled data on the mean, standard deviation 1664 

and sample size for each sex (males versus females) and, separately, each age class (first-years 1665 

versus older birds).” 1666 

 1667 

Issues 1668 

No issues detected. 1669 

 1670 

Fiske et al. (1998) 1671 

Originally reported 1672 

“We included studies if they contained correlates (parametric Pearson or nonparametric 1673 

Spearman correlation coefficients) between traits and male mating success. Assessing male 1674 

mating success across several taxa is not an easy task. In many lekking species (e.g., certain 1675 

insects) copulations are hard or even impossible to observe. Two of the studies included 1676 

presented their results as correlates of female visitation rates. This is probably legitimate 1677 

because this measure is highly intercorrelated with the number of copulations. Still, our 1678 



analyses were mainly based on studies that obtained correlations with male copulatory success. 1679 

This led to rejection of some ungulate studies because they reported correlations with territory 1680 

mating success. [...] Attendance: We included studies that provided information about the time 1681 

individual males spent on the lek in relation to male mating success. This variable was 1682 

measured both as the proportion of time compared to other males and as absolute time within 1683 

a given period. Display frequency: Males vocalisations are probably important traits when 1684 

females make their mate choice decision. Therefore we included measurements of display 1685 

frequencies (calls per unit time or proportions of time calling) because such measurements can 1686 

easily be compared across species. Spectral aspects of calls have also been analysed in several 1687 

studies, but we have chosen not to include them in our analyses because we found them 1688 

impossible to categorise uniformly.” 1689 

 1690 

Issues 1691 

1) All data reported were related to mating success, but authors never provided the specific 1692 

measure for each data point or study that represented this proxy. We thus accepted all proxies 1693 

of mating success for matching purposes. 1694 

 1695 

Garamszegi (2005) 1696 

Originally reported 1697 

“I performed some simple meta-analyses on the available data to test for general patterns in the 1698 

intraspecific association between parasitism and bird song. [...] I used measures of immune 1699 

function and parasite prevalence interchangeably, as was done in similar meta-analyses.” 1700 

 1701 

Issues 1702 

No issues detected. 1703 



 1704 

Garamszegi & Eens (2004) 1705 

Originally reported 1706 

“We collected published results of studies investigating correlatively the intraspecific 1707 

association between male repertoire size and/or song length and the size of HVC and/or RA. 1708 

Hence, we did not include studies that investigated seasonal variation in RA and HVC volumes 1709 

and song by sampling males in different seasons, or compared groups of birds experiencing 1710 

different tutoring regimes or originating from different populations. [...] As some studies 1711 

distinguished between the absolute and relative volumes of brain nuclei by taking or not the 1712 

covariation with telencephalon into account, we also estimated effect sizes for absolute and 1713 

relative volumes of the HVC and RA.” 1714 

 1715 

Issues 1716 

No issues detected. 1717 

 1718 

Garamszegi & Moller (2004) 1719 

Originally reported 1720 

“We collected published and, in an effort to control for publication bias, unpublished results of 1721 

studies investigating the association between songs and extrapair paternity within species. [...] 1722 

We included analyses from t-tests (two-tailed), or other equivalent statistics testing the null 1723 

hypothesis that males with more extravagant song display (measured as repertoire size, song 1724 

rate, song length, and performance characteristics) have similar paternity in their own nests 1725 

than do males with less extravagant song features.” 1726 

 1727 

Issues 1728 



1) Manuscript is unclear on which measures of paternity were included, so we considered all 1729 

extra- and within-paternity measures as valid for matching purposes. 1730 

2) Manuscript is unclear on which song traits were included while the dataset contains various 1731 

song traits. We thus considered all possible song traits as valid for matching purposes. 1732 

 1733 

Garamszegi et al. (2007) 1734 

Originally reported 1735 

“[...] we collected published results of studies investigating the relationship between age and 1736 

song using cross-sectional approaches. We included analyses based on t-test (two-tailed), or 1737 

other equivalent statistics testing the null hypothesis that yearling males have similar repertoire 1738 

to older males.” 1739 

 1740 

Issues 1741 

No issues detected. 1742 

 1743 

Gontard-danek and Moller (1999) 1744 

Originally reported 1745 

“We searched the literature for correlation coefficients, or other statistics that could be 1746 

converted into correlation coefficients, based on the relationship between sexual selection and 1747 

the expression of secondary sexual characters. […] We considered whether effect size differed 1748 

in relation to the currency used to estimate success. These were classified as mate preference, 1749 

mating success, breeding success, or paternity.” 1750 

 1751 

Issues 1752 



1) The manuscript mentions proxies without details ("mate preference, mating success, 1753 

breeding success, or paternity"). We thus considered all measurements related to these proxies 1754 

(except those related to timing or latency) as valid for matching purposes.  1755 

2) The dataset contains one data point related to territory quality even though the manuscript 1756 

only mentioned other proxies. We thus included relevant data that used territory quality as 1757 

proxies. 1758 

3) The manuscript only mentions "secondary sexual characters", which apparently excludes 1759 

behavioural sexual signals as these were not present in the dataset. We thus interpreted this as 1760 

a hidden criterion and did not consider behavioural sexual signals as valid for matching 1761 

purposes. 1762 

4) Dataset only contained measurements on timing or latency related to breeding, egg laying, 1763 

mating, and pairing. We thus interpreted this an omitted criterion and excluded other similar 1764 

measures (e.g. arrival date) for matching purposes. 1765 

 1766 

Griffith et al. (2016) 1767 

Originally reported 1768 

“A number of experimental manipulations have been conducted to test the condition 1769 

dependence of carotenoid- and melanin-pigmented ornaments, especially in birds. These 1770 

studies manipulated condition-related factors including diet, parasite load and parental effort. 1771 

We did not include studies that manipulated the carotenoid content of the diet because the 1772 

absence of carotenoids in the diet must lead to the absence of carotenoids in the body, and thus 1773 

a response to this treatment does not demonstrate condition dependence of a carotenoid-1774 

pigmented trait. 1775 

 Pigmented ornaments were assessed for changes in area, brightness, hue, saturation, 1776 

chroma, principal component-defined colour variation, or other colour score. We attempted to 1777 



locate all such studies from birds for inclusion in meta-analyses. All studies included in the 1778 

meta-analyses examined the response of traits that appear ornamental and thus may have 1779 

evolved in response to sexual selection.” 1780 

 1781 

Issues 1782 

1) The dataset contains a data point related to assessment of a sexual signal before and after an 1783 

immune challenge. We thus considered other immune challenges as valid for matching 1784 

purposes if they occurred the same way, which does not include the relationship between sexual 1785 

signals and quick immune evaluations (e.g. PHA responses, blood tests). 1786 

 1787 

Guindre-Parker & Love (2014) 1788 

Originally reported 1789 

“We surveyed published studies on condition-dependent melanin plumage. We characterised 1790 

species as either achromatic (primarily black, brown, grey or white) or chromatic (also 1791 

possessing a carotenoid-based red, orange or yellow ornament) to investigate whether the 1792 

presence of a carotenoid-based signal can influence the condition-dependence of a melanin 1793 

signal. We excluded species with iridescent plumage as it is primarily structurally based, as 1794 

well as because it is difficult to determine how birds perceive iridescence without more 1795 

complex visual modelling.” 1796 

 1797 

Issues 1798 

1) Unclear how authors verified which sexual signals were melanin-based. 1799 

2) The manuscript does not specify proxies included (i.e. what condition-dependent entails), so 1800 

only proxies present in the dataset were considered to be valid (i.e. hidden criterion for 1801 

matching purposes). 1802 



 1803 

Hegyi et al. (2015) 1804 

Originally reported 1805 

“We therefore used correlative studies and took into account alternative explanations arising 1806 

from the non-experimental situation when interpreting our results. [...] Our first goal was to 1807 

assess the overall evidence for a correlation between ornamentation and the feeding rate of the 1808 

ornament bearer or its partner. […] Effect sizes were converted so that the positive sign 1809 

indicated a positive relationship of feeding rate with plumage colour expression. [...] Due to 1810 

their negligible number, we had to remove results on incubation feeding of females by males 1811 

(five results from three populations of three species). 1812 

Our search protocol also encountered nine results from four populations of one species 1813 

(the barn swallow) that concerned feather length as an ornament, which were removed from 1814 

the dataset. Of the remaining 75 effect sizes, we removed results on white patches due to their 1815 

prohibitively small number (n=2 from a single species) and also retained for each population 1816 

of a given species only one measure of the same colour type (n=1 point removed; we chose the 1817 

point with the more complete information). For each ornament analysed here, the proximate 1818 

origin of colour variation (carotenoid, pheomelanin, eumelanin, structural) was clear from the 1819 

species-specific literature. [...] Plumage colour had been measured in different ways depending 1820 

on the colour category and study approach, and the following changes were regarded as 1821 

increased colour expression: for carotenoid colour, increased saturation, chroma or patch size; 1822 

for pheomelanin colour, increased saturation, increased chroma, increased patch size or 1823 

reduced brightness; for eumelanin colour, increased patch size (no other measures were used 1824 

in any relevant study); and for structural colour, more UV-shifted hue or increased saturation.” 1825 

 1826 

Issues 1827 



1) The manuscript mentioned that only non-experimental approaches were valid but the dataset 1828 

included cases of experimental approaches. Nonetheless, we followed the original rule given 1829 

in the manuscript for matching purposes for other studies. 1830 

 1831 

Hernandez et al. (2021) 1832 

Originally reported 1833 

“[…] we evaluated the evidence of an association of colourful female ornaments with the 1834 

condition, reproductive performance and male preferences. […] Three moderators were 1835 

considered in the model evaluating the association between female colour and condition: 1836 

Condition proxy (residual body mass, immune response -humoral or cellular -, and parasite 1837 

load), ornament type (feathers or integuments), and coloration type (carotenoid-dependent, 1838 

melanin-based, or structural). In the model evaluating the association between female colour 1839 

and reproductive performance, we used the same ornament type and coloration type moderator 1840 

variables but replaced the condition proxy with a reproductive performance proxy (laying date, 1841 

clutch size, or fledging success). When clutch size and fledging success were assessed in the 1842 

same study, only fledging success was considered. In the analyses exploring the relationship 1843 

between female colour and male mating preferences, only four effect sizes were available for 1844 

melanin-based and structural colours (one and three, respectively), so we fit this model 1845 

including effect sizes only from studies evaluating carotenoid-dependent colorations (n = 11). 1846 

The ornament type (feathers or integuments) was included as a moderator. 1847 

The intensity of coloration was estimated using the number and/or size of coloured 1848 

structures/patches, spectrophotometry, digital image analysis (RGB or LBA), and visual rank 1849 

scales (colour charts and visual rank score).” 1850 

 1851 

Issues 1852 



1) The manuscript mentions immune responses as valid measures for inclusion, but does not 1853 

discuss which ones exactly. We only included those which we found matches in the dataset (i.e. 1854 

hidden rule), which are phytohemagglutinin response and hematocrit. 1855 

2) The manuscript mentions that only fledging success was extracted from studies that assessed 1856 

both clutch size and fledging success. However, we detected cases in which both of these 1857 

measures were present in the reported dataset from the same study (e.g. [176,241]). 1858 

Nonetheless, we followed the original rule given in the manuscript for matching purposes for 1859 

other studies.  1860 

3) The manuscript mentions that only laying date, clutch size, and fledgling success were valid 1861 

measurements of reproductive success. However, the dataset contained a case in which 1862 

breeding success (binary variable) was mislabelled as clutch size. The dataset also contained 1863 

cases with hatching date (e.g. [241]) and date of first nest (e.g. [206]). Nonetheless, we 1864 

followed the original rule given in the manuscript for matching purposes for other studies.  1865 

4) The manuscript mentions that valid condition measures are "residual body mass, immune 1866 

response -humoral or cellular -, and parasite load", but dataset also includes cases in which 1867 

body mass is labelled as a condition measure (e.g. [164,167,178]). Nonetheless, we followed 1868 

the original rule given in the manuscript for matching purposes for other studies. 1869 

 1870 

Jennions et al. (2001) 1871 

Originally reported 1872 

“We calculated the effect size as the Pearson product-moment correlation coefficient (r) 1873 

between trait expression and a measure of survival rate. […] The estimate of survival was based 1874 

on a comparison between living and dead individuals or an estimate of adult life span/"days 1875 

alive". 1876 



 Secondary sexual traits were then scored as being morphological or behavioural 1877 

characters. We made these comparisons because secondary sexual characters may display a 1878 

higher degree of condition dependence than ordinary morphological traits. If so, they should 1879 

be associated with more positive effect sizes.” 1880 

 1881 

Issues 1882 

1) The manuscript does not contain information on which sexual signals were considered valid 1883 

for inclusion. We thus considered all sexual signals as valid for matching purposes. 1884 

 1885 

Koch et al. (2016) 1886 

Originally reported 1887 

“We included only studies (1) reporting the level of carotenoid supplementation as well as the 1888 

food source provided; (2) including data on both carotenoid-supplemented and control groups 1889 

of individuals; (3) reporting the values of plasma carotenoid levels and/or coloration; (4) not 1890 

repeating measures on the same group of birds that were reported in a study already 1891 

incorporated into the meta-analysis (a potential source of pseudoreplication); (5) testing adult 1892 

male birds rather than nestlings (in which both carotenoid physiology and ornamental function 1893 

differ greatly from sexually reproducing adult birds, and the quantity of carotenoids acquired 1894 

from egg yolk or parental provisioning is often unknown); and (6) supplementing with only the 1895 

carotenoids lutein and/or zeaxanthin, the most prevalent carotenoid pigments in the avian diet. 1896 

With the exception of one study supplementing with only lutein, all studies included in our 1897 

meta-analysis supplemented primarily with lutein and trace amounts of zeaxanthin (e.g., 20:1 1898 

ratio of lutein:zeaxanthin). [...] Because 16 of 19 studies investigated songbird species (order 1899 

Passeriformes), we excluded one study of red junglefowl (Gallus gallus), one study of mallards 1900 

(Anas platyrhynchos), and one study of kestrels (Falco tinnunculus) to capture the majority of 1901 



available data while avoiding comparing data from phylogenetically distant taxa with different 1902 

physiologies. We also excluded one study on society finches (Lonchura striata domestica) 1903 

because this species lacks carotenoid-based ornamentation and so is not subject to the potential 1904 

costs of allocating carotenoids as colourants. 1905 

 In addition, because the colour of feathers is determined only during moult when 1906 

carotenoids are actively deposited in growing feathers, we extracted plumage colour effect 1907 

sizes only from studies of moulting individuals; we calculated effect sizes from non moulting 1908 

birds with plumage ornaments only for the relationship between carotenoid intake and plasma 1909 

carotenoid concentration. The colour of a soft part, such as the bill, can change rapidly during 1910 

any season, so we could extract both coloration and plasma carotenoid level effect sizes from 1911 

studies of these ornaments, regardless of moult status. The means of assessing ornamental 1912 

coloration is important to consider in our analysis because colour is generally quantified along 1913 

one or more of three main axes: hue, or the shade of the colour (e.g., red, orange, yellow); 1914 

chroma, or the intensity of the colour (also called saturation); and brightness, or the lightness/ 1915 

darkness of the colour. In addition, principal component analysis can be used to create a 1916 

composite metric directly from the reflectance spectrum of a colour. Each of these axes of 1917 

colour tends to relate to different properties of the coloured ornament itself. For example, 1918 

chroma may be a good generalisation of pigment density, while hue may be more representative 1919 

of the proportion of red to yellow pigments in a carotenoid-coloured ornament.” 1920 

 1921 

Issues 1922 

No issues detected. 1923 

 1924 

Mautz et al. (2013) 1925 

Originally reported 1926 



“We were interested in four assays of ‘ejaculate quality’: sperm number, sperm swimming 1927 

speed, sperm size, and sperm viability. We did not include measures of non-sperm 1928 

characteristics of ejaculates such as seminal chemicals, even though these might affect female 1929 

fertility and/or male competitiveness under sperm competition, because these relationships are 1930 

far less clear than those for the four ejaculate traits we do consider. [...] Traits included in each 1931 

subcategory include: (A) quantity: spermatocrit, sperm count/number, sperm density; (B) size: 1932 

head length, midpiece length, flagellum length, total length, relative midpiece length, head 1933 

area, midpiece area; (C) speed: average velocity, average path velocity, curvilinear velocity, 1934 

linear velocity, straight-line velocity; (D) viability: absolute live sperm, longevity, per cent live, 1935 

percent motile, percent normal, viability. 1936 

 [...] papers had to address our main study question: is there a relationship between the 1937 

expression of a male sexually secondary characteristic (SSC) and an ejaculate characteristic? 1938 

Authors of the focal papers defined a range of traits as SSCs, including horn size, plumage 1939 

colouration, song rates, courtship rates, social status, condition and body size. As we were 1940 

searching for studies related to sexual selection, we relied on the authors of the original paper 1941 

to define a trait as a SSC (and, by extension, a trait that has been, or still is, under sexual 1942 

selection). We were specifically interested in sexually dimorphic traits and only included traits 1943 

that are, generally speaking, not expressed by females (e.g. male courtship colours or 1944 

advertisement calls) or differ qualitatively between the sexes (e.g. major differences in horn 1945 

shape). We excluded traits such as social dominance, body condition and, most importantly, 1946 

body size that are not usually treated as SSCs. [...] We were interested in SSCs rather than 1947 

attractiveness per se so we exclude studies that only report on composite measures of 1948 

attractiveness (e.g. ‘mating latency’).” 1949 

 1950 

Issues 1951 



No issues detected. 1952 

 1953 

McLean et al. (2012) 1954 

Originally reported 1955 

“We carried out an extensive literature search (completed in April, 2010) to find studies that 1956 

documented the inter-sexual relationships among the three traits in anuran species: (1) the 1957 

correlation between male call frequency and male body size (hereafter, the frequency–size 1958 

relationship), (2) female preference for male call frequency (the preference–frequency 1959 

relationship) and (3) female preference for male body size (the size–preference relationship). 1960 

[...] For the relationships that involved female preferences, we included studies that quantified 1961 

the relationship between male mating success and signal or quality traits, assuming differential 1962 

male mating success was generally the result of female choice.” 1963 

 1964 

Issues 1965 

No issues detected. 1966 

 1967 

Meunier et al. (2011) 1968 

Originally reported 1969 

“For each study, sign and magnitude of the correlation between melanin-based coloration and 1970 

laying date, clutch size, brood size and survival were given by the parameter ‘effect size’ r 1971 

calculated following standard methodology. We defined a positive effect size when individuals 1972 

with larger or darker melanin-based colour traits had lower laying date, had larger clutch size, 1973 

larger brood size and higher survival rate than individuals with smaller or paler melanin-based 1974 

colour traits. [...] We restricted our meta-analyses to eumelanin-based coloration (i.e. black and 1975 



grey coloration) because few studies have yet been published on pheomelanin-based coloration 1976 

(i.e. reddish-brown coloration).” 1977 

 1978 

Issues 1979 

No issues detected. 1980 

 1981 

Moller & Alatalo (1999) 1982 

Originally reported 1983 

“The aims of the present study were to quantify the viability effects of sexual selection. This 1984 

was carried out based on a literature survey of studies of good-genes sexual selection. Although 1985 

good-genes effects may be expressed as enhanced growth, fecundity or survival, we have 1986 

concentrated our efforts on reviewing the literature on survivorship effects because most 1987 

studies have addressed this major fitness component, and because life-time reproductive 1988 

success in a diverse array of organisms depends more on longevity than on any other life-1989 

history trait. [...] The variables of interest were classified in the following ways: (i) whether the 1990 

target of selection had been identified based on observations or experiments, or whether that 1991 

was not the case; (ii) the magnitude of the viability effect, calculated as the correlation 1992 

coefficient between a secondary sexual character and viability of the offspring; (iii) the female 1993 

mate preference for the male trait estimated from observational or experimental studies, 1994 

expressed as the correlation coefficient between the male character and male mating success 1995 

[...].” 1996 

 1997 

Issues 1998 

1) The manuscript does not contain information on which sexual signals were considered valid 1999 

for inclusion. We thus considered all sexual signals as valid for matching purposes. 2000 



 2001 

Moller & Jennions (2001) 2002 

Originally reported 2003 

“We determined the relationship between the expression of male secondary sexual characters 2004 

(or other characters associated with male mating success that appear to influence female choice 2005 

decisions) and four components of direct fitness for females. […] First, fertility was determined 2006 

as either (1) the proportion of eggs fertilised among females mated to a given male; (2) the 2007 

probability that copulation led to offspring production; or (3) the proportion of eggs that 2008 

hatched in species without paternal care. Since multiple mating is common among females of 2009 

many species and sperm storage may occur, we can be sure that this effect is larger than 2010 

estimated here. Second, we determined fecundity as (1) clutch size; (2) the number of eggs laid 2011 

over a specified time interval; or (3) litter size in live-bearing species. Third, we determined 2012 

male investment in parental care in birds as (1) the proportion of feeding visits to offspring 2013 

relative to the total number of feeds by both male and female, or (2) the absolute feeding rate 2014 

of the male. Where possible we used the latter measure because differential allocation by 2015 

females may lead to an underestimate of the absolute amount a male invests in offspring. Four, 2016 

we also included measures of hatching success for fish, amphibians and insects where there is 2017 

paternal care but males do not feed offspring. In all these species it is clear that male parental 2018 

behaviour is a major factor in the hatching success (e.g. due to fanning of eggs or attacking 2019 

predators). We excluded data on fledgling production or the number of young reared to 2020 

independence by birds and mammals because we did not feel we could adequately cover the 2021 

huge literature that this entails. However, we are unaware of any study relating the expression 2022 

of secondary sexual characters to the quality of male parental care and subsequently to 2023 

offspring viability (recruitment into the following reproducing population). In addition, 2024 

variation in territory quality is likely to play a major role in offspring survival because it will 2025 



influence the rate at which offspring are fed. Thus, we would need to partition reproductive 2026 

success into effects related to the expression of male secondary sexual characters and effects 2027 

due to territory quality per se. We are unaware of any studies that have done so. 2028 

We treated eggs in the nest as a sexually selected character in fish. Exclusive male parental care 2029 

in insects (and fish) appears to be a sexually rather than naturally selected trait, because females 2030 

should use the number of clutches or eggs a male cares for as a reliable signal of paternal intent 2031 

and quality.” 2032 

 2033 

Issues 2034 

1) The manuscript does not contain information on which sexual signals were considered valid 2035 

for inclusion. We thus considered all sexual signals as valid for matching purposes. 2036 

2) The manuscript mentions that "excluded data on fledgling production or the number of 2037 

young reared to independence by birds and mammals" but we detected cases in the dataset with 2038 

number of fledglings as a proxy in bird species (e.g. [151]). Nonetheless, we followed the 2039 

original rule given in the manuscript for matching purposes for other studies. 2040 

3) Despite the criteria listed in the manuscript, occurrence of a second clutch as a reproductive 2041 

success measurement was detected in a few cases of the dataset reported. Nonetheless, we 2042 

followed the original rule given in the manuscript for matching purposes for other studies. 2043 

 2044 

Moore et al. (2016) 2045 

Originally reported 2046 

“We only included those studies in which the following criteria were met: 1) subjects were 2047 

adults; 2) subject sex was specified; 3) physiological indices of stress were measured […] Four 2048 

categories of stress measurement were reported: baseline GCs, peak or total GCs produced in 2049 

response to a stressor, experimental elevation of GCs, and long-term stress. Baseline GCs were 2050 



typically measured within 3–5 min of capture. Experimental elevation of GCs up to 4 times 2051 

above baseline was achieved via subcutaneous implants containing GCs. Long-term stress was 2052 

assessed in 3 ways: GCs deposited in feathers, faeces or hair; the ratio of heterophils to 2053 

lymphocytes (a white blood cell count that correlates with baseline GCs); and the expression 2054 

of heat shock proteins (highly conserved proteins that are elevated under stress). Both 2055 

heterophil-to-lymphocyte ratio and heat shock proteins are widely used as proxies of recent 2056 

and long-term stress in the ecological literature. 2057 

The effect sizes we obtained considered a wide range of secondary sexual traits, which 2058 

we sorted into 4 categories: coloration, vocalisation, morphological traits, and opposite-sex 2059 

preferences. The coloration category included examples in birds, mammals, and reptiles. The 2060 

amount of coloration was measured in several different ways, including brightness, hue, 2061 

saturation, proportion of structure (e.g., eye ring) that is pigmented, ultraviolet reflectance, and 2062 

colour reflectance. The vocalisation category included singing in birds and calling in 2063 

amphibians and a mammal species (rock hyrax Procavia capensis). The parameters measured 2064 

varied according to the nature of vocalisation in each species and included song rate, 2065 

complexity, and repertoire size in birds; the latency to call, call duration, call rate, and vocal 2066 

effort in amphibians, and whether calling/singing was observed or not (rock hyrax, 2067 

amphibians). Effect sizes included in the morphological trait category all considered bird 2068 

species and assessed the size of secondary sexual characters, such as comb or tail length. We 2069 

also included in this category effect sizes considering the size of a coloured structure (but not 2070 

the coloration itself), such as epaulet size in the red-winged black- bird (Agelaius phoeniceus). 2071 

Finally, while not a secondary sexual trait per se, opposite-sex preference was included as an 2072 

indirect measure of the level of sexual signalling, with the assumption being that attractiveness 2073 

to the opposite sex is a function of investment in secondary sexual traits. We rely on author 2074 

judgments regarding whether each trait is a secondary sexual trait or not.” 2075 



 2076 

Issues 2077 

No issues detected. 2078 

 2079 

Nakagawa et al. (2007) 2080 

Originally reported 2081 

“We conducted an extensive search of the literature on the relationship between life-history 2082 

traits and bib size in house sparrows. […] Our criteria resulted in 6 life-history traits that could 2083 

be investigated: fighting ability, parental ability, age, body condition (i.e., standardised weight), 2084 

cuckoldry (the rate or absence/presence of lost paternity due to extra pair paternity [EPP]), and 2085 

reproductive success. In the analysis of parental behaviour, we used studies investigating both 2086 

incubation and feeding behaviour. A recent study showed incubation time to be a significant 2087 

predictor of subsequent nestling provisioning in a population, so that treating incubation and 2088 

provisioning together may be justifiable.” 2089 

 2090 

Issues 2091 

1) The manuscript mentions that reproductive success is a proxy without any details but their 2092 

dataset only contains the number of fledglings (even though other measures were available, 2093 

e.g. number of eggs, number of hatchlings). Thus, this was considered a hidden criterion for 2094 

matching purposes. 2095 

 2096 

Nolazco et al. (2022) 2097 

Originally reported 2098 

“Condition parameters fell into six categories: (1) body condition: mainly measurements of 2099 

body mass adjusted by structural body size and others associated with the physical condition 2100 



of individuals; (2) body size: structural size (measurements of tarsus, wing, beak, keel, and tail 2101 

alone or in combination) and mass; (3) immunity: indicators of constitutive immunity, immune 2102 

challenges and responses; (4) stress: indicators of baseline physiological stress, stress 2103 

challenges, and capacity to cope with oxidative stress; (5) environment: climatic conditions 2104 

and resources; and (6) parasites: incidence and abundance of parasites. [...] Fitness parameters 2105 

included not only estimates of reproductive success, survival and offspring quality, but also 2106 

parental quality (because parental investment has been hypothesised to vary as a function of 2107 

ornamentation) and timing of breeding. Hence these factors were classified into five categories: 2108 

(1) reproductive success: mating success and offspring production; (2) offspring quality or 2109 

condition: measurements of egg quality, offspring body condition, immunity, parasites, and 2110 

other indicators of physical condition; (3) parental quality: provisioning during incubation, and 2111 

offspring feeding and defence; (4) timing of breeding: measured directly or as arrival time to 2112 

breeding grounds; and (5) survival. 2113 

We applied a phylogenetically controlled bivariate meta-analytic approach to quantify 2114 

the strength and direction of associations between ornaments and condition or fitness, in bird 2115 

species in which both sexes were ornamented. Only morphological ornaments that were 2116 

visually recognisable and identified as such by the authors of the original studies were included, 2117 

excluding traits that did not appear decorative such as body size and weapons. In all cases, 2118 

ornaments were similar in structure and location between sexes. We note that in most cases 2119 

ornamental function of these traits is assumed and experimental evidence is not available. Thus, 2120 

we broadly defined ornaments as any phenotypic traits that look like decorations rather than 2121 

having an apparent naturally selected function. [...] We excluded publications if only male traits 2122 

were investigated (i.e., no conspecific female traits were studied in this or another publication). 2123 

For any female-only studies, we used the cited reference list to identify the corresponding 2124 

information on conspecific males, adding 25 additional publications. Our criteria for including 2125 



these studies was that the data originated from the same populations. [....] We classified 2126 

ornamental traits into six categories: (1) carotenoid-based colouration: yellow, orange, or red 2127 

coloured ornaments; (2) melanin-based colouration: black, grey (eumelanin), or brown 2128 

(pheomelanin); (3) structural-based colouration: iridescent and non-iridescent; (4) 2129 

unpigmented: white patches; (5) morphological: morphology of ornamental appendages (e.g., 2130 

comb, wattle, tail, plumes), and (6) others: to cases in which the operational variables were a 2131 

combination of two or more ornament categories or rare pigments (e.g., spheniscin in 2132 

penguins).” 2133 

 2134 

Issues 2135 

No issues detected. 2136 

 2137 

Parker (2013) 2138 

Originally reported 2139 

“I attempted to locate all papers published in English which assess the function or 2140 

characteristics of plumage colour in blue tits. [...] No clear expectations about seasonal changes 2141 

in colour emerge from sexual selection hypotheses, and so I did not assess tests for these 2142 

patterns. […] there is no clear prediction about the hue (wavelength of peak reflectance) of 2143 

white plumage because it is characterised by relatively uniform reflectance across the spectrum 2144 

visible to birds. Carotenoid-pigmented avian plumage requires dietary carotenoids regardless 2145 

of any role in sexual selection and so I did not consider the effect of manipulation of dietary 2146 

carotenoid intake on the colour of the carotenoid-pigmented yellow breast to be a test of a 2147 

sexual selection hypothesis. I also excluded the one observational study that used a qualitative 2148 

colour score rather than a quantitative colour measurement. [...] Age: Differences in plumage 2149 

colour between second-year (yearling) and after-second-year individuals; Aggression directed: 2150 



Aggression predicted by the plumage colour of the aggressor; Aggression received: Aggression 2151 

predicted by the plumage colour of the victim, including the relationship between plumage 2152 

colour manipulation and resulting dominance rank; Aggression dominance: Relationship 2153 

between plumage colour and dominance rank; Mate choice – assortative: Correlations between 2154 

plumage colour of one member of a mated pair and plumage colour or other morphological 2155 

trait of the other member of mated pair; Mate choice – differential investment: Parental 2156 

plumage colour related to the mate’s investment in reproduction; Mate choice – EPP: Male 2157 

plumage colour and rates of extra-pair paternity (EPP) determined by molecular paternity 2158 

analysis; Mate choice – WPP: Male plumage colour and rates of within-pair paternity (WPP) 2159 

determined by molecular paternity analysis; Mate choice – trials: Captive mate-choice trials; 2160 

Quality: Plumage colour and measures or manipulations of individual quality or measures of 2161 

individual’s offspring quality; Sex: Differences in plumage colour between males and females; 2162 

Sex ratio: Male plumage colour and sex ratio of offspring.” 2163 

 2164 

Issues 2165 

No issues detected. 2166 

 2167 

Parker & Ligon (2003) 2168 

Originally reported 2169 

“We were interested in testing two basic hypotheses: (a) female mating decisions correlate with 2170 

male comb morphology, and (b) female mating decisions correlate with male feather 2171 

morphology.”  2172 

 2173 

Issues 2174 



1) The dataset was unclear regarding sexual signals (e.g. whether colour was hue, chroma, 2175 

brightness, etc). 2176 

 2177 

Parker et al. (2006) 2178 

Originally reported 2179 

“We located each published study comparing blue tit song with potential indices of individual 2180 

quality or condition.” 2181 

 2182 

Issues 2183 

No issues detected. 2184 

 2185 

Prokop et al. (2012) 2186 

Originally reported 2187 

“We collected studies reporting on either (1) genetic correlations between male sexual traits 2188 

and other fitness-related characters, estimated using quantitative genetic methods (animal 2189 

model, full-sibling/half-sibling designs), (2) correlations between sire sexual traits and 2190 

offspring fitness-related traits, or (3) heritability of male sexual characters. [...] We also 2191 

included studies where measures of male mating success (e.g., comparing males that did and 2192 

did not achieve copulations in mating trials) were used instead of specific sexual traits, 2193 

provided that (1) the success could be attributed to female choice rather than/apart from male–2194 

male competition and (2) different individual females were used to determine mating success 2195 

of any given male and to produce his progeny scored for fitness traits. [...] Included only when 2196 

paternity had been experimentally controlled or genetically confirmed—or the frequency of 2197 

extra-pair offspring was known to be <15% in the population studied (<20% if the sample size 2198 



was at least 200), as such levels of extra-pair paternity should not bias the estimates of genetic 2199 

parameters. [...]  2200 

In (1) and (2), we included data from species with multiple sexually selected traits, 2201 

where pairs of such traits were correlated with each other. In all cases, we only took into 2202 

account male sexual traits known or supposed to be targets of female choice, therefore 2203 

excluding data on traits used only for intrasexual competition for mates. We also included 2204 

studies where measures of male mating success (e.g., comparing males that did and did not 2205 

achieve copulations in mating trials) were used instead of specific sexual traits, provided that 2206 

(1) the success could be attributed to female choice rather than/apart from male– male 2207 

competition and (2) different individual females were used to determine mating success of any 2208 

given male and to produce his progeny scored for fitness traits. [...] We classified sexually 2209 

selected traits as display (purely ornamental) and competitive (size/dominance related); a third 2210 

category, “other,” consisted of traits that could not be assigned to either of the two (such as 2211 

nuptial gift, mating success that could not be specifically attributed to either display or 2212 

dominance, or a trait increasing postcopulatory success).” 2213 

 2214 

Issues 2215 

No issues detected. 2216 

 2217 

Robinson & Creanza (2019) 2218 

Originally reported 2219 

“We obtained field studies that examined the link between individual song elaboration (number 2220 

of songs or syllables) and reproductive success (reproductive output or mating success). From 2221 

the 48 field studies that remained, we compiled 134 relevant measurements. These commonly 2222 

used measurements of reproductive success were categorised as follows: Number of females: 2223 



how many social mates a male attracts, where males who attract more females are assumed to 2224 

be more successful. Latency to pairing date or laying date: these two measures are traditionally 2225 

used as a measure of reproductive success, because attractive males should pair first, and those 2226 

who produce offspring sooner have a better chance of parenting a larger brood or more than 2227 

one brood of offspring in a single breeding season. Chicks born earlier in the season also tend 2228 

to be more viable. Extrapair paternity: this is often considered a metric of reproductive success 2229 

because males that sire offspring in extra pair matings are assumed to be more attractive to 2230 

females. However, it has been suggested to be an unreliable metric. Clutch size or number of 2231 

offspring/recruits: these three measures are affected by both male and female genetic quality; 2232 

however, it has been shown that females exposed to more elaborate songs can respond by 2233 

producing larger clutches, so male song quality can also potentially affect this metric. The 2234 

number of offspring or number of recruits (offspring that return to the parental territory) is 2235 

related to the genetic fitness of males and females, but also to parental investment. 2236 

In the studies that remained, individual song elaboration was measured by either song 2237 

repertoire size (unique number of songs per individual) or syllable repertoire size (unique 2238 

number of syllables per individual). We included studies that measured the association between 2239 

reproductive success and either of these song elaboration metrics, because syllable repertoire 2240 

size and song repertoire size are correlated between species and are likely also correlated within 2241 

species.” 2242 

 2243 

Issues 2244 

1) We detected one data point mislabeled as number of recruits when it should be residual 2245 

recruitment (i.e. controlled for number of fledglings, a measure of viability rather than 2246 

reproductive success). Nonetheless, we followed the original rule given in the manuscript for 2247 

matching purposes for other studies. 2248 



 2249 

Romano et al. (2017a) 2250 

Originally reported 2251 

“In our data set we only included the statistical relationships where plumage ornaments were 2252 

hypothesised to determine fitness-related traits, independently of how the test was designed. 2253 

Thus, we included the results of analyses where an ornament was included as a predictor of a 2254 

fitness trait, as well as analyses testing for a difference in ornament expression between groups 2255 

of individuals with different fitness (e.g. tests comparing tail length of mated versus unmated 2256 

individuals). Importantly, we did not include tests of condition-dependence of the expression 2257 

of ornaments (e.g. tests of variation in ornament expression according to parasite load, 2258 

physiological parameters or environmental conditions) nor tests of the potential costs of 2259 

ornaments, because these were not the focus of the study. [...] Briefly, data on reproduction 2260 

were analysed by comparing relationships between each plumage ornament and both male and 2261 

female reproductive output by separately considering the following fitness proxies, which refer 2262 

to different phases of the breeding cycle: (i) mating success, which comprised the probability 2263 

of obtaining a social mate, and the time elapsed between arrival date to the breeding site and 2264 

reproduction; (ii) mating date; (iii) success in paternity, as gauged by gaining extra-pair and 2265 

within-pair offspring, as well as by successfully engaging in extra-pair copulations; (iv) laying 2266 

date; (v) breeding success, including clutch size, brood size, and fledging success for any 2267 

breeding attempt; and (vi) overall reproductive success, considering the number of broods, all 2268 

eggs produced, and total number of offspring sired (but not when total number of eggs/offspring 2269 

was weighted by the number of broods) during the entire breeding season. We note that data 2270 

on clutch and brood size were pooled because in the barn swallow both the number of 2271 

unhatched eggs and mortality rate during the nestling period are normally very low. In practice, 2272 

the number of eggs laid and the number of nestlings fledged are highly correlated. Data on 2273 



parental care were divided into two categories, corresponding to different phases of the 2274 

breeding period: (i) incubation period, including the duration of incubation and the (absolute 2275 

or relative) time spent by females or males in incubating eggs; and (ii) care provisioning of 2276 

nestlings, including feeding rate, number of prey brought to the nest, and duration of the 2277 

nestling period. Importantly, we distinguished between parental care provided by the mother 2278 

and the social father of the nestlings. We then identified two categories of offspring quality: (i) 2279 

offspring size, including skeletal size (e.g. tarsus length) and body mass measurements of 2280 

nestlings; and (ii) offspring physiology, accounting for immune function and other 2281 

physiological variables. Finally, we also recorded effect sizes concerning the associations 2282 

between arrival date or survival/mortality and plumage ornaments. Importantly, data regarding 2283 

laying date, incubation, breeding success, care provisioning and offspring quality were 2284 

categorised according to the breeding attempt to which they referred, because barn swallows 2285 

often lay more than one clutch per breeding season, and the intensity of sexual selection may 2286 

vary during the breeding season. We thus considered separately the results concerning first or 2287 

second broods (no data were available for subsequent broods, as very few females lay more 2288 

than two clutches in a breeding season). Data on paternity may refer to the first brood only or 2289 

to both broods pooled. Because the fitness proxies could be ordered chronologically, we could 2290 

test whether the intensity of sexual selection varied among different phases of the breeding 2291 

cycle. We note that ‘breeding success’, indicating clutch and brood size, was placed before 2292 

‘care provisioning’ because it mainly reflects parental decisions on initial clutch size rather 2293 

than subsequent adjustments of brood size (see above). Analysis of variation in the effect size 2294 

among different phases of the breeding cycle was limited to first broods because of the small 2295 

number of effect sizes (and breeding stages) concerning second broods. In addition, because 2296 

only high-quality breeding individuals (i.e. the more ornamented ones) usually lay a second 2297 

clutch, during second broods smaller inter-individual variability in ornament expression 2298 



compared to the first broods is expected. This difference in ornament variation between first 2299 

and second broods may therefore reduce mean effect during the breeding season. 2300 

In our analyses we considered the following sexually dimorphic characters: tail length, 2301 

tail asymmetry, size of white spots on tail, ventral plumage colour, throat patch colour and 2302 

size.” 2303 

 2304 

Issues 2305 

No issues detected. 2306 

 2307 

Romano et al. (2017b) 2308 

Originally reported 2309 

“We included information about both annual survival (e.g. probability to survive from one 2310 

breeding season to the next) and survival during the breeding season (e.g. survival from 2311 

predators and severe weather). We emphasise that in our model species, both breeding dispersal 2312 

and emigration from one breeding site to another are extremely rare. Considering that all the 2313 

studies included in the analyses have been performed during the breeding season, the effects 2314 

of dispersal and emigration on individual survival are therefore virtually absent. 2315 

We considered the published studies where survival was tested in relation to the expression of 2316 

six sexually dimorphic characters which have been suggested to be under sexual selection in at 2317 

least one of the barn swallow subspecies: tail length, tail asymmetry, size of white spots on the 2318 

tail, ventral plumage colour, throat plumage colour, and throat colour patch size.” 2319 

 2320 

Issues 2321 

No issues detected. 2322 

 2323 



Sanchez-Tojar et al. (2018) 2324 

Originally reported 2325 

“We only included articles in which dominance was directly inferred from agonistic dyadic 2326 

interactions over resources such as food, water, sand baths or roosting sites. 2327 

When the presence of multiple estimates was due to the use of different methods to estimate 2328 

bib size and dominance rank on the same data, we chose a single estimate per group of birds 2329 

or study based on the order of preference [...]” [exposed/visible bib > hidden bib > total bib].  2330 

 2331 

Issues 2332 

No issues detected. 2333 

 2334 

Santos et al. (2011) 2335 

Originally reported 2336 

“The study must have: (1) investigated the relationship between dominance and plumage traits 2337 

in one sex, or statistically accounted for sex effects on the dominance interactions (such sex 2338 

effects are well known, and must be accounted for so that the relationship between dominance 2339 

and plumage is not confounded); (2) reported whether the plumage characteristic of interest 2340 

was manipulated or not; (3) reported whether interactions observed to assess dominance were 2341 

territorial or over food resources; and (4) fully reported test statistics and their associated 2342 

degrees of freedom (or sample size) for both significant and nonsignificant results. As a result 2343 

of applying our first inclusion criterion, our data consist only of the relationship between 2344 

dominance among males and male plumage (i.e. no data were available on the relationship 2345 

between dominance and plumage among females).” 2346 

 2347 

Issues 2348 



No issues detected. 2349 

 2350 

Simons & Verhulst (2011) 2351 

Originally reported 2352 

“To test whether the correlation between attractiveness and bill color can be attributed to a 2353 

correlation between bill color and song rate, our approach was to quantify the association 2354 

association between bill color and song rate using meta-analysis on a different set of studies 2355 

and compare the strength of this correlation with the correlation between the color of a male’s 2356 

bill and his attractiveness. 2357 

The statistical approach between studies differed, with some reporting the preference for the 2358 

reddest male and others reporting the relationship between the difference in redness and the 2359 

resulting female preference. The second approach includes both the effect of the difference 2360 

between males in redness together with the overall preference for the reddest male. We 2361 

recommend reporting both in future research to ease comparison between studies. For the 2362 

purpose of this review, we included both approaches because the rejection of either approach 2363 

would have resulted in a substantial loss of studies. We preferred the statistic of the preference 2364 

for the reddest males if both approaches were available.”  2365 

 2366 

Issues 2367 

1) The manuscript specified measures of body condition as size, size-corrected mass, or growth 2368 

rate, but the dataset also included others like subcutaneous fat score. Nonetheless, we followed 2369 

the original rule given in the manuscript for matching purposes for other studies. 2370 

 2371 

Simons et al. (2012) 2372 

Originally reported 2373 



“We summarised five phenotypic relationships: circulating carotenoid levels with trait redness, 2374 

immune function and oxidative stress state; and trait redness with immune function and 2375 

oxidative stress state. The relationships with trait redness represent signalling value, i.e. the 2376 

information that can be obtained by a choosing individual regarding the physiological state of 2377 

the signaler. The relationships with carotenoid levels represent the hypothesised mechanisms 2378 

maintaining signal honesty. [...] Exclusion criteria: [...] iii) An immune challenge or oxidative 2379 

stress challenge was given after which carotenoid levels or sexual coloration were assessed. 2380 

Our focus here is whether carotenoid levels or carotenoid-dependent coloration predict 2381 

oxidative stress parameters or immune response. The question of whether challenges reduce 2382 

carotenoid levels or redness of sexual coloration is relevant, and this mechanism may in part 2383 

or fully underlie between-individual variation in sexual coloration. However, the effects of 2384 

experimentally induced immune or oxidative stress cannot be directly scaled to natural 2385 

variation or direct manipulation of carotenoid levels and may involve different trade-offs and 2386 

hence we excluded such studies. iv) When carotenoid supplementation was applied 2387 

experimentally, but data on natural variation in circulating carotenoid levels or coloration were 2388 

also available, we used the latter because this is the variation that a choosing potential mate is 2389 

confronted with. [...] We included [...] whether the effect size was subject to experimental 2390 

variation, caused by treatments other than carotenoid supplementation, which potentially 2391 

increased variation in the traits of interest. To avoid such effects we selected pre-experimental 2392 

(including carotenoid supplementation studies) values or results of analyses of the control 2393 

group only, when possible. [...] In our analyses we considered the measures of the immune 2394 

system of which we found four or more independent studies. These measures were as follows: 2395 

PHA response, antibody production against experimentally induced antigens, parasite load, and 2396 

white blood cell counts.” 2397 

 2398 



Issues 2399 

1) The manuscript reports that only circulating carotenoids in plasma were included as a 2400 

measure of body condition and the dataset reports the same (e.g. "carotenoid level"). However, 2401 

we noticed that studies with distinct carotenoid diets appear to have been equated as carotenoid 2402 

level.  Nonetheless, we followed the original rule given in the manuscript for matching 2403 

purposes for other studies. 2404 

2) The manuscript focuses on redness as a sexual signal and mentions chroma and hue as valid 2405 

measurements. However, we noticed that the extent of a colourful trait was also used in some 2406 

occasions and that traits could be of other colours than red (e.g. yellow). Nonetheless, we 2407 

followed the original rule given in the manuscript for matching purposes for other studies. 2408 

 2409 

Soma & Garamszegi (2011) 2410 

Originally reported 2411 

“We used the following criteria for inclusion of studies: 1) results on the relationships between 2412 

song complexity and reproductive success were based on observational data in wild birds 2413 

without experimental manipulations; 2) song complexity was measured by either song or 2414 

syllable repertoire size (i.e., the number of unique song or syllable types in the full repertoire 2415 

or in a given amount of vocal sample), versatility, or principal component score of multiple 2416 

song variables that reflect song complexity; 3) the measure of reproductive success was based 2417 

on either the number of females mated (including both social and extrapair mating), the number 2418 

of offspring sired (including the number of eggs, fledglings, and recruits), or the timing of the 2419 

onset of reproduction.” 2420 

 2421 

Issues 2422 

No issues detected. 2423 



 2424 

Street et al. (2016) 2425 

Originally reported 2426 

“To fulfil the inclusion criteria, articles had to contain either (1) data on changes in swelling 2427 

size across days relative to an independent estimate of the day of ovulation based on ovarian 2428 

hormone levels (from blood, urine or faecal samples) or laparoscopy, or (2) data on swelling 2429 

size and any measures of individual female quality (e.g. body condition or social rank). [...] 2430 

Only those measures that were reported in at least four studies were analysed, i.e. age, social 2431 

rank and body condition. 2432 

[…] data from species with small swellings (defined as swell- ings that involve the 2433 

vulval and clitoral areas only) were excluded (i.e. Hylobates lar; Gorilla gorilla), as were data 2434 

from species with subcaudal swellings (i.e. Macaca fas). The relationship between swelling 2435 

coloration and ovulation was not investigated, as few studies with suitable data were available.” 2436 

 2437 

Issues 2438 

No issues detected. 2439 

 2440 

Thornhill & Moller (1998) 2441 

Originally reported 2442 

“Because we investigated the relative effect size for symmetry versus character size for the 2443 

same trait, the only studies included from Moller and Thornhill (1998) were those that had one 2444 

or more estimates that allowed calculation of an effect size for the relationship between 2445 

asymmetry and character size, and mating success or a mate preference, respectively.” 2446 

 2447 

Issues 2448 



No issues detected. 2449 

 2450 

Weaver et al. (2018) 2451 

Originally reported 2452 

“We quantitatively synthesised published results on the relationships between individual 2453 

quality and plumage coloration of passerines produced via dietary versus converted 2454 

carotenoids. […] studies must have investigated at least one of the following proxies of 2455 

individual quality: (1) nutritional condition, (2) immune function or oxidative capacity, (3) 2456 

parasite resistance, or (4) reproductive or parental quality. 2457 

[...] we focused our study on a single trait, feather coloration, to avoid confounding 2458 

biological factors such as blood flow, carotenoid esterification, and differences in requisite 2459 

enzymes that are relevant to bare-part coloration, but not feather coloration. [...] Because we 2460 

were interested in the signal content of carotenoid-based plumage, we focused on studies that 2461 

quantified feather colour using standardised colour metrics of natural (i.e., unsupplemented) 2462 

adult bird colour levels. Therefore, we excluded studies from our meta-analysis for any of the 2463 

following reasons: only coloration of non-feathered structures was measured (e.g., wattles, 2464 

legs, beaks); a non-passerine species was studied; only plasma concentrations of carotenoids 2465 

were measured; or only nestling or juvenile coloration was studied. We did not include 2466 

measures of feather brightness as it is sensitive to factors unrelated to pigmentation. [...] 2467 

Common metrics used to quantify this variation in feather reflectance include comparisons to 2468 

standard colour charts (e.g., Munsel), calculations of hue, chroma and brightness or composite 2469 

metrics such as principal components (PCA) from spectrophotometer data or digital 2470 

photographs. Hue describes the unique spectral colour (e.g., “red”, “orange”, “yellow”) and 2471 

chroma describes the saturation or spectral purity of the colour display relative to total 2472 

reflectance across the visible range of the electromagnetic spectrum. [...] We did not include 2473 



measures of brightness in our analyses because it is strongly influenced by the physical 2474 

structure of the feather which may be altered by abrasion and wear and is difficult to interpret 2475 

for carotenoid content.”  2476 

 2477 

Issues 2478 

1) The manuscript states that only colour metrics are valid sexual signals but dataset reveals 2479 

that also included size of colourful plumage (e.g. patch size). Nonetheless, we followed the 2480 

original rule given in the manuscript for matching purposes for other studies. 2481 

2) The manuscript states that only adult sexual signals were used but the dataset includes data 2482 

from juveniles from many empirical studies. Nonetheless, we followed the original rule given 2483 

in the manuscript for matching purposes for other studies. 2484 

3) The dataset includes offspring size but states it as "offspring quality" even though this is 2485 

omitted in the manuscript. Nonetheless, we followed the original rule given in the manuscript 2486 

for matching purposes for other studies. 2487 

 2488 

White (2020) 2489 

Originally reported 2490 

“I included all experimental and observational studies that quantified the relationship between 2491 

intersexual structural colour signal expression (via the measurement of hue, saturation or 2492 

brightness, or a composite thereof) and any one of age, body condition (size, size-corrected 2493 

mass or growth rate), immune function (oxidative damage, PHA response, circulating CORT 2494 

or testosterone) or parasite resistance as a measure of individual quality.” 2495 

 2496 

Issues 2497 



1) The manuscript states that only structurally-based sexual signals were included but some 2498 

carotenoid-based ornaments were included in the dataset. Nonetheless, we followed the 2499 

original rule given in the manuscript for matching purposes for other studies. 2500 

2) Data on distinct carotenoid diets were apparently used as condition proxy, even though the 2501 

manuscript lists only other proxies for "condition" ("size, size-corrected mass or growth rate"). 2502 

Nonetheless, we followed the original rule given in the manuscript for matching purposes for 2503 

other studies. 2504 

3) The manuscript mentions that the condition proxy could be "size, size-corrected mass or 2505 

growth rate", but only body mass was used as a body size measurement, which we interpreted 2506 

as a hidden criterion. 2507 

4) Unclear how colours of sexual signals were assessed to be structurally-based. Description 2508 

of sexual signals in the dataset only specify colour measurement (e.g. hue) but not body part. 2509 

 2510 

Yasukawa et al. (2010) 2511 

Originally reported 2512 

“We performed a meta-analysis to determine whether epaulet expression affects male-male 2513 

competition, female choice, or reproductive success. This analysis provides a quantitative way 2514 

to interpret the wide range of results from a variety of observational and experimental studies 2515 

of Red-winged Blackbird epaulets as sexually selected adaptations.”  2516 

 2517 

Issues 2518 

1) Specific included measurements for aggression are unclear in the manuscript and dataset 2519 

given by authors contains only vague descriptions of aggression (number of hits, close 2520 

approaches, approaches, dominance rank) but more were available in empirical studies from 2521 



where data were extracted. We interpreted that only those reported were considered valid, and 2522 

thus as a hidden criterion for matching purposes. 2523 

 2524 

Supplementary information S5. Examples of matching attempts 2525 

The easiest attempts to find the correct matches between datasets occurred in cases in which a 2526 

given empirical study (source for data extraction) contained only one data point with the same 2527 

description (i.e. same sexual signal and proxy) in the originally reported dataset as well as in 2528 

the re-extracted dataset. For instance, Simons et al. [47] reported a data point from Birkhead et 2529 

al. [257] on the relationship between song rate and bill redness in zebra finches. In our re-2530 

extracted dataset, only one data point existed for this empirical study on this same relationship, 2531 

so there was no doubt that it was a match to the data point originally reported. Unfortunately, 2532 

most cases were not as simple. For example, Santos et al. [46] reported a single data point from 2533 

Korsten et al. [119] on the relationship between plumage colour and territory defence in 2534 

Eurasian blue tits. Yet, our re-extracted dataset contained 38 data points for the relationship 2535 

between plumage colour and aggression or social dominance. Luckily, only two of these 2536 

mentioned territorial defence, with one of them with the same sample size as the one reported. 2537 

If the proxy in the dataset of Santos et al. [46] was slightly more vague (aggression instead of 2538 

territory defence) or if the sample size reported was different from the any of our re-extracted 2539 

data points, then we would have to label all re-extracted data points with the same extraction 2540 

ID, as if that single reported data point was an average of all possible data points given in the 2541 

empirical study. Indeed, this is what happened for complicated cases like [213], used by Simons 2542 

et al. [47], who reported three data points, all on the relationship between bill redness and 2543 

attractiveness in zebra finches. Our re-extracted dataset contained nine data points with similar 2544 

description, and no other information was available to clarify this conundrum. We thus matched 2545 

the three originally reported data points with all nine re-extracted data points. We classified 2546 



matches one-to-one as exact matches, while other matches (one-to-multiple, multiple-to-one, 2547 

multiple-to-multiple) as non-exact. 2548 

 2549 

Supplementary information S6. Calculation and conversion of effect sizes 2550 

We used Fisher’s Zr in most of our analyses. Following Hedges et al. [327], we mainly used 2551 

Pearsons’ correlation coefficient (r) to calculate Zr as: 2552 

𝑍𝑍𝑍𝑍 = 0.5 ln �
1 + 𝑟𝑟
1 − 𝑟𝑟�

 2553 

with its sampling variance (se2) as: 2554 

𝑠𝑠𝑒𝑒2 =
1

𝑛𝑛 − 3
 2555 

where n is the number of individuals tested (i.e. total sample size). If needed, we 2556 

transformed Zr to r as: 2557 

𝑟𝑟 =
𝑒𝑒2𝑍𝑍𝑍𝑍 − 1
𝑒𝑒2𝑍𝑍𝑍𝑍 + 1

 2558 

Data reported by empirical studies were available in various formats. If r itself could 2559 

not be obtained, we calculated it from other data. For instance, if only the coefficient of 2560 

determination was available (R2), we calculated r as: 2561 

𝑟𝑟 = �𝑅𝑅2 2562 

Other types of correlations were directly transformed to r following Koricheva et al. 2563 

[3], such as Spearman’s rank correlation (𝜌𝜌, only needed if n < 90, otherwise equates to r), as: 2564 

𝑟𝑟 = 2 sin �
πρ
6
� 2565 

and Kendall’s correlation (𝜏𝜏), as: 2566 

𝑟𝑟 = sin �
πτ
2
� 2567 

Goodman and Kruskal's gamma (𝛾𝛾) is similar to Kendall’s correlation, so we used the 2568 

equation above with 𝛾𝛾 instead of 𝜏𝜏 to obtain r when necessary. 2569 



By contrast, other types of data needed further steps to obtain r. For example, following 2570 

Jacobs et al. [328], t from independent samples t-tests were transformed to point-biserial 2571 

correlations (rpb) as: 2572 

𝑟𝑟𝑝𝑝𝑝𝑝 =
𝑡𝑡

√𝑡𝑡2 + 𝑛𝑛 − 2
 2573 

Similarly, following Koricheva et al. [3], F-values were transformed to rpb as: 2574 

𝑟𝑟𝑝𝑝𝑝𝑝 =
√𝐹𝐹

√𝐹𝐹 + 𝑛𝑛 − 2
 2575 

Following Jacobs et al. [328], we assume that r equals to the biserial correlation 2576 

coefficient (rb), which can be calculated from rpb as: 2577 

𝑟𝑟 = 𝑟𝑟𝑏𝑏 =
�𝑝𝑝𝑝𝑝
𝑓𝑓�𝑧𝑧𝑝𝑝�

𝑟𝑟𝑝𝑝𝑝𝑝 2578 

 where p  =   n1
n

, 𝑞𝑞 = 𝑛𝑛2
𝑛𝑛

, n1 is the sample size of the first group (e.g. treatment), n2 is the 2579 

sample size of the second group (e.g. control), and f(zp) denotes the density of the standard 2580 

normal distribution at value zp, which is the point for which P(Z > zp) = p, with Z denoting a 2581 

random variable following a standard normal distribution. We assumed p = q = 0.5 in all 2582 

instances in which we used this equation. 2583 

Other statistics had to be first transformed to t, such as (1) regression slopes (β) as: 2584 

𝑡𝑡 = β
𝑠𝑠𝑠𝑠

, 2585 

(2) Chi-Squares (𝜒𝜒2; but only those with one degree of freedom, i.e. comparisons 2586 

between two groups) as: 2587 

𝑡𝑡 = √𝐹𝐹 = �χ2, 2588 

 and (3) p-values using the qt function (t distribution) in R 4.4.0[310].  2589 

Differences between groups were also reported in different ways, and most of them could not 2590 

be directly used to calculate r. Instead, we calculated Cohen’s d from these data before 2591 

converting them to r. Following Borenstein et al. [4], we obtained r from Cohen’s d as: 2592 



𝑟𝑟 =
𝑑𝑑

√𝑑𝑑2 + 𝑎𝑎
 2593 

 2594 

where a is: 2595 

𝑎𝑎 =
(𝑛𝑛1 + 𝑛𝑛2)2

𝑛𝑛1𝑛𝑛2
 2596 

When only total sample size was given, we assumed n2 = n1 = n2. Following Cohen 2597 

[329], descriptive data were first used to calculate Cohen’s d as: 2598 

𝑑𝑑 =
𝑚𝑚2 −𝑚𝑚1

𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
 2599 

where m2 and m1 are group means (e.g. treatment and control), while spooled was 2600 

calculated as: 2601 

𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �
(𝑛𝑛2 − 1)𝑠𝑠22 + (𝑛𝑛1 − 1)𝑠𝑠12

𝑛𝑛2 + 𝑛𝑛1 − 2
 2602 

where s2 is the variance of each group. However, if data from two points in time (e.g. 2603 

pre- and post-experiment) were given for each of the two groups, following Gurevitch et al. 2604 

[330], we calculated Cohen’s d as:  2605 

𝑑𝑑 =
�𝑚𝑚2,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑚𝑚2,𝑝𝑝𝑝𝑝𝑝𝑝� − �𝑚𝑚1,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑚𝑚1,𝑝𝑝𝑝𝑝𝑝𝑝�

𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝∗
 2606 

while spooled* was calculated as: 2607 

𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝∗ = �
�𝑛𝑛2,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1�𝑠𝑠2,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

2 + �𝑛𝑛2,𝑝𝑝𝑝𝑝𝑝𝑝 − 1�𝑠𝑠2,𝑝𝑝𝑝𝑝𝑝𝑝
2 + �𝑛𝑛1,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1�𝑠𝑠1,𝑝𝑝𝑝𝑝𝑝𝑝

2 + �𝑛𝑛1,𝑝𝑝𝑝𝑝𝑝𝑝 − 1�𝑠𝑠1,𝑝𝑝𝑝𝑝𝑝𝑝
2

𝑛𝑛2,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑛𝑛2,𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑛𝑛1,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑛𝑛1,𝑝𝑝𝑝𝑝𝑝𝑝 − 4
 2608 

If only the difference between groups was given instead (as a single value), we 2609 

calculated Cohen’s d as: 2610 

𝑑𝑑 =
𝑚𝑚

𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
 2611 



where m is the difference between groups. If only results from paired-samples t-tests (tpaired) 2612 

were provided, following Dunlap et al. [331], we obtained Cohen’s d from them as: 2613 

𝑑𝑑 = 𝑡𝑡
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�2(1−𝑟𝑟12)

𝑛𝑛
 2614 

where r12 is the correlation coefficient between two groups (set as 0.5 in all instances). If only 2615 

medians and interquartile range for each group were given (as in boxplots), we used equations 2616 

14 and 15, along with table 2, from Wan et al. [332]. 2617 

Furthermore, data could be reported in the form of frequency of events or proportions. 2618 

If the former, following Nakagawa et al. [333], we first calculated r as: 2619 

𝑟𝑟 =
𝐴𝐴𝐴𝐴 − 𝐵𝐵𝐵𝐵

�(𝐴𝐴 + 𝐵𝐵)(𝐶𝐶 + 𝐷𝐷)(𝐴𝐴 + 𝐶𝐶)(𝐵𝐵 + 𝐷𝐷)
 2620 

where A, B, C, and D are frequencies from a two-by-two contingency table. If 2621 

proportions for two groups were given and they could not be transformed into frequencies then, 2622 

as in Pollo et al. [316], we calculated Cohen’s d as: 2623 

𝑑𝑑 =
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝2) − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝1)

π √3 2624 

where p2 and p1 are the proportions reported for each group. Lastly, if only a single proportion 2625 

was given (e.g. proportion of time spent with one prospective mate over another), as in Pollo 2626 

et al. [316], we calculated Cohen’s d as: 2627 

𝑑𝑑 =
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝) − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝑝𝑝)

π √3 2628 

 where p is the proportion reported. 2629 

 We could not compute effect sizes when the only data reported were (1) measures 2630 

mentioned above without all necessary components to calculate effect sizes (e.g. means without 2631 

standard errors), (2) genetic correlations, (3) Wald Chi-Square, (4) selection gradients, (5) 2632 

Mann-Whitney U-Tests, and (6) F-values from ANOVAs with predictor variables with more 2633 

than two levels. 2634 



 2635 

Supplementary information S7. Direction of effect sizes 2636 

We had to invert the direction of some effect sizes originally reported by two meta-analyses 2637 

because authors reported these effect sizes in the opposite direction than the one they were 2638 

analysed: (1) [30] with effect sizes on the relationship between frequency of acoustic signals 2639 

and body size or mating success, and (2) [42] with effect sizes related to latency to court. 2640 

Moreover, we obtained the absolute value for all effect sizes from White [53] in which the 2641 

sexual signal involved colour hue, as the author stated doing so for their analysis. 2642 

When re-extracting data from empirical studies, we followed the rationale that 2643 

individual condition and fitness are reflected by greater sexual signal expression, except for the 2644 

following sexual signals: asymmetry, inter-pop or intercall interval, latency to signal, song 2645 

frequency in amphibians (but not in other animals), and other measures (e.g. composite 2646 

measures, brightness, hue) in specific cases (e.g. lower hue for blue traits). Likewise, the 2647 

direction rationale we used for various proxies (i.e. how they reflected individual condition or 2648 

fitness) are shown in Table S1. The direction of data points re-extracted is also reported in detail 2649 

in our dataset. 2650 

Despite how we proceeded when re-extracting data, we adjusted the direction of re-2651 

extracted effect sizes to comply with the rationale stated in original meta-analyses. Therefore, 2652 

we re-inverted re-extracted effect sizes for the following cases because they were in the 2653 

opposite direction than the one we assigned to them during re-extraction:   2654 

1. All effect sizes that could be included by [14], as positive values there represent a 2655 

positive relationship between sexual signal expression and parasite load. 2656 

2. All effect sizes that could be included by [34], as positive values there represent a 2657 

positive relationship between asymmetry of sexual signals and attractiveness.  2658 



3. All effect sizes that could be included by [35], as positive values there represent a 2659 

positive relationship between sexual signal expression and stress. 2660 

4. Effect sizes related to age that could be included by [15], as positive values there 2661 

represent a negative relationship between sexual signal expression and age. 2662 

5. Effect sizes related to parasite load, heterophil-to-lymphocyte ratio, and oxidative 2663 

damage that could be included by [48], as positive values there represent a positive 2664 

relationship between sexual signal expression and both parasite load and stress. 2665 

6. Effect sizes related to asymmetry of sexual signals that could be included by [51], as 2666 

positive values there represent a positive relationship between asymmetry of sexual 2667 

signals and attractiveness. 2668 

7. Effect sizes related to parental care that could be included by [43], as positive values 2669 

there represent a negative relationship between sexual signals and parental care. 2670 

8. Effect sizes related to aggression received that could be included by [39], as positive 2671 

values there represent a positive relationship between sexual signals and aggression 2672 

received. 2673 

 2674 

 The direction of some re-extracted effect sizes was unclear because the authors of the 2675 

empirical study did not clarify the expected direction for a given sexual signal, proxy, or 2676 

estimate they reported (e.g. unclear whether colour PC1 positively or negatively related to 2677 

signal conspicuity, extravagance, or attractiveness in [176]). We excluded re-extracted effect 2678 

sizes with an unclear proxy direction that were not matched to any reported effect sizes 2679 

(unusual proxies, e.g. resting metabolic rate). For all other cases with unclear direction, 2680 

whenever the re-extracted effect size was similar to their matched reported effect size(s) in 2681 

magnitude (absolute difference less than 0.02) but in opposite directions, we changed the 2682 



direction of that re-extracted effect size to be the same as the reported one(s) which it matched 2683 

to minimise differences when information was ambiguous. 2684 

 Regarding data on the relationship between condition-dependency (see Table S1 for 2685 

specific proxies) and sexual signals, we expected that individuals that express sexual signals 2686 

do so because they can pay the costs of developing and maintaining that trait, indicating their 2687 

good condition. However, this rationale is only valid for correlational studies. When studies 2688 

manipulated sexual signals of individuals, we expected that individuals whose sexual signal 2689 

was enlarged or made more intense would experience increased costs and thus ultimately lower 2690 

survival. 2691 
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